Mehrdad Rafat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/490159/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PEG-stabilized carbodiimide crosslinked collagen–chitosan hydrogels for corneal tissue engineering. Biomaterials, 2008, 29, 3960-3972.	11.4	360
2	Direct Mechanical Stimulation of Stem Cells: A Beating Electromechanically Active Scaffold for Cardiac Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 1471-1480.	7.6	99
3	Functional fabrication of recombinant human collagen–phosphorylcholine hydrogels for regenerative medicine applications. Acta Biomaterialia, 2015, 12, 70-80.	8.3	88
4	Influence of conductive polymer doping on the viability of cardiac progenitor cells. Journal of Materials Chemistry B, 2014, 2, 3860-3867.	5.8	55
5	Reprogramming and Carcinogenesis—Parallels and Distinctions. International Review of Cell and Molecular Biology, 2014, 308, 167-203.	3.2	48
6	Enhanced Regeneration of Corneal Tissue via a Bioengineered Collagen Construct Implanted by a Nondisruptive Surgical Technique. Tissue Engineering - Part A, 2015, 21, 1116-1130.	3.1	44
7	Composite core-and-skirt collagen hydrogels with differential degradation for corneal therapeutic applications. Biomaterials, 2016, 83, 142-155.	11.4	43
8	PEG–PLA microparticles for encapsulation and delivery of Tat-EGFP to retinal cells. Biomaterials, 2010, 31, 3414-3421.	11.4	38
9	Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells. Oncotarget, 0, 7, 42314-42329.	1.8	37
10	Human-Gyrovirus-Apoptin Triggers Mitochondrial Death Pathway—Nur77 is Required for Apoptosis Triggering. Neoplasia, 2014, 16, 679-693.	5.3	35
11	Human pluripotent stem cell-derived limbal epithelial stem cells on bioengineered matrices for corneal reconstruction. Experimental Eye Research, 2016, 146, 26-34.	2.6	34
12	A porous collagen-based hydrogel and implantation method for corneal stromal regeneration and sustained local drug delivery. Scientific Reports, 2020, 10, 16936.	3.3	34
13	Characterization of surface-modified hollow fiber polyethersulfone membranes prepared at different air gaps. Journal of Applied Polymer Science, 2007, 104, 710-721.	2.6	32
14	Surface characterization of hollow fiber membranes used in artificial kidney. Journal of Applied Polymer Science, 2006, 101, 4386-4400.	2.6	31
15	Rational Design of a Conductive Collagen Heart Patch. Macromolecular Bioscience, 2017, 17, 1600446.	4.1	31
16	Regeneration of Corneal Cells and Nerves in an Implanted Collagen Corneal Substitute. Cornea, 2008, 27, 580-589.	1.7	30
17	Surface modification of collagenâ€based artificial cornea for reduced endothelialization. Journal of Biomedical Materials Research - Part A, 2009, 88A, 755-768.	4.0	27
18	Nanotechnology in stem cells research: advances and applications. Frontiers in Bioscience - Landmark, 2012, 17, 1747.	3.0	27

Mehrdad Rafat

#	Article	IF	CITATIONS
19	Cell type related differences in staining with pentameric thiophene derivatives. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 628-635.	1.5	23
20	Chitosan microparticles for delivery of proteins to the retina. Acta Biomaterialia, 2013, 9, 7855-7864.	8.3	19
21	Evaluation of the Suitability of Biocompatible Carriers as Artificial Transplants Using Cultured Porcine Corneal Endothelial Cells. Current Eye Research, 2019, 44, 243-249.	1.5	19
22	Adjustable delivery of pro-angiogenic FGF-2 by collagen-alginate microspheres. Biology Open, 2018, 7, .	1.2	18
23	Role of the salt bridge between glutamate 546 and arginine 907 in preservation of autoinhibited form of Apaf-1. International Journal of Biological Macromolecules, 2015, 81, 370-374.	7.5	14
24	In Vitro Evaluation and Transplantation of Human Corneal Endothelial Cells Cultured on Biocompatible Carriers. Cell Transplantation, 2020, 29, 096368972092357.	2.5	10
25	Plasma surface modification and characterization of collagenâ€based artificial cornea for enhanced epithelialization. Journal of Applied Polymer Science, 2007, 106, 2056-2064.	2.6	9
26	Electroactive 3D materials for cardiac tissue engineering. Proceedings of SPIE, 2015, , .	0.8	7
27	Optimisation of conductive polymer biomaterials for cardiac progenitor cells. RSC Advances, 2016, 6, 62270-62277.	3.6	7
28	Sutureless Femtosecond Laser–Assisted Anterior Lamellar Keratoplasty Using a Bioengineered Cornea as a Viable Alternative to Human Donor Transplantation for Superficial Corneal Opacities. Cornea, 2020, 39, 1184-1189.	1.7	7
29	Cardiac and stem cell-cocooned hybrid microspheres: A multi factorial design approach. Sensors and Actuators B: Chemical, 2016, 236, 480-489.	7.8	5
30	Examples of Successful Biomaterial-Based Artificial Tissues—Artificial Corneas. , 2019, , 191-202.		2
31	Femtosecond Laser-Assisted Surgery for Implantation of Bioengineered Corneal Stroma to Promote Corneal Regeneration. Methods in Molecular Biology, 2020, 2145, 197-214.	0.9	1
32	Book Review On Integrated Biomaterials For biomedical Technology. Advanced Materials Letters, 2013, 4, 250-250.	0.6	0