List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4901662/publications.pdf Version: 2024-02-01

Ρλίση Δ.Κληνι

#	Article	IF	CITATIONS
1	Desert dust aerosol air mass mapping in the western Sahara, using particle properties derived from space-based multi-angle imaging. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 239.	0.8	57
2	Retrieval of aerosol optical thickness for desert conditions using MERIS observations during the SAMUM campaign. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 229.	0.8	25
3	Spectral surface albedo over Morocco and its impact on radiative forcing of Saharan dust. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 252.	0.8	68
4	Opportunistic experiments to constrain aerosol effective radiative forcing. Atmospheric Chemistry and Physics, 2022, 22, 641-674.	1.9	44
5	La Soufriere Volcanic Eruptions Launched Gravity Waves Into Space. Geophysical Research Letters, 2022, 49, .	1.5	11
6	Scattering and absorbing aerosols in the climate system. Nature Reviews Earth & Environment, 2022, 3, 363-379.	12.2	93
7	Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China. Atmospheric Chemistry and Physics, 2021, 21, 6199-6220.	1.9	23
8	Effects of COVID-19 lockdowns on fine particulate matter concentrations. Science Advances, 2021, 7, .	4.7	53
9	Quantifying the Source Term and Uniqueness of the August 12, 2017 Pacific Northwest PyroCb Event. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034928.	1.2	11
10	Twenty years of NASA-EOS multi-sensor satellite observations at Kīlauea volcano (2000–2019). Journal of Volcanology and Geothermal Research, 2021, 415, 107247.	0.8	4
11	Spatial variation of fine particulate matter levels in Nairobi before and during the COVID-19 curfew: implications for environmental justice. Environmental Research Communications, 2021, 3, 071003.	0.9	14
12	Constraining Aerosol Phase Function Using Dualâ€View Geostationary Satellites. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035209.	1.2	3
13	Monthly Global Estimates of Fine Particulate Matter and Their Uncertainty. Environmental Science & Technology, 2021, 55, 15287-15300.	4.6	211
14	Spaceâ€Based Observations for Understanding Changes in the Arcticâ€Boreal Zone. Reviews of Geophysics, 2020, 58, e2019RG000652.	9.0	39
15	Interpreting the volcanological processes of Kamchatka, based on multi-sensor satellite observations. Remote Sensing of Environment, 2020, 237, 111585.	4.6	13
16	A new method to retrieve the diurnal variability of planetary boundary layer height from lidar under different thermodynamic stability conditions. Remote Sensing of Environment, 2020, 237, 111519.	4.6	44
17	MAIAC Thermal Technique for Smoke Injection Height From MODIS. IEEE Geoscience and Remote Sensing Letters, 2020, 17, 730-734.	1.4	30
18	Wildfire Smoke Particle Properties and Evolution, From Space-Based Multi-Angle Imaging II: The Williams Flats Fire during the FIREX-AQ Campaign. Remote Sensing, 2020, 12, 3823.	1.8	18

#	Article	IF	CITATIONS
19	Ensemble PM _{2.5} Forecasting During the 2018 Camp Fire Event Using the HYSPLIT Transport and Dispersion Model. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032768.	1.2	21
20	Large global variations in measured airborne metal concentrations driven by anthropogenic sources. Scientific Reports, 2020, 10, 21817.	1.6	17
21	The Evolution of Icelandic Volcano Emissions, as Observed From Space in the Era of NASA's Earth Observing System (EOS). Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031625.	1.2	15
22	Introducing the 4.4 km spatial resolution Multi-Angle Imaging SpectroRadiometer (MISR) aerosol product. Atmospheric Measurement Techniques, 2020, 13, 593-628.	1.2	84
23	Air quality monitoring using mobile low-cost sensors mounted on trash-trucks: Methods development and lessons learned. Sustainable Cities and Society, 2020, 60, 102239.	5.1	53
24	Global Estimates and Long-Term Trends of Fine Particulate Matter Concentrations (1998–2018). Environmental Science & Technology, 2020, 54, 7879-7890.	4.6	431
25	Wildfire Smoke Particle Properties and Evolution, from Space-Based Multi-Angle Imaging. Remote Sensing, 2020, 12, 769.	1.8	28
26	Synergy of Satellite―and Groundâ€Based Aerosol Optical Depth Measurements Using an Ensemble Kalman Filter Approach. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031884.	1.2	11
27	Merging regional and global aerosol optical depth records from major available satellite products. Atmospheric Chemistry and Physics, 2020, 20, 2031-2056.	1.9	98
28	A Global Perspective on Wildfires. Eos, 2020, 101, .	0.1	9
29	Combining low-cost, surface-based aerosol monitors with size-resolved satellite data for air quality applications. Atmospheric Measurement Techniques, 2020, 13, 5319-5334.	1.2	16
30	Saharan Dust Aerosols Change Deep Convective Cloud Prevalence, Possibly by Inhibiting Marine New Particle Formation. Journal of Climate, 2020, 33, 9467-9480.	1.2	7
31	Estimates of African Dust Deposition Along the Transâ€Atlantic Transit Using the Decadelong Record of Aerosol Measurements from CALIOP, MODIS, MISR, and IASI. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7975-7996.	1.2	68
32	A Review of Satellite Constraints on Airborne Dust: What We Can Say, and What We Can't. E3S Web of Conferences, 2019, 99, 01008.	0.2	0
33	Biomass-burning smoke heights over the Amazon observed from space. Atmospheric Chemistry and Physics, 2019, 19, 1685-1702.	1.9	38
34	Updated MISR over-water research aerosol retrieval algorithm – Part 2: A multi-angle aerosol retrieval algorithm for shallow, turbid, oligotrophic, and eutrophic waters. Atmospheric Measurement Techniques, 2019, 12, 675-689.	1.2	25
35	Asian and Transâ€Pacific Dust: A Multimodel and Multiremote Sensing Observation Analysis. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13534-13559.	1.2	24
36	Karymsky volcano eruptive plume properties based on MISR multi-angle imagery and the volcanological implications. Atmospheric Chemistry and Physics, 2018, 18, 3903-3918.	1.9	15

#	Article	IF	CITATIONS
37	Aerosol Absorption: Progress Towards Global and Regional Constraints. Current Climate Change Reports, 2018, 4, 65-83.	2.8	103

 $_{38}$ Development and implementation of a new biomass burning emissions injection height scheme (BBEIH) Tj ETQq0 0.0 rgBT /Oyerlock 10

39	The impact of MISR-derived injection height initialization on wildfire and volcanic plume dispersion in the HYSPLIT model. Atmospheric Measurement Techniques, 2018, 11, 6289-6307.	1.2	24
40	MISR Radiance Anomalies Induced by Stratospheric Volcanic Aerosols. Remote Sensing, 2018, 10, 1875.	1.8	0
41	A satellite-based estimate of combustion aerosol cloud microphysical effects over the Arctic Ocean. Atmospheric Chemistry and Physics, 2018, 18, 14949-14964.	1.9	14
42	Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: regional pattern and influencing factors. Atmospheric Chemistry and Physics, 2018, 18, 15921-15935.	1.9	195
43	A Global Analysis of Wildfire Smoke Injection Heights Derived from Space-Based Multi-Angle Imaging. Remote Sensing, 2018, 10, 1609.	1.8	65
44	Constraining chemical transport PM _{2.5} modeling outputs using surface monitor measurements and satellite retrievals: application over the San Joaquin Valley. Atmospheric Chemistry and Physics, 2018, 18, 12891-12913.	1.9	12
45	Global Sources of Fine Particulate Matter: Interpretation of PM _{2.5} Chemical Composition Observed by SPARTAN using a Global Chemical Transport Model. Environmental Science & Technology, 2018, 52, 11670-11681.	4.6	68
46	Assessing the altitude and dispersion of volcanic plumes using MISR multi-angle imaging from space: Sixteen years of volcanic activity in the Kamchatka Peninsula, Russia. Journal of Volcanology and Geothermal Research, 2017, 337, 1-15.	0.8	29
47	Reducing multisensor monthly mean aerosol optical depth uncertainty: 2. Optimal locations for potential ground observation deployments. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3920-3928.	1.2	5
48	SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses. Bulletin of the American Meteorological Society, 2017, 98, 2215-2228.	1.7	18
49	Daily ambient air pollution metrics for five cities: Evaluation of data-fusion-based estimates and uncertainties. Atmospheric Environment, 2017, 158, 36-50.	1.9	27
50	Refined Use of Satellite Aerosol Optical Depth Snapshots to Constrain Biomass Burning Emissions in the GOCART Model. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10,983.	1.2	16
51	Distinguishing Remobilized Ash From Erupted Volcanic Plumes Using Space-Borne Multiangle Imaging. Geophysical Research Letters, 2017, 44, 10,772-10,779.	1.5	10
52	Aerosol indirect effects on the nighttime Arctic Ocean surface from thin, predominantly liquid clouds. Atmospheric Chemistry and Physics, 2017, 17, 7311-7332.	1.9	16
53	Updated MISR dark water research aerosol retrieval algorithm – PartÂ1: Coupled 1.1†km ocean surface chlorophyllÂ <i>a</i> retrievals with empirical calibration corrections. Atmospheric Measurement Techniques, 2017, 10, 1539-1555.	1.2	31

#	Article	IF	CITATIONS
55	Improving our fundamental understanding of the role of aerosolâ~cloud interactions in the climate system. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5781-5790.	3.3	479
56	Reducing multisensor satellite monthly mean aerosol optical depth uncertainty: 1. Objective assessment of current AERONET locations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13609-13627.	1.2	19
57	Climatology of the aerosol optical depth by components from the Multi-angle Imaging SpectroRadiometer (MISR) and chemistry transport models. Atmospheric Chemistry and Physics, 2016, 16, 6627-6640.	1.9	17
58	Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic. Atmospheric Chemistry and Physics, 2016, 16, 715-738.	1.9	32
59	Variation in global chemical composition of PM _{2.5} : emerging results from SPARTAN. Atmospheric Chemistry and Physics, 2016, 16, 9629-9653.	1.9	123
60	Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. Environmental Science & Technology, 2016, 50, 3762-3772.	4.6	871
61	An analysis of global aerosol type as retrieved by MISR. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4248-4281.	1.2	177
62	MISR empirical stray light corrections in high-contrast scenes. Atmospheric Measurement Techniques, 2015, 8, 2927-2943.	1.2	14
63	SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications. Atmospheric Measurement Techniques, 2015, 8, 505-521.	1.2	71
64	Improving satellite-retrieved aerosol microphysical properties using GOCART data. Atmospheric Measurement Techniques, 2015, 8, 1157-1171.	1.2	30
65	MISR research-aerosol-algorithm refinements for dark water retrievals. Atmospheric Measurement Techniques, 2014, 7, 3989-4007.	1.2	32
66	Impact of satellite viewing-swath width on global and regional aerosol optical thickness statistics and trends. Atmospheric Measurement Techniques, 2014, 7, 2313-2335.	1.2	37
67	Global observations of aerosol-cloud-precipitation-climate interactions. Reviews of Geophysics, 2014, 52, 750-808.	9.0	316
68	Sources, sinks, and transatlantic transport of North African dust aerosol: A multimodel analysis and comparison with remote sensing data. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6259-6277.	1.2	88
69	Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmospheric Environment, 2014, 94, 647-662.	1.9	186
70	Earth's Climate Sensitivity: Apparent Inconsistencies in Recent Assessments. Earth's Future, 2014, 2, 601-605.	2.4	13
71	Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. Atmospheric Chemistry and Physics, 2014, 14, 3657-3690.	1.9	240
72	Aerosols. Encyclopedia of Earth Sciences Series, 2014, , 16-20.	0.1	0

#	Article	IF	CITATIONS
73	Dryness of ephemeral lakes and consequences for dust activity: The case of the Hamoun drainage basin, southeastern Iran. Science of the Total Environment, 2013, 463-464, 552-564.	3.9	135
74	Satellite perspective of aerosol intercontinental transport: From qualitative tracking to quantitative characterization. Atmospheric Research, 2013, 124, 73-100.	1.8	81
75	Tropical Atlantic dust and smoke aerosol variations related to the Maddenâ€Julian Oscillation in MODIS and MISR observations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4947-4963.	1.2	30
76	Absorption properties of Mediterranean aerosols obtained from multi-year ground-based remote sensing observations. Atmospheric Chemistry and Physics, 2013, 13, 9195-9210.	1.9	103
77	Aerosol airmass type mapping over the Urban Mexico City region from space-based multi-angle imaging. Atmospheric Chemistry and Physics, 2013, 13, 9525-9541.	1.9	20
78	Stereoscopic Height and Wind Retrievals for Aerosol Plumes with the MISR INteractive eXplorer (MINX). Remote Sensing, 2013, 5, 4593-4628.	1.8	98
79	Reply to "Comments on â€~Why Hasn't Earth Warmed as Much as Expected?'― Journal of Climate, 2012, 2200-2204.	, 25, 1.2	1
80	Intercomparison of desert dust optical depth from satellite measurements. Atmospheric Measurement Techniques, 2012, 5, 1973-2002.	1.2	37
81	Desert Dust Properties, Modelling, and Monitoring. Advances in Meteorology, 2012, 2012, 1-2.	0.6	5
82	Eyjafjallajökull volcano plume particle-type characterization from space-based multi-angle imaging. Atmospheric Chemistry and Physics, 2012, 12, 9459-9477.	1.9	39
83	Satellite contributions to the quantitative characterization of biomass burning for climate modeling. Atmospheric Research, 2012, 111, 1-28.	1.8	89
84	MISR observations of Etna volcanic plumes. Journal of Geophysical Research, 2012, 117, .	3.3	45
85	The use of satelliteâ€measured aerosol optical depth to constrain biomass burning emissions source strength in the global model GOCART. Journal of Geophysical Research, 2012, 117, .	3.3	71
86	Spaceâ€based observational constraints for 1â€D fire smoke plumeâ€rise models. Journal of Geophysical Research, 2012, 117, .	3.3	93
87	Reducing the Uncertainties in Direct Aerosol Radiative Forcing. Surveys in Geophysics, 2012, 33, 701-721.	2.1	82
88	Modulation of Atlantic aerosols by the Madden-Julian Oscillation. Journal of Geophysical Research, 2011, 116, .	3.3	27
89	An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS. Atmospheric Chemistry and Physics, 2011, 11, 5719-5744.	1.9	47
90	Capabilities and limitations of MISR aerosol products in dust-laden regions. Proceedings of SPIE, 2011, , .	0.8	3

#	Article	IF	CITATIONS
91	Response to "Toward unified satellite climatology of aerosol properties. 3. MODIS versus MISR versus AERONET― Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 901-909.	1.1	45
92	A critical examination of spatial biases between MODIS and MISR aerosol products – application for potential AERONET deployment. Atmospheric Measurement Techniques, 2011, 4, 2823-2836.	1.2	93
93	Maritime aerosol network as a component of AERONET – first results and comparison with global aerosol models and satellite retrievals. Atmospheric Measurement Techniques, 2011, 4, 583-597.	1.2	152
94	Reducing the Uncertainties in Direct Aerosol Radiative Forcing. Space Sciences Series of ISSI, 2011, , 369-389.	0.0	2
95	Smoke injection heights from fires in North America: analysis of 5 years of satellite observations. Atmospheric Chemistry and Physics, 2010, 10, 1491-1510.	1.9	280
96	Analysis of snow bidirectional reflectance from ARCTAS Spring-2008 Campaign. Atmospheric Chemistry and Physics, 2010, 10, 4359-4375.	1.9	48
97	A Hybrid Approach for Predicting PM 2.5 Exposure: van Donkelaar et al. Respond. Environmental Health Perspectives, 2010, 118, .	2.8	4
98	Ten years of MISR observations from Terra: Looking back, ahead, and in between. , 2010, , .		3
99	Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics, 2010, 10, 10399-10420.	1.9	1,060
100	Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application. Environmental Health Perspectives, 2010, 118, 847-855.	2.8	1,396
101	Detecting thin cirrus in Multiangle Imaging Spectroradiometer aerosol retrievals. Journal of Geophysical Research, 2010, 115, .	3.3	31
102	A geostatistical data fusion technique for merging remote sensing and groundâ€based observations of aerosol optical thickness. Journal of Geophysical Research, 2010, 115, .	3.3	57
103	Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network. Journal of Geophysical Research, 2010, 115, .	3.3	459
104	Modeling optical properties of mineral aerosol particles by using nonsymmetric hexahedra. Applied Optics, 2010, 49, 334.	2.1	90
105	Why Hasn't Earth Warmed as Much as Expected?. Journal of Climate, 2010, 23, 2453-2464.	1.2	78
106	An Overview of Terra Mission Results Related to the Carbon Cycle. Geography Compass, 2009, 3, 536-559.	1.5	1
107	Analysis of the impact of the forest fires in August 2007 on air quality of Athens using multi-sensor aerosol remote sensing data, meteorology and surface observations. Atmospheric Environment, 2009, 43, 3310-3318.	1.9	50
108	Review of the applications of Multiangle Imaging SpectroRadiometer to air quality research. Science in China Series D: Earth Sciences, 2009, 52, 132-144.	0.9	20

#	Article	IF	CITATIONS
109	Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes. Applied Optics, 2009, 48, 114.	2.1	91
110	MISR Aerosol Product Attributes and Statistical Comparisons With MODIS. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47, 4095-4114.	2.7	256
111	A Critical Look at Deriving Monthly Aerosol Optical Depth From Satellite Data. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47, 2942-2956.	2.7	112
112	Quantifying aerosol direct radiative effect with Multiangle Imaging Spectroradiometer observations: Topâ€ofâ€atmosphere albedo change by aerosols based on land surface types. Journal of Geophysical Research, 2009, 114, .	3.3	16
113	Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective. Annales Geophysicae, 2009, 27, 2755-2770.	0.6	290
114	Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation. Atmospheric Chemistry and Physics, 2009, 9, 1365-1392.	1.9	187
115	The sensitivity of CO and aerosol transport to the temporal and vertical distribution of North American boreal fire emissions. Atmospheric Chemistry and Physics, 2009, 9, 6559-6580.	1.9	63
116	Retrieval of aerosol properties over land using MISR observations. , 2009, , 267-293.		104
117	Wildfire smoke injection heights: Two perspectives from space. Geophysical Research Letters, 2008, 35,	1.5	219
118	Does the Maddenâ€Julian Oscillation influence aerosol variability?. Journal of Geophysical Research, 2008, 113, .	3.3	63
119	Sensitivity of multiangle imaging to the optical and microphysical properties of biomass burning aerosols. Journal of Geophysical Research, 2008, 113, .	3.3	54
120	An overview of UAE ² flight operations: Observations of summertime atmospheric thermodynamic and aerosol profiles of the southern Arabian Gulf. Journal of Geophysical Research, 2008, 113, .	3.3	34
121	POLDER2/ADEOSII, MISR, and MODIS/Terra reflectance comparisons. Journal of Geophysical Research, 2008, 113, .	3.3	19
122	Mineral dust plume evolution over the Atlantic from MISR and MODIS aerosol retrievals. Journal of Geophysical Research, 2008, 113, .	3.3	86
123	Quantitative studies of wildfire smoke injection heights with the Terra Multi-angle Imaging SpectroRadiometer. , 2008, , .		8
124	WindCam and MSPI: two cloud and aerosol instrument concepts derived from Terra/MISR heritage. Proceedings of SPIE, 2008, , .	0.8	6
125	Retrieving global aerosol sources from satellites using inverse modeling. Atmospheric Chemistry and Physics, 2008, 8, 209-250.	1.9	138
126	Example applications of the MISR INteractive eXplorer (MINX) software tool to wildfire smoke plume analyses. Proceedings of SPIE, 2008, , .	0.8	46

#	Article	IF	CITATIONS
127	Limits on climate sensitivity derived from recent satellite and surface observations. Journal of Geophysical Research, 2007, 112, .	3.3	42
128	Estimating Fine Particulate Matter Component Concentrations and Size Distributions Using Satellite-Retrieved Fractional Aerosol Optical Depth: Part 2—A Case Study. Journal of the Air and Waste Management Association, 2007, 57, 1360-1369.	0.9	91
129	Future Mission Concept for 3-D Remote Sensing of Aerosols from Low Earth Orbit. , 2007, , .		Ο
130	Estimating Fine Particulate Matter Component Concentrations and Size Distributions Using Satellite-Retrieved Fractional Aerosol Optical Depth: Part 1— Method Development. Journal of the Air and Waste Management Association, 2007, 57, 1351-1359.	0.9	90
131	Aerosol source plume physical characteristics from space-based multiangle imaging. Journal of Geophysical Research, 2007, 112, .	3.3	193
132	Satelliteâ€derived aerosol optical depth over dark water from MISR and MODIS: Comparisons with AERONET and implications for climatological studies. Journal of Geophysical Research, 2007, 112, .	3.3	180
133	Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: A comparison between MISR and MODIS. Remote Sensing of Environment, 2007, 107, 33-44.	4.6	271
134	Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite data. Remote Sensing of Environment, 2007, 107, 90-108.	4.6	97
135	A data-mining approach to associating MISR smoke plume heights with MODIS fire measurements. Remote Sensing of Environment, 2007, 107, 138-148.	4.6	75
136	Near-surface wind speed retrieval from space-based, multi-angle imaging of ocean sun glint patterns. Remote Sensing of Environment, 2007, 107, 223-231.	4.6	11
137	The MISR radiometric calibration process. Remote Sensing of Environment, 2007, 107, 2-11.	4.6	49
138	Analysis of MODIS–MISR calibration differences using surface albedo around AERONET sites and cloud reflectance. Remote Sensing of Environment, 2007, 107, 12-21.	4.6	43
139	Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: 2. Sensitivity over dark water. Journal of Geophysical Research, 2006, 111, .	3.3	78
140	A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmospheric Chemistry and Physics, 2006, 6, 613-666.	1.9	745
141	Aerosol Optical Properties and Particle Size Distributions on the East Coast of the United States Derived from Airborne In Situ and Remote Sensing Measurements. Journals of the Atmospheric Sciences, 2006, 63, 785-814.	0.6	15
142	Multiscale Plume Transport from the Collapse of the World Trade Center on September 11, 2001. Environmental Fluid Mechanics, 2006, 6, 425-450.	0.7	16
143	Current and future advances in optical multiangle remote sensing of aerosols and clouds based on Terra/MISR experience. , 2006, , .		2
144	MISR Calibration and Implications for Low-Light-Level Aerosol Retrieval over Dark Water. Journals of the Atmospheric Sciences, 2005, 62, 1032-1052.	0.6	65

#	Article	IF	CITATIONS
145	Intercomparison of satellite retrieved aerosol optical depth over ocean during the period September 1997 to December 2000. Atmospheric Chemistry and Physics, 2005, 5, 1697-1719.	1.9	82
146	Radiative Transfer Modeling for the CLAMS Experiment. Journals of the Atmospheric Sciences, 2005, 62, 1053-1071.	0.6	17
147	Suborbital Measurements of Spectral Aerosol Optical Depth and Its Variability at Subsatellite Grid Scales in Support of CLAMS 2001. Journals of the Atmospheric Sciences, 2005, 62, 993-1007.	0.6	50
148	EOS Terra Aerosol and Radiative Flux Validation: An Overview of the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) Experiment. Journals of the Atmospheric Sciences, 2005, 62, 903-918.	0.6	18
149	Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land. Remote Sensing of Environment, 2005, 94, 155-171.	4.6	195
150	The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfaces. Remote Sensing of Environment, 2005, 97, 495-518.	4.6	159
151	Comparison of coincident Multiangle Imaging Spectroradiometer and Moderate Resolution Imaging Spectroradiometer aerosol optical depths over land and ocean scenes containing Aerosol Robotic Network sites. Journal of Geophysical Research, 2005, 110, .	3.3	146
152	Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. Journal of Geophysical Research, 2005, 110, .	3.3	482
153	Using the PARAGON Framework to Establish an Accurate, Consistent, and Cohesive Long-Term Aerosol Record. Bulletin of the American Meteorological Society, 2004, 85, 1535-1548.	1.7	11
154	Scientific Objectives, Measurement Needs, and Challenges Motivating the PARAGON Aerosol Initiative. Bulletin of the American Meteorological Society, 2004, 85, 1503-1510.	1.7	17
155	Aerosol Data Sources and Their Roles within PARAGON. Bulletin of the American Meteorological Society, 2004, 85, 1511-1522.	1.7	33
156	Integrating and Interpreting Aerosol Observations and Models within the PARAGON Framework. Bulletin of the American Meteorological Society, 2004, 85, 1523-1534.	1.7	19
157	PARAGON: An Integrated Approach for Characterizing Aerosol Climate Impacts and Environmental Interactions. Bulletin of the American Meteorological Society, 2004, 85, 1491-1502.	1.7	59
158	Environmental snapshots from ACE-Asia. Journal of Geophysical Research, 2004, 109, .	3.3	42
159	Analysis of Multi-angle Imaging SpectroRadiometer (MISR) aerosol optical depths over greater India during winter 2001-2004. Geophysical Research Letters, 2004, 31, .	1.5	199
160	Refinements to MISR's radiometric calibration and implications for establishing a climate-quality aerosol observing system. , 2004, 5652, 57.		10
161	Coordinated airborne, spaceborne, and ground-based measurements of massive thick aerosol layers during the dry season in southern Africa. Journal of Geophysical Research, 2003, 108, n/a-n/a. 	3.3	96
162	Exploitation of Surface Albedo Derived From the Meteosat Data to Characterize Land Surface Changes. Advances in Global Change Research, 2001, , 51-67.	1.6	0

#	Article	IF	CITATIONS
163	Sensitivity of multiangle imaging to natural mixtures of aerosols over ocean. Journal of Geophysical Research, 2001, 106, 18219-18238.	3.3	207
164	Aerosol properties derived from aircraft multiangle imaging over Monterey Bay. Journal of Geophysical Research, 2001, 106, 11977-11995.	3.3	19
165	MISR aerosol optical depth retrievals over southern Africa during the SAFARI-2000 Dry Season Campaign. Geophysical Research Letters, 2001, 28, 3127-3130.	1.5	139
166	Comments on: Retrieval of aerosol properties over the ocean using multispectral and multiangle photopolarimetric measurements from the research scanning polarimeter. Geophysical Research Letters, 2001, 28, 3275-3276.	1.5	0
167	Surface albedo retrieval from Meteosat: 1. Theory. Journal of Geophysical Research, 2000, 105, 18099-18112.	3.3	128
168	Surface albedo retrieval from Meteosat: 2. Applications. Journal of Geophysical Research, 2000, 105, 18113-18134.	3.3	73
169	What Shall We Do with the Data We are Expecting from Upcoming Earth Observation Satellites?. Journal of Computational and Graphical Statistics, 1999, 8, 575-588.	0.9	8
170	Aerobot measurements successfully obtained during Solo Spirit Balloon Mission. Eos, 1999, 80, 153-159.	0.1	2
171	What Shall We Do with the Data We Are Expecting from Upcoming Earth Observation Satellites?. Journal of Computational and Graphical Statistics, 1999, 8, 575.	0.9	6
172	Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36, 1072-1087.	2.7	855
173	Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36, 1212-1227.	2.7	358
174	Sensitivity of multiangle imaging to aerosol optical depth and to pure-particle size distribution and composition over ocean. Journal of Geophysical Research, 1998, 103, 32195-32213.	3.3	137
175	MISR radiometric uncertainty analyses and their utilization within geophysical retrievals. Metrologia, 1998, 35, 571-579.	0.6	18
176	Sensitivity of multiangle remote sensing observations to aerosol sphericity. Journal of Geophysical Research, 1997, 102, 16861-16870.	3.3	99
177	Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids. Journal of Geophysical Research, 1997, 102, 16831-16847.	3.3	567
178	A modified linear-mixing method for calculating atmospheric path radiances of aerosol mixtures. Journal of Geophysical Research, 1997, 102, 16883-16888.	3.3	31
179	Temperature measurements of a Martian local dust storm. Journal of Geophysical Research, 1995, 100, 5265.	3.3	8
180	Monitoring Mars with the Hubble Space Telescope: 1990-1991 Observations. Icarus, 1994, 109, 79-101.	1.1	67

#	Article	IF	CITATIONS
181	PLANETARY ATMOSPHERES. Reviews of Geophysics, 1991, 29, 328-336.	9.0	1
182	Ice haze, snow, and the Mars water cycle. Journal of Geophysical Research, 1990, 95, 14677-14693.	3.3	50
183	Accumulation of sedimentary debris in the south polar region of Mars and implications for climate history. Icarus, 1988, 76, 357-377.	1.1	91
184	Coping with all the Earth science data. Eos, 1988, 69, 609.	0.1	1
185	Coping with all the Earth science data. Eos, 1988, 69, 650.	0.1	Ο
186	Loss of fine-scale surface texture in Viking orbiter inages and implications for the inferred distribution of Debris Mantles. Icarus, 1986, 66, 22-38.	1.1	13
187	The vertical structure of limb hazes in the Martian atmosphere. Icarus, 1986, 68, 442-461.	1.1	135
188	The evolution of CO2 on Mars. Icarus, 1985, 62, 175-190.	1.1	162
189	The spatial and seasonal distribution of Martian clouds and some meteorological implications. Journal of Geophysical Research, 1984, 89, 6671-6688.	3.3	90
190	Some observational constraints on the globalâ€scale wind systems of Mars. Journal of Geophysical Research, 1983, 88, 10189-10209.	3.3	29
191	Long cloud observations on Mars and implications for boundary layer characteristics over slopes. Journal of Geophysical Research, 1982, 87, 867-880.	3.3	24
192	Deducing the age of the dense Venus atmosphere. Icarus, 1982, 49, 71-85.	1.1	11
193	The Martian twilight. Journal of Geophysical Research, 1981, 86, 5833-5838.	3.3	19
194	Properties and effects of dust particles suspended in the Martian atmosphere. Journal of Geophysical Research, 1979, 84, 2929-2945.	3.3	511
195	Properties of aerosols in the Martian atmosphere, as inferred from Viking Lander imaging data. Journal of Geophysical Research, 1977, 82, 4479-4496.	3.3	269
196	THE MARTIAN DUST CYCLE. , 0, , 1017-1053.		12