Elisabeth Lobner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4901625/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Designed SARSâ€CoVâ€2 receptor binding domain variants form stable monomers. Biotechnology Journal, 2022, 17, e2100422.	3.5	8
2	Generation of enzymatically competent SARSâ€CoVâ€2 decoy receptor ACE2â€Fc in glycoengineered <i>Nicotiana benthamiana</i> . Biotechnology Journal, 2021, 16, e2000566.	3.5	26
3	Directed Evolution of Stabilized Monomeric CD19 for Monovalent CAR Interaction Studies and Monitoring of CAR-T Cell Patients. ACS Synthetic Biology, 2021, 10, 1184-1198.	3.8	9
4	A comprehensive antigen production and characterisation study for easy-to-implement, specific and quantitative SARS-CoV-2 serotests. EBioMedicine, 2021, 67, 103348.	6.1	34
5	N-Glycosylation of the SARS-CoV-2 Receptor Binding Domain Is Important for Functional Expression in Plants. Frontiers in Plant Science, 2021, 12, 689104.	3.6	34
6	Identification of lectin receptors for conserved SARS oVâ€⊋ glycosylation sites. EMBO Journal, 2021, 40, e108375.	7.8	44
7	Impact of Specific N-Glycan Modifications on the Use of Plant-Produced SARS-CoV-2 Antigens in Serological Assays. Frontiers in Plant Science, 2021, 12, 747500.	3.6	8
8	Structure-guided glyco-engineering of ACE2 for improved potency as soluble SARS-CoV-2 decoy receptor. ELife, 2021, 10, .	6.0	29
9	Steric Accessibility of the Cleavage Sites Dictates the Proteolytic Vulnerability of the Antiâ€HIVâ€1 Antibodies 2F5, 2G12, and PG9 in Plants. Biotechnology Journal, 2020, 15, e1900308.	3.5	10
10	Engineering AvidCARs for combinatorial antigen recognition and reversible control of CAR function. Nature Communications, 2020, 11, 4166.	12.8	53
11	Getting CD19 Into Shape: Expression of Natively Folded "Difficult-to- Express―CD19 for Staining and Stimulation of CAR-T Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 49.	4.1	9
12	Inefficient CAR-proximal signaling blunts antigen sensitivity. Nature Immunology, 2020, 21, 848-856.	14.5	83
13	Fcab-HER2 Interaction: a Ménage à Trois. Lessons from X-Ray and Solution Studies. Structure, 2017, 25, 878-889.e5.	3.3	29
14	Two-faced Fcab prevents polymerization with VEGF and reveals thermodynamics and the 2.15ÂÃ crystal structure of the complex. MAbs, 2017, 9, 1088-1104.	5.2	11
15	Strong Enrichment of Aromatic Residues in Binding Sites from a Charge-neutralized Hyperthermostable Sso7d Scaffold Library. Journal of Biological Chemistry, 2016, 291, 22496-22508.	3.4	42
16	Engineered IgG1â€Fc – one fragment to bind them all. Immunological Reviews, 2016, 270, 113-131.	6.0	35
17	Construction of pHâ€sensitive Her2â€binding IgG1â€Fc by directed evolution. Biotechnology Journal, 2014, 9, 1013-1022.	3.5	30
18	Directed evolution of Her2/neu-binding IgG1-Fc for improved stability and resistance to aggregation by using yeast surface display. Protein Engineering, Design and Selection, 2013, 26, 255-265.	2.1	34