Jian-Xun Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4900836/publications.pdf

Version: 2024-02-01

276 papers 18,179 citations

75 h-index

8755

118 g-index

314 all docs

314 docs citations

314 times ranked

16745 citing authors

#	Article	IF	CITATIONS
1	Biofunctionalized composite scaffold to potentiate osteoconduction, angiogenesis, and favorable metabolic microenvironment for osteonecrosis therapy. Bioactive Materials, 2022, 9, 446-460.	15.6	59
2	Calcium ion nanomodulators for mitochondria-targeted multimodal cancer therapy. Asian Journal of Pharmaceutical Sciences, 2022, 17, 1-3.	9.1	55
3	Instructive cartilage regeneration modalities with advanced therapeutic implantations under abnormal conditions. Bioactive Materials, 2022, 11, 317-338.	15.6	51
4	Polymer nanotherapeutics to correct autoimmunity. Journal of Controlled Release, 2022, 343, 152-174.	9.9	25
5	Biosafety chemistry and biosafety materials: A new perspective to solve biosafety problems. Biosafety and Health, 2022, 4, 15-22.	2.7	18
6	Bioactive Materials Promote Wound Healing through Modulation of Cell Behaviors. Advanced Science, 2022, 9, e2105152.	11.2	94
7	Stimuliâ€Responsive Nanoparticles for Controlled Drug Delivery in Synergistic Cancer Immunotherapy. Advanced Science, 2022, 9, e2103444.	11.2	102
8	3D Printed Personalized Nerve Guide Conduits for Precision Repair of Peripheral Nerve Defects. Advanced Science, 2022, 9, e2103875.	11.2	65
9	Advanced biosafety materials for prevention and theranostics of biosafety issues. Biosafety and Health, 2022, 4, 59-60.	2.7	31
10	A Tumor Microenvironmentsâ€Adapted Polypeptide Hydrogel/Nanogel Composite Boosts Antitumor Molecularly Targeted Inhibition and Immunoactivation. Advanced Materials, 2022, 34, e2200449.	21.0	61
11	Versatile Polymerâ€Initiating Biomineralization for Tumor Blockade Therapy. Advanced Materials, 2022, 34, e2110094.	21.0	42
12	Functional Macromolecular Adhesives for Bone Fracture Healing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 1-19.	8.0	27
13	Rational construction of polycystine-based nanoparticles for biomedical applications. Journal of Materials Chemistry B, 2022, 10, 7173-7182.	5.8	33
14	Construction and validation of steroid-induced rabbit osteonecrosis model. MethodsX, 2022, 9, 101713.	1.6	16
15	Versatile Polymerâ€Initiating Biomineralization for Tumor Blockade Therapy (Adv. Mater. 19/2022). Advanced Materials, 2022, 34, .	21.0	O
16	Osteoimmunityâ€Regulating Biomimetically Hierarchical Scaffold for Augmented Bone Regeneration. Advanced Materials, 2022, 34, .	21.0	90
17	Polypeptide nanoformulation-induced immunogenic cell death and remission of immunosuppression for enhanced chemoimmunotherapy. Science Bulletin, 2021, 66, 362-373.	9.0	71
18	Role of nanoparticle-mediated immunogenic cell death in cancer immunotherapy. Asian Journal of Pharmaceutical Sciences, 2021, 16, 129-132.	9.1	68

#	Article	IF	Citations
19	Adjuvant-pulsed mRNA vaccine nanoparticle for immunoprophylactic and therapeutic tumor suppression in mice. Biomaterials, 2021, 266, 120431.	11.4	131
20	Poly(lactic-co-glycolic acid)-based composite bone-substitute materials. Bioactive Materials, 2021, 6, 346-360.	15.6	252
21	Self-targeting visualizable hyaluronate nanogel for synchronized intracellular release of doxorubicin and cisplatin in combating multidrug-resistant breast cancer. Nano Research, 2021, 14, 846-857.	10.4	117
22	Conductive Composite Fiber with Optimized Alignment Guides Neural Regeneration under Electrical Stimulation. Advanced Healthcare Materials, 2021, 10, e2000604.	7.6	77
23	Engineered nanomedicines for tumor vasculature blockade therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1691.	6.1	10
24	Sequentially stimuli-responsive anticancer nanomedicines. Nanomedicine, 2021, 16, 261-264.	3.3	55
25	Ultrasound-Augmented Mitochondrial Calcium Ion Overload by Calcium Nanomodulator to Induce Immunogenic Cell Death. Nano Letters, 2021, 21, 2088-2093.	9.1	220
26	Editorial: Emerging Micro- and Nanotechnologies for Medical and Pharmacological Applications. Frontiers in Pharmacology, 2021, 12, 648749.	3.5	6
27	A Multichannel Ca ²⁺ Nanomodulator for Multilevel Mitochondrial Destructionâ€Mediated Cancer Therapy. Advanced Materials, 2021, 33, e2007426.	21.0	177
28	Physical and biological engineering of polymer scaffolds to potentiate repair of spinal cord injury. Materials and Design, 2021, 201, 109484.	7.0	30
29	Regulation of tumor microenvironment for pancreatic cancer therapy. Biomaterials, 2021, 270, 120680.	11.4	31
30	X-ray-responsive polypeptide nanogel for concurrent chemoradiotherapy. Journal of Controlled Release, 2021, 332, 1-9.	9.9	46
31	Immunogenic cell death-inducing chemotherapeutic nanoformulations potentiate combination chemoimmunotherapy. Materials and Design, 2021, 202, 109465.	7.0	19
32	Antiviral biomaterials. Matter, 2021, 4, 1892-1918.	10.0	26
33	Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models. Science Translational Medicine, 2021, 13, .	12.4	111
34	Editorial: Synthesis, Functionalization, and Clinical Translation of Pharmaceutical Biomaterials. Frontiers in Bioengineering and Biotechnology, 2021, 9, 707963.	4.1	1
35	An oxidative stress-responsive electrospun polyester membrane capable of releasing anti-bacterial and anti-inflammatory agents for postoperative anti-adhesion. Journal of Controlled Release, 2021, 335, 359-368.	9.9	42
36	Synthesis and Biomedical Applications of Functional Polymers. International Journal of Polymer Science, 2021, 2021, 1-2.	2.7	2

#	Article	IF	CITATIONS
37	Editorial: Advanced Materials for the Restoration and Reconstruction of Dental Functions. Frontiers in Bioengineering and Biotechnology, 2021, 9, 756860.	4.1	2
38	A mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedings. Bioactive Materials, 2021, 6, 2829-2840.	15.6	152
39	Challenges and Opportunities of Nanomedicines in Clinical Translation. BIO Integration, 2021, 2, .	1.3	99
40	Identification of MSA-2: An oral antitumor non-nucleotide STING agonist. Signal Transduction and Targeted Therapy, 2021, 6, 18.	17.1	13
41	Cystine proportion regulates fate of polypeptide nanogel as nanocarrier for chemotherapeutics. Science China Chemistry, 2021, 64, 293-301.	8.2	56
42	Advanced Nanotheranostics of CRISPR/Cas for Viral Hepatitis and Hepatocellular Carcinoma. Advanced Science, 2021, 8, e2102051.	11.2	35
43	Immunologically Effective Biomaterials. ACS Applied Materials & Samp; Interfaces, 2021, 13, 56719-56724.	8.0	42
44	Smart transformable nanoparticles for enhanced tumor theranostics. Applied Physics Reviews, 2021, 8,	11.3	99
45	Advanced Nanotheranostics of CRISPR/Cas for Viral Hepatitis and Hepatocellular Carcinoma (Adv. Sci.) Tj ETQq1	l 0.784314 11.2	ł <u>r</u> gBT /Over
46	Reduction-responsive polypeptide nanomedicines significantly inhibit progression of orthotopic osteosarcoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 23, 102085.	3.3	13
47	Electroactive composite scaffold with locally expressed osteoinductive factor for synergistic bone repair upon electrical stimulation. Biomaterials, 2020, 230, 119617.	11.4	162
48	Intravesical Hydrogels as Drug Reservoirs. Trends in Biotechnology, 2020, 38, 579-583.	9.3	83
49	Optimized fluorodendrimer-incorporated hybrid lipid–polymer nanoparticles for efficient siRNA delivery. Biomaterials Science, 2020, 8, 758-762.	5.4	12
50	Biointerface engineering nanoplatforms for cancer-targeted drug delivery. Asian Journal of Pharmaceutical Sciences, 2020, 15, 397-415.	9.1	52
51	Targeted pH-responsive polyion complex micelle for controlled intracellular drug delivery. Chinese Chemical Letters, 2020, 31, 1178-1182.	9.0	137
52	Oral delivery of bacteria: Basic principles and biomedical applications. Journal of Controlled Release, 2020, 327, 801-833.	9.9	55
53	Tackling autoimmunity with nanomedicines. Nanomedicine, 2020, 15, 1585-1597.	3.3	38
54	Spatiotemporally Targeted Nanomedicine Overcomes Hypoxia-Induced Drug Resistance of Tumor Cells after Disrupting Neovasculature. Nano Letters, 2020, 20, 6191-6198.	9.1	75

#	Article	IF	CITATIONS
55	Biomaterials: Functional Polymerâ€Based Nerve Guide Conduits to Promote Peripheral Nerve Regeneration (Adv. Mater. Interfaces 14/2020). Advanced Materials Interfaces, 2020, 7, 2070081.	3.7	7
56	Mesenchymal stem cells for cartilage regeneration. Journal of Tissue Engineering, 2020, 11 , 204173142094383 .	5.5	138
57	Dual-acidity-labile polysaccharide-di-drugs conjugate for targeted cancer chemotherapy. European Journal of Medicinal Chemistry, 2020, 199, 112367.	5.5	31
58	Functional Polymerâ€Based Nerve Guide Conduits to Promote Peripheral Nerve Regeneration. Advanced Materials Interfaces, 2020, 7, 2000225.	3.7	52
59	Nanomaterials for Combinational Radio–Immuno Oncotherapy. Advanced Functional Materials, 2020, 30, 1910676.	14.9	45
60	Dual Hypoxia-Targeting RNAi Nanomedicine for Precision Cancer Therapy. Nano Letters, 2020, 20, 4857-4863.	9.1	42
61	Controlled synthesis of polypeptides. Chinese Chemical Letters, 2020, 31, 3001-3014.	9.0	65
62	Engineered three-dimensional scaffolds for enhanced bone regeneration in osteonecrosis. Bioactive Materials, 2020, 5, 584-601.	15.6	128
63	Synergistically Enhanced Mucoadhesive and Penetrable Polypeptide Nanogel for Efficient Drug Delivery to Orthotopic Bladder Cancer. Research, 2020, 2020, 8970135.	5.7	35
64	Mesenchymal Stem Cells for Regenerative Medicine. Cells, 2019, 8, 886.	4.1	687
65	Polymer Fiber Scaffolds for Bone and Cartilage Tissue Engineering. Advanced Functional Materials, 2019, 29, 1903279.	14.9	176
66	Multifunctional Fibers to Shape Future Biomedical Devices. Advanced Functional Materials, 2019, 29, 1902834.	14.9	74
67	Cancer Cell Membraneâ€Coated Nanoparticles for Personalized Therapy in Patientâ€Derived Xenograft Models. Advanced Functional Materials, 2019, 29, 1905671.	14.9	125
68	Tissue Engineering: Polymer Fiber Scaffolds for Bone and Cartilage Tissue Engineering (Adv. Funct.) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50
69	Multiantigenic Nanoformulations Activate Anticancer Immunity Depending on Size. Advanced Functional Materials, 2019, 29, 1903391.	14.9	34
70	Polymer-Mediated Penetration-Independent Cancer Therapy. Biomacromolecules, 2019, 20, 4258-4271.	5.4	38
71	Bisphosphonateâ€Functionalized Scaffolds for Enhanced Bone Regeneration. Advanced Healthcare Materials, 2019, 8, e1901073.	7.6	46
72	Disease Immunotherapy: Immunomodulatory Nanosystems (Adv. Sci. 17/2019). Advanced Science, 2019, 6, 1970100.	11.2	8

#	Article	IF	Citations
73	Polymer scaffolds facilitate spinal cord injury repair. Acta Biomaterialia, 2019, 88, 57-77.	8.3	105
74	Gradiently degraded electrospun polyester scaffolds with cytostatic for urothelial carcinoma therapy. Biomaterials Science, 2019, 7, 963-974.	5.4	26
75	Immunomodulatory Nanosystems. Advanced Science, 2019, 6, 1900101.	11.2	255
76	Nanomedicines for Intravesical Chemotherapy in Bladder Cancer. Current Pharmaceutical Design, 2019, 25, 371-373.	1.9	11
77	Polysaccharides for Biomedical Applications. International Journal of Polymer Science, 2019, 2019, 1-2.	2.7	9
78	Injectable Cholesterolâ€Enhanced Stereocomplex Polylactide Thermogel Loading Chondrocytes for Optimized Cartilage Regeneration. Advanced Healthcare Materials, 2019, 8, e1900312.	7.6	81
79	PEGylated Polyurea Bearing Hindered Urea Bond for Drug Delivery. Molecules, 2019, 24, 1538.	3.8	6
80	Osteosarcoma Therapy: Inhibition of CaMKIIα Activity Enhances Antitumor Effect of Fullerene C60 Nanocrystals by Suppression of Autophagic Degradation (Adv. Sci. 8/2019). Advanced Science, 2019, 6, 1970051.	11.2	0
81	Evaluation of Polymer Nanoformulations in Hepatoma Therapy by Established Rodent Models. Theranostics, 2019, 9, 1426-1452.	10.0	53
82	Fabrication of Electrospun Polymer Nanofibers with Diverse Morphologies. Molecules, 2019, 24, 834.	3.8	212
83	Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. Journal of Controlled Release, 2019, 302, 19-41.	9.9	254
84	Thermosensitive Hydrogels as Scaffolds for Cartilage Tissue Engineering. Biomacromolecules, 2019, 20, 1478-1492.	5.4	233
85	Recent advances in delivery of photosensitive metal-based drugs. Coordination Chemistry Reviews, 2019, 387, 154-179.	18.8	136
86	Inhibition of CaMKIIα Activity Enhances Antitumor Effect of Fullerene C60 Nanocrystals by Suppression of Autophagic Degradation. Advanced Science, 2019, 6, 1801233.	11.2	46
87	Chiral Polypeptide Thermogels Induce Controlled Inflammatory Response as Potential Immunoadjuvants. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8725-8730.	8.0	73
88	Polymer Nanoplatforms at Work in Prostate Cancer Therapy. Advanced Therapeutics, 2019, 2, 1800122.	3.2	16
89	Biomineralized Gd ₂ O ₃ @HSA Nanoparticles as a Versatile Platform for Dualâ€Modal Imaging and Chemoâ€Phototherapyâ€Synergized Tumor Ablation. Advanced Healthcare Materials, 2019, 8, e1901005.	7.6	19
90	Engineered nanomedicines with enhanced tumor penetration. Nano Today, 2019, 29, 100800.	11.9	317

#	Article	IF	Citations
91	Multiantigenic Nanovaccines: Multiantigenic Nanoformulations Activate Anticancer Immunity Depending on Size (Adv. Funct. Mater. 49/2019). Advanced Functional Materials, 2019, 29, 1970336.	14.9	3
92	Editorial: Applications of Nanobiotechnology in Pharmacology. Frontiers in Pharmacology, 2019, 10, 1451.	3.5	15
93	Osteoinductive Agents-Incorporated Three-Dimensional Biphasic Polymer Scaffold for Synergistic Bone Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 986-995.	5.2	25
94	On-Demand Prolongation of Peripheral Nerve Blockade through Bupivacaine-Loaded Hydrogels with Suitable Residence Periods. ACS Biomaterials Science and Engineering, 2019, 5, 696-709.	5.2	16
95	Electrospun polymer biomaterials. Progress in Polymer Science, 2019, 90, 1-34.	24.7	472
96	Au-aided reduced graphene oxide-based nanohybrids for photo-chemotherapy. Materials Science and Engineering C, 2019, 95, 256-263.	7.3	10
97	Electrospun Polylactide-Nano-HydroxyapatiteVancomycin Composite Scaffolds for Advanced Osteomyelitis Therapy. Journal of Biomedical Nanotechnology, 2019, 15, 1213-1222.	1.1	27
98	Repair of full-thickness articular cartilage defect using stem cell-encapsulated thermogel. Materials Science and Engineering C, 2018, 88, 79-87.	7.3	40
99	Selfâ€Stabilized Hyaluronate Nanogel for Intracellular Codelivery of Doxorubicin and Cisplatin to Osteosarcoma. Advanced Science, 2018, 5, 1700821.	11.2	153
100	Antibacterial Hydrogels. Advanced Science, 2018, 5, 1700527.	11.2	696
101	Porous Polylactide Film Plus Atorvastatin-Loaded Thermogel as an Efficient Device for Peritoneal Adhesion Prevention. ACS Omega, 2018, 3, 2715-2723.	3.5	21
102	Component effect of stem cell-loaded thermosensitive polypeptide hydrogels on cartilage repair. Acta Biomaterialia, 2018, 73, 103-111.	8.3	117
103	Mucoadhesive Cationic Polypeptide Nanogel with Enhanced Penetration for Efficient Intravesical Chemotherapy of Bladder Cancer. Advanced Science, 2018, 5, 1800004.	11.2	98
104	Polymer micro/nanocarrier-assisted synergistic chemohormonal therapy for prostate cancer. Biomaterials Science, 2018, 6, 1433-1444.	5 . 4	13
105	Advances in Stimuliâ€Responsive Polypeptide Nanogels. Small Methods, 2018, 2, 1700307.	8.6	48
106	Photothermal Effect-Triggered Drug Release from Hydrogen Bonding-Enhanced Polymeric Micelles. Biomacromolecules, 2018, 19, 1950-1958.	5.4	35
107	Dual Drug Backboned Shattering Polymeric Theranostic Nanomedicine for Synergistic Eradication of Patientâ€Derived Lung Cancer. Advanced Materials, 2018, 30, 1706220.	21.0	142
108	One-Step Synthesis of Targeted Acid-Labile Polysaccharide Prodrug for Efficiently Intracellular Drug Delivery. ACS Biomaterials Science and Engineering, 2018, 4, 539-546.	5.2	34

#	Article	IF	Citations
109	Tumor microenvironment-responsive hyaluronate-calcium carbonate hybrid nanoparticle enables effective chemotherapy for primary and advanced osteosarcomas. Nano Research, 2018, 11, 4806-4822.	10.4	98
110	Highly Bioadhesive Polymer Membrane Continuously Releases Cytostatic and Anti-Inflammatory Drugs for Peritoneal Adhesion Prevention. ACS Biomaterials Science and Engineering, 2018, 4, 2026-2036.	5.2	65
111	α-Cyclodextrin concentration-controlled thermo-sensitive supramolecular hydrogels. Materials Science and Engineering C, 2018, 82, 25-28.	7. 3	42
112	<i>In situ</i> formation of hydrophobic clusters to enhance mechanical performance of biodegradable poly(<scp>I</scp> -glutamic acid)/poly(ε-caprolactone) hydrogel towards meniscus tissue engineering. Journal of Materials Chemistry B, 2018, 6, 7822-7833.	5.8	26
113	Reduction-Responsive Polypeptide Nanogel for Intracellular Drug Delivery in Relieving Collagen-Induced Arthritis. ACS Biomaterials Science and Engineering, 2018, 4, 4154-4162.	5.2	40
114	Harnessing copper-palladium alloy tetrapod nanoparticle-induced pro-survival autophagy for optimized photothermal therapy of drug-resistant cancer. Nature Communications, 2018, 9, 4236.	12.8	139
115	Polylactide-Cholesterol Stereocomplex Micelle Encapsulating Chemotherapeutic Agent for Improved Antitumor Efficacy and Safety. Journal of Biomedical Nanotechnology, 2018, 14, 2102-2113.	1.1	50
116	Calcium Phosphate Cement loaded with 10% vancomycin delivering high early and late local antibiotic concentration in vitro. Orthopaedics and Traumatology: Surgery and Research, 2018, 104, 1271-1275.	2.0	13
117	Sarcoma-Targeting Peptide-Decorated Polypeptide Nanogel Intracellularly Delivers Shikonin for Upregulated Osteosarcoma Necroptosis and Diminished Pulmonary Metastasis. Theranostics, 2018, 8, 1361-1375.	10.0	118
118	Recent progress in polymer-based platinum drug delivery systems. Progress in Polymer Science, 2018, 87, 70-106.	24.7	144
119	Biomedical applications of mRNA nanomedicine. Nano Research, 2018, 11, 5281-5309.	10.4	86
120	Long-acting hydrogel/microsphere composite sequentially releases dexmedetomidine and bupivacaine for prolonged synergistic analgesia. Biomaterials, 2018, 181, 378-391.	11.4	63
121	Precision-guided long-acting analgesia by hydrogel-immobilized bupivacaine-loaded microsphere. Theranostics, 2018, 8, 3331-3347.	10.0	54
122	Tumor microenvironment-labile polymer–doxorubicin conjugate thermogel combined with docetaxel for in situ synergistic chemotherapy of hepatoma. Acta Biomaterialia, 2018, 77, 63-73.	8.3	68
123	Collagen-Coated Poly(lactide-co-glycolide)/Hydroxyapatite Scaffold Incorporated with DGEA Peptide for Synergistic Repair of Skull Defect. Polymers, 2018, 10, 109.	4.5	19
124	Injectable Enzymatically Crossâ€inked Hydrogels with Lightâ€Controlled Degradation Profile. Macromolecular Rapid Communications, 2018, 39, e1800272.	3.9	21
125	Polymer nanoparticles as adjuvants in cancer immunotherapy. Nano Research, 2018, 11, 5769-5786.	10.4	66
126	Locally Deployable Nanofiber Patch for Sequential Drug Delivery in Treatment of Primary and Advanced Orthotopic Hepatomas. ACS Nano, 2018, 12, 6685-6699.	14.6	95

#	Article	IF	Citations
127	Tailoring Platinum(IV) Amphiphiles for Self-Targeting All-in-One Assemblies as Precise Multimodal Theranostic Nanomedicine. ACS Nano, 2018, 12, 7272-7281.	14.6	114
128	Acid-sensitive dextran prodrug: A higher molecular weight makes a better efficacy. Carbohydrate Polymers, 2017, 161, 33-41.	10.2	41
129	Targeted sustained delivery of antineoplastic agent with multicomponent polylactide stereocomplex micelle. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1279-1288.	3.3	23
130	Injectable Hydrogel–Microsphere Construct with Sequential Degradation for Locally Synergistic Chemotherapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 3487-3496.	8.0	90
131	3D-Printed Poly(Îμ-caprolactone) Scaffold Augmented With Mesenchymal Stem Cells for Total Meniscal Substitution: A 12- and 24-Week Animal Study in a Rabbit Model. American Journal of Sports Medicine, 2017, 45, 1497-1511.	4.2	118
132	Nanotherapeutics relieve rheumatoid arthritis. Journal of Controlled Release, 2017, 252, 108-124.	9.9	170
133	Poly(\hat{l}^2 -cyclodextrin)-mediated polylactide-cholesterol stereocomplex micelles for controlled drug delivery. Chinese Journal of Polymer Science (English Edition), 2017, 35, 693-699.	3.8	72
134	Targeted hydroxyethyl starch prodrug for inhibiting the growth and metastasis of prostate cancer. Biomaterials, 2017, 116, 82-94.	11.4	98
135	Sequentially Responsive Shellâ€Stacked Nanoparticles for Deep Penetration into Solid Tumors. Advanced Materials, 2017, 29, 1701170.	21.0	360
136	Thermo-sensitive polypeptide hydrogel for locally sequential delivery of two-pronged antitumor drugs. Acta Biomaterialia, 2017, 58, 44-53.	8.3	97
137	Schiff base bond-linked polysaccharide–doxorubicin conjugate for upregulated cancer therapy. Materials Science and Engineering C, 2017, 76, 1121-1128.	7.3	65
138	Positively charged polypeptide nanogel enhances mucoadhesion and penetrability of 10-hydroxycamptothecin in orthotopic bladder carcinoma. Journal of Controlled Release, 2017, 259, 136-148.	9.9	91
139	Controlled Syntheses of Functional Polypeptides. ACS Symposium Series, 2017, , 149-170.	0.5	1
140	Porous Electrospun Fibers with Selfâ€Sealing Functionality: An Enabling Strategy for Trapping Biomacromolecules. Small, 2017, 13, 1701949.	10.0	33
141	Hydration of hydrogels regulates vascularization in vivo. Biomaterials Science, 2017, 5, 2251-2267.	5.4	19
142	cis-Platinum pro-drug-attached CuFeS ₂ nanoplates for in vivo photothermal/photoacoustic imaging and chemotherapy/photothermal therapy of cancer. Nanoscale, 2017, 9, 16937-16949.	5.6	76
143	Reduction-Responsive Polypeptide Micelles for Intracellular Delivery of Antineoplastic Agent. Biomacromolecules, 2017, 18, 3291-3301.	5.4	57
144	Polymer materials for prevention of postoperative adhesion. Acta Biomaterialia, 2017, 61, 21-40.	8.3	130

#	Article	IF	Citations
145	Composite scaffold with gradient content of simvastatin for enhanced large cranial defect repair. Journal of Controlled Release, 2017, 259, e53.	9.9	0
146	Systemically administered targeted nanomedicine combined with locally granted nitric oxide suppresses drug-resistance of hepatoma. Journal of Controlled Release, 2017, 259, e84.	9.9	1
147	Ezrin-targeted calcium (II)-crosslinked nanoparticle intracellularly co-delivers doxorubicin and chlorambucil for synergistic chemotherapy of osteosarcoma. Journal of Controlled Release, 2017, 259, e176-e177.	9.9	1
148	Antibacterial zinc oxide hybrid with gelatin coating. Materials Science and Engineering C, 2017, 81, 321-326.	7.3	45
149	PEGylated stereocomplex polylactide coating of stent for upregulated biocompatibility and drug storage. Materials Science and Engineering C, 2017, 81, 443-451.	7.3	13
150	Poly(lactic acid) Controlled Drug Delivery. Advances in Polymer Science, 2017, , 109-138.	0.8	17
151	Receptor and Microenvironment Dual-Recognizable Nanogel for Targeted Chemotherapy of Highly Metastatic Malignancy. Nano Letters, 2017, 17, 4526-4533.	9.1	127
152	Microstructure and melting behavior of a solution $\hat{\epsilon}$ ast polylactide stereocomplex: Effect of annealing. Journal of Applied Polymer Science, 2017, 134, .	2.6	6
153	Biomedicine: Porous Electrospun Fibers with Selfâ€6ealing Functionality: An Enabling Strategy for Trapping Biomacromolecules (Small 47/2017). Small, 2017, 13, 1770249.	10.0	7
154	Boronic Acid as Glucose-Sensitive Agent Regulates Drug Delivery for Diabetes Treatment. Materials, 2017, 10, 170.	2.9	49
155	Intracellularly Swollen Polypeptide Nanogel Assists Hepatoma Chemotherapy. Theranostics, 2017, 7, 703-716.	10.0	47
156	Glucose Oxidase-Based Glucose-Sensitive Drug Delivery for Diabetes Treatment. Polymers, 2017, 9, 255.	4.5	67
157	Scavenger Receptor-Mediated Targeted Treatment of Collagen-Induced Arthritis by Dextran Sulfate-Methotrexate Prodrug. Theranostics, 2017, 7, 97-105.	10.0	92
158	Investigating the Effect of Chemical Structure of Semiconducting Polymer Nanoparticle on Photothermal Therapy and Photoacoustic Imaging. Theranostics, 2017, 7, 4029-4040.	10.0	44
159	Hydrogel is Superior to Fibrin Gel as Matrix of Stem Cells in Alleviating Antigen-Induced Arthritis. Polymers, 2016, 8, 182.	4.5	12
160	Editorial (Thematic Issue: Polymeric Nanomedicines for Malignancy Therapy). Current Pharmaceutical Biotechnology, 2016, 17, 210-211.	1.6	1
161	Polymer Nanoparticle-Based Chemotherapy for Spinal Malignancies. Journal of Nanomaterials, 2016, 2016, 1-14.	2.7	4
162	Smart Polymeric Nanocarriers. Journal of Nanomaterials, 2016, 2016, 1-2.	2.7	4

#	Article	lF	Citations
163	l-Cystine-Crosslinked Polypeptide Nanogel as a Reduction-Responsive Excipient for Prostate Cancer Chemotherapy. Polymers, 2016, 8, 36.	4.5	25
164	Thermogel-Coated Poly($\hat{l}\mu$ -Caprolactone) Composite Scaffold for Enhanced Cartilage Tissue Engineering. Polymers, 2016, 8, 200.	4.5	42
165	Poly(lactide-co-glycolide)/Hydroxyapatite Porous Scaffold with Microchannels for Bone Regeneration. Polymers, 2016, 8, 218.	4.5	24
166	Tailor-made poly(<scp>l</scp> -lactide)/poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds prepared via high-pressure compression molding/salt leaching. RSC Advances, 2016, 6, 47418-47426.	3.6	28
167	One-pot synthesis of dextran decorated reduced graphene oxide nanoparticles for targeted photo-chemotherapy. Carbohydrate Polymers, 2016, 144, 223-229.	10.2	47
168	One-Step "Click Chemistry―Synthesized Cross-Linked Prodrug Nanogel for Highly Selective Intracellular Drug Delivery and Upregulated Antitumor Efficacy. ACS Applied Materials & Delivery and Upregulated Antitumor Efficacy. ACS Applied Materials & Delivery and Interfaces, 2016, 8, 10673-10682.	8.0	70
169	A comparative study of linear, Y-shaped and linear-dendritic methoxy poly(ethylene) Tj ETQq1 1 0.784314 rgBT /C in vitro and in vivo. Acta Biomaterialia, 2016, 40, 243-253.	verlock 1 8.3	0 Tf 50 507 21
170	Glucose-sensitive polymer nanoparticles for self-regulated drug delivery. Chemical Communications, 2016, 52, 7633-7652.	4.1	94
171	Role of scaffold mean pore size in meniscus regeneration. Acta Biomaterialia, 2016, 43, 314-326.	8.3	119
172	Enzymatically Synthesized Polyesters for Drug Delivery. , 2016, , 61-80.		0
173	High-Pressure Compression-Molded Porous Resorbable Polymer/Hydroxyapatite Composite Scaffold for Cranial Bone Regeneration. ACS Biomaterials Science and Engineering, 2016, 2, 1471-1482.	5.2	60
174	Drug binding rate regulates the properties of polysaccharide prodrugs. Journal of Materials Chemistry B, 2016, 4, 5167-5177.	5.8	47
175	Cationic dendron-bearing lipid/CD151 siRNA complex inhibits osteosarcoma metastasis by down-regulating matrix metalloproteinase-9. RSC Advances, 2016, 6, 59601-59609.	3.6	0
176	Self-Targeted Polysaccharide Prodrug Suppresses Orthotopic Hepatoma. Molecular Pharmaceutics, 2016, 13, 4231-4235.	4.6	26
177	Polymeric nanostructured materials for biomedical applications. Progress in Polymer Science, 2016, 60, 86-128.	24.7	257
178	Decorated reduced graphene oxide for photo-chemotherapy. Journal of Materials Chemistry B, 2016, 4, 929-937.	5.8	26
179	Mesomeric configuration makes polyleucine micelle an optimal nanocarrier. Biomaterials Science, 2016, 4, 814-818.	5.4	15
180	Kartogenin-Incorporated Thermogel Supports Stem Cells for Significant Cartilage Regeneration. ACS Applied Materials & Diterfaces, 2016, 8, 5148-5159.	8.0	160

#	Article	IF	CITATIONS
181	Activated macrophage-targeted dextran–methotrexate/folate conjugate prevents deterioration of collagen-induced arthritis in mice. Journal of Materials Chemistry B, 2016, 4, 2102-2113.	5.8	70
182	Silicon dioxide@graphene oxide-graft-poly(\hat{l}^3 -benzyl- <scp>l</scp> -glutamate) as an advanced hybrid nanofiller reinforces poly(<scp>l</scp> -lactide). RSC Advances, 2016, 6, 5688-5694.	3.6	5
183	Chitosan-Based Scaffolds for Cartilage Regeneration. Springer Series on Polymer and Composite Materials, 2016, , 61-82.	0.7	2
184	pH-sensitive polyion complex micelles for tunable intracellular drug delivery. Journal of Controlled Release, 2015, 213, e55.	9.9	0
185	Two-way combination chemotherapy for synergistic tumor capture. Journal of Controlled Release, 2015, 213, e113-e114.	9.9	O
186	Self-programmed pH-sensitive polymeric prodrug micelle for synergistic cancer therapy. Journal of Controlled Release, 2015, 213, e135-e136.	9.9	4
187	PEG-based thermo-responsive poly (\hat{l}^2 -thioether ester) for ROS-triggered drug delivery. Journal of Controlled Release, 2015, 213, e22.	9.9	4
188	pH-responsive PEGylated doxorubicin for efficient cancer chemotherapy. Journal of Controlled Release, 2015, 213, e149.	9.9	1
189	c(RGDfC)-decorated micelle as nanocarrier for targeting therapeutic of colon cancer. Journal of Controlled Release, 2015, 213, e66.	9.9	1
190	Stereocomplex micelle from nonlinear enantiomeric copolymers efficiently transports antineoplastic drug. Nanoscale Research Letters, 2015, 10, 907.	5.7	18
191	Back Cover: Macromol. Biosci. 3/2015. Macromolecular Bioscience, 2015, 15, 438-438.	4.1	0
192	Micellization of Antineoplastic Agent to Significantly Upregulate Efficacy and Security. Macromolecular Bioscience, 2015, 15, 328-341.	4.1	8
193	Characterization of nanostructured ureteral stent with gradient degradation in a porcine model. International Journal of Nanomedicine, 2015, 10, 3055.	6.7	37
194	Epirubicin-Complexed Polypeptide Micelle Effectively and Safely Treats Hepatocellular Carcinoma. Polymers, 2015, 7, 2410-2430.	4.5	18
195	Remission of Collagen-Induced Arthritis through Combination Therapy of Microfracture and Transplantation of Thermogel-Encapsulated Bone Marrow Mesenchymal Stem Cells. PLoS ONE, 2015, 10, e0120596.	2.5	22
196	Glutathione-degradable drug-loaded nanogel effectively and securely suppresses hepatoma in mouse model. International Journal of Nanomedicine, 2015, 10, 6587.	6.7	19
197	Autoserum: An Optimal Supplement for Bone Marrow Mesenchymal Stem Cells of Liver-Injured Rats. Stem Cells International, 2015, 2015, 1-10.	2.5	3
198	Annealing regulates the performance of an electrospun poly($\hat{l}\mu$ -caprolactone) membrane to accommodate tissue engineering. RSC Advances, 2015, 5, 32604-32608.	3.6	25

#	Article	IF	Citations
199	A comparative study of preventing postoperative tendon adhesion using electrospun polyester membranes with different degradation kinetics. Science China Chemistry, 2015, 58, 1159-1168.	8.2	21
200	Phenylboronic acid-functionalized polypeptide nanogel for glucose-responsive insulin release under physiological pH. Journal of Controlled Release, 2015, 213, e69.	9.9	8
201	Multifunctional three-dimensional scaffolds for treatment of spinal cord injury. Journal of Controlled Release, 2015, 213, e12-e13.	9.9	0
202	Doxorubicin prodrug thermogel as sustained drug reservoir for in situ malignant therapy. Journal of Controlled Release, 2015, 213, e126-e127.	9.9	3
203	Emerging antitumor applications of extracellularly reengineered polymeric nanocarriers. Biomaterials Science, 2015, 3, 988-1001.	5. 4	42
204	Preparation of antibacterial silver nanoparticle-coated PLLA grafted hydroxyapatite/PLLA composite electrospun fiber. Journal of Controlled Release, 2015, 213, e62-e63.	9.9	6
205	pHâ€Responsive Reversible PEGylation Improves Performance of Antineoplastic Agent. Advanced Healthcare Materials, 2015, 4, 844-855.	7.6	29
206	Thermogel-mediated sustained drug delivery for in situ malignancy chemotherapy. Materials Science and Engineering C, 2015, 49, 262-268.	7.3	31
207	Prevention of postoperative tendon adhesion by biodegradable electrospun membrane of poly(lactide-co-glycolide). Chinese Journal of Polymer Science (English Edition), 2015, 33, 587-596.	3.8	15
208	Cholesterol-Enhanced Polylactide-Based Stereocomplex Micelle for Effective Delivery of Doxorubicin. Materials, 2015, 8, 216-230.	2.9	31
209	Selective intracellular drug delivery from pH-responsive polyion complex micelle for enhanced malignancy suppression in vivo. Colloids and Surfaces B: Biointerfaces, 2015, 135, 283-290.	5.0	22
210	Gelatin Tight-Coated Poly(lactide-co-glycolide) Scaffold Incorporating rhBMP-2 for Bone Tissue Engineering. Materials, 2015, 8, 1009-1026.	2.9	33
211	Guanidinated Thioureaâ€Decorated Polyethylenimines for Enhanced Membrane Penetration and Efficient siRNA Delivery. Advanced Healthcare Materials, 2015, 4, 1369-1375.	7.6	9
212	Versatile preparation of intracellular-acidity-sensitive oxime-linked polysaccharide-doxorubicin conjugate for malignancy therapeutic. Biomaterials, 2015, 54, 72-86.	11.4	136
213	Drug Delivery: pH-Responsive Reversible PEGylation Improves Performance of Antineoplastic Agent (Adv. Healthcare Mater. 6/2015). Advanced Healthcare Materials, 2015, 4, 786-786.	7.6	1
214	Competitive binding-accelerated insulin release from a polypeptide nanogel for potential therapy of diabetes. Polymer Chemistry, 2015, 6, 3807-3815.	3.9	52
215	Acid-labile boronate-bridged dextran–bortezomib conjugate with up-regulated hypoxic tumor suppression. Chemical Communications, 2015, 51, 6812-6815.	4.1	57
216	Biomimetic biphasic scaffolds for osteochondral defect repair. International Journal of Energy Production and Management, 2015, 2, 221-228.	3.7	77

#	Article	IF	CITATIONS
217	Correction: Biocompatible reduction-responsive polypeptide micelles as nanocarriers for enhanced chemotherapy efficacy in vitro. Journal of Materials Chemistry B, 2015, 3, 1455-1456.	5. 8	O
218	Self-Healing Supramolecular Self-Assembled Hydrogels Based on Poly(<scp> </scp> -glutamic acid). Biomacromolecules, 2015, 16, 3508-3518.	5.4	177
219	Intra-Articular Transplantation of Allogeneic BMMSCs Rehabilitates Cartilage Injury of Antigen-Induced Arthritis. Tissue Engineering - Part A, 2015, 21, 2733-2743.	3.1	29
220	pH-responsive metallo-supramolecular nanogel for synergistic chemo-photodynamic therapy. Acta Biomaterialia, 2015, 25, 162-171.	8.3	41
221	Scaffolds drive meniscus tissue engineering. RSC Advances, 2015, 5, 77851-77859.	3.6	25
222	Hydroxyapatite and vancomycin composited electrospun polylactide mat for osteomyelitis and bone defect treatment. Journal of Controlled Release, 2015, 213, e92.	9.9	3
223	Reduction-responsive polypeptide nanogel delivers antitumor drug for improved efficacy and safety. Acta Biomaterialia, 2015, 27, 179-193.	8.3	71
224	Chirality-mediated polypeptide micelles for regulated drug delivery. Acta Biomaterialia, 2015, 11, 346-355.	8.3	59
225	Synthesis of thermal and oxidation dual responsive polymers for reactive oxygen species (ROS)-triggered drug release. Polymer Chemistry, 2015, 6, 738-747.	3.9	104
226	Polyion complex micelles with gradient pH-sensitivity for adjustable intracellular drug delivery. Polymer Chemistry, 2015, 6, 397-405.	3.9	75
227	Drug-Incorporated Electrospun Fibers Efficiently Prevent Postoperative Adhesion. Current Pharmaceutical Design, 2015, 21, 1960-1966.	1.9	17
228	Polymeric Nanocarriers for Drug Delivery in Osteosarcoma Treatment. Current Pharmaceutical Design, 2015, 21, 5187-5197.	1.9	25
229	Repair, protection and regeneration of peripheral nerve injury. Neural Regeneration Research, 2015, 10, 1777.	3.0	28
230	Poly(<i>L</i> -glutamic acid) Microsphere: Preparation and Application in Oral Drug Controlled Release. Acta Chimica Sinica, 2015, 73, 60.	1.4	13
231	ERK1/2 Pathway-Mediated Differentiation of IGF-1-Transfected Spinal Cord-Derived Neural Stem Cells into Oligodendrocytes. PLoS ONE, 2014, 9, e106038.	2.5	26
232	Biodegradable thermogel as culture matrix of bone marrow mesenchymal stem cells for potential cartilage tissue engineering. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1590-1601.	3.8	29
233	Efficient recovery of precious metal based on Au–S bond and electrostatic interaction. Green Chemistry, 2014, 16, 4875-4878.	9.0	41
234	Preclinical Evaluation of Antitumor Activity of Acid-Sensitive PEGylated Doxorubicin. ACS Applied Materials & Samp; Interfaces, 2014, 6, 21202-21214.	8.0	77

#	Article	IF	CITATIONS
235	Side chain impacts on pH- and thermo-responsiveness of tertiary amine functionalized polypeptides. Journal of Polymer Science Part A, 2014, 52, 671-679.	2.3	24
236	Noncovalent interaction-assisted polymeric micelles for controlled drug delivery. Chemical Communications, 2014, 50, 11274-11290.	4.1	162
237	Core-cross-linked micellar nanoparticles from a linear-dendritic prodrug for dual-responsive drug delivery. Polymer Chemistry, 2014, 5, 2801-2808.	3.9	53
238	Thiourea modified polyethylenimine for efficient gene delivery mediated by the combination of electrostatic interactions and hydrogen bonds. Polymer Chemistry, 2014, 5, 3598.	3.9	25
239	Molecular weight-modulated electrospun poly($\hat{l}\mu$ -caprolactone) membranes for postoperative adhesion prevention. RSC Advances, 2014, 4, 41696-41704.	3.6	33
240	Co-delivery of doxorubicin and paclitaxel with linear-dendritic block copolymer for enhanced anti-cancer efficacy. Science China Chemistry, 2014, 57, 624-632.	8.2	26
241	Disulfide Crossâ€Linked Polyurethane Micelles as a Reductionâ€Triggered Drug Delivery System for Cancer Therapy. Advanced Healthcare Materials, 2014, 3, 752-760.	7.6	105
242	Redox-Sensitive Shell-Crosslinked Polypeptide <i>>-block-</i> > Polysaccharide Micelles for Efficient Intracellular Anticancer Drug Delivery. Macromolecular Bioscience, 2013, 13, 1249-1258.	4.1	56
243	The synthesis, deprotection and properties of poly(\hat{l}^3 -benzyl-l-glutamate). Science China Chemistry, 2013, 56, 729-738.	8.2	26
244	Polymeric topology and composition constrained polyether–polyester micelles for directional antitumor drug delivery. Acta Biomaterialia, 2013, 9, 8875-8884.	8.3	42
245	Thermosensitive hydrogels based on polypeptides for localized and sustained delivery of anticancer drugs. Biomaterials, 2013, 34, 10338-10347.	11.4	109
246	Efficacious hepatoma-targeted nanomedicine self-assembled from galactopeptide and doxorubicin driven by two-stage physical interactions. Journal of Controlled Release, 2013, 169, 193-203.	9.9	89
247	Self-reinforced endocytoses of smart polypeptide nanogels for "on-demand―drug delivery. Journal of Controlled Release, 2013, 172, 444-455.	9.9	106
248	Disulfide crosslinked PEGylated starch micelles as efficient intracellular drug delivery platforms. Soft Matter, 2013, 9, 2224.	2.7	122
249	pH and reduction dual-responsive nanogel cross-linked by quaternization reaction for enhanced cellular internalization and intracellular drug delivery. Polymer Chemistry, 2013, 4, 1199-1207.	3.9	121
250	Biocompatible reduction-responsive polypeptide micelles as nanocarriers for enhanced chemotherapy efficacy in vitro. Journal of Materials Chemistry B, 2013, 1, 69-81.	5.8	141
251	Intracellular pH-sensitive supramolecular amphiphiles based on host–guest recognition between benzimidazole and β-cyclodextrin as potential drug delivery vehicles. Polymer Chemistry, 2013, 4, 3265.	3.9	89
252	pH and reduction dual responsive polyurethane triblock copolymers for efficient intracellular drug delivery. Soft Matter, 2013, 9, 2637.	2.7	103

#	Article	IF	CITATIONS
253	Thermo-responsive "hairy-rod―polypeptides for smart antitumor drug delivery. Polymer Chemistry, 2013, 4, 3345.	3.9	66
254	Enhanced endocytosis of acid-sensitive doxorubicin derivatives with intelligent nanogel for improved security and efficacy. Biomaterials Science, 2013, 1, 633-646.	5.4	55
255	Reduction-responsive cross-linked micelles based on PEGylated polypeptides prepared via click chemistry. Polymer Chemistry, 2013, 4, 3851.	3.9	51
256	Versatile Biofunctionalization of Polypeptide-Based Thermosensitive Hydrogels via Click Chemistry. Biomacromolecules, 2013, 14, 468-475.	5.4	61
257	Facile one-pot synthesis of glucose-sensitive nanogel via thiol-ene click chemistry for self-regulated drug delivery. Acta Biomaterialia, 2013, 9, 6535-6543.	8.3	63
258	Selfâ€ <scp>A</scp> ssemblies of p <scp>H</scp> â€ <scp>A</scp> ctivatable <scp>PEG</scp> ylated Multiarm Poly(lactic acidâ€ <i>co</i> â€glycolic acid)â€ <scp>D</scp> oxorubicin Prodrugs with Improved Longâ€ <scp>T</scp> erm Antitumor Efficacies. Macromolecular Bioscience, 2013, 13, 1300-1307.	4.1	28
259	Coâ€delivery of 10â€Hydroxycamptothecin with Doxorubicin Conjugated Prodrugs for Enhanced Anticancer Efficacy. Macromolecular Bioscience, 2013, 13, 584-594.	4.1	63
260	In vitro evaluation of anticancer nanomedicines based on doxorubicin and amphiphilic Y-shaped copolymers. International Journal of Nanomedicine, 2012, 7, 2687.	6.7	25
261	Glucose-sensitive polypeptide micelles for self-regulated insulin release at physiological pH. Journal of Materials Chemistry, 2012, 22, 12319.	6.7	95
262	Intracellular microenvironment responsive PEGylated polypeptide nanogels with ionizable cores for efficient doxorubicin loading and triggered release. Journal of Materials Chemistry, 2012, 22, 14168.	6.7	132
263	Decisive Role of Hydrophobic Side Groups of Polypeptides in Thermosensitive Gelation. Biomacromolecules, 2012, 13, 2053-2059.	5.4	97
264	pH-responsive drug delivery systems based on clickable poly(L-glutamic acid)-grafted comb copolymers. Macromolecular Research, 2012, 20, 292-301.	2.4	29
265	Direct formation of cationic polypeptide vesicle as potential carrier for drug and gene. Materials Letters, 2012, 73, 17-20.	2.6	30
266	Versatile synthesis of temperature-sensitive polypeptides by click grafting of oligo(ethylene glycol). Polymer Chemistry, 2011, 2, 2627.	3.9	85
267	One-step preparation of reduction-responsive poly(ethylene glycol)-poly(amino acid)s nanogels as efficient intracellular drug delivery platforms. Polymer Chemistry, 2011, 2, 2857.	3.9	220
268	Preparation of photo-cross-linked pH-responsive polypeptide nanogels as potential carriers for controlled drug delivery. Journal of Materials Chemistry, 2011, 21, 11383.	6.7	138
269	Synthesis of Amphiphilic Alternating Polyesters with Oligo(ethylene glycol) Side Chains and Potential Use for Sustained Release Drug Delivery. Biomacromolecules, 2011, 12, 2466-2474.	5.4	60
270	An efficient pH sensitive oral insulin delivery system enhanced by deoxycholic acid. Journal of Controlled Release, 2011, 152, e184-e186.	9.9	15

#	Article	IF	CITATIONS
271	pH and dual redox responsive nanogel based on poly(l-glutamic acid) as potential intracellular drug carrier. Journal of Controlled Release, 2011, 152, e11-e13.	9.9	33
272	Versatile synthesis of functional biodegradable polymers by ring-opening polymerization and microwave-assisted click reaction. Journal of Controlled Release, 2011, 152, e249-e250.	9.9	4
273	Poly(<scp>L</scp> â€glutamic acid) grafted with oligo(2â€(2â€(2â€methoxyethoxy)ethoxy)ethyl methacrylate): Thermal phase transition, secondary structure, and selfâ€assembly. Journal of Polymer Science Part A, 2011, 49, 2665-2676.	2.3	72
274	Highly Efficient "Grafting From―an αâ€Helical Polypeptide Backbone by Atom Transfer Radical Polymerization. Macromolecular Bioscience, 2011, 11, 192-198.	4.1	69
275	Facile preparation of a cationic poly(amino acid) vesicle for potential drug and gene co-delivery. Nanotechnology, 2011, 22, 494012.	2.6	60

Synthesis and characterization of star-shaped block copolymer of poly-(É-caprolactone) and poly(ethyl) Tj ETQq0 03.8 rgBT /Oyerlock 10