Jian-Xun Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4900836/publications.pdf Version: 2024-02-01

		8755	19190
276	18,179	75	118
papers	citations	h-index	g-index
314	314	314	16745
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Antibacterial Hydrogels. Advanced Science, 2018, 5, 1700527.	11.2	696
2	Mesenchymal Stem Cells for Regenerative Medicine. Cells, 2019, 8, 886.	4.1	687
3	Electrospun polymer biomaterials. Progress in Polymer Science, 2019, 90, 1-34.	24.7	472
4	Sequentially Responsive Shell‣tacked Nanoparticles for Deep Penetration into Solid Tumors. Advanced Materials, 2017, 29, 1701170.	21.0	360
5	Engineered nanomedicines with enhanced tumor penetration. Nano Today, 2019, 29, 100800.	11.9	317
6	Polymeric nanostructured materials for biomedical applications. Progress in Polymer Science, 2016, 60, 86-128.	24.7	257
7	Immunomodulatory Nanosystems. Advanced Science, 2019, 6, 1900101.	11.2	255
8	Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. Journal of Controlled Release, 2019, 302, 19-41.	9.9	254
9	Poly(lactic-co-glycolic acid)-based composite bone-substitute materials. Bioactive Materials, 2021, 6, 346-360.	15.6	252
10	Thermosensitive Hydrogels as Scaffolds for Cartilage Tissue Engineering. Biomacromolecules, 2019, 20, 1478-1492.	5.4	233
11	One-step preparation of reduction-responsive poly(ethylene glycol)-poly(amino acid)s nanogels as efficient intracellular drug delivery platforms. Polymer Chemistry, 2011, 2, 2857.	3.9	220
12	Ultrasound-Augmented Mitochondrial Calcium Ion Overload by Calcium Nanomodulator to Induce Immunogenic Cell Death. Nano Letters, 2021, 21, 2088-2093.	9.1	220
13	Fabrication of Electrospun Polymer Nanofibers with Diverse Morphologies. Molecules, 2019, 24, 834.	3.8	212
14	Self-Healing Supramolecular Self-Assembled Hydrogels Based on Poly(<scp>l</scp> -glutamic acid). Biomacromolecules, 2015, 16, 3508-3518.	5.4	177
15	A Multichannel Ca ²⁺ Nanomodulator for Multilevel Mitochondrial Destructionâ€Mediated Cancer Therapy. Advanced Materials, 2021, 33, e2007426.	21.0	177
16	Polymer Fiber Scaffolds for Bone and Cartilage Tissue Engineering. Advanced Functional Materials, 2019, 29, 1903279.	14.9	176
17	Nanotherapeutics relieve rheumatoid arthritis. Journal of Controlled Release, 2017, 252, 108-124.	9.9	170
18	Noncovalent interaction-assisted polymeric micelles for controlled drug delivery. Chemical Communications, 2014, 50, 11274-11290.	4.1	162

#	Article	IF	CITATIONS
19	Electroactive composite scaffold with locally expressed osteoinductive factor for synergistic bone repair upon electrical stimulation. Biomaterials, 2020, 230, 119617.	11.4	162
20	Kartogenin-Incorporated Thermogel Supports Stem Cells for Significant Cartilage Regeneration. ACS Applied Materials & Interfaces, 2016, 8, 5148-5159.	8.0	160
21	Self‣tabilized Hyaluronate Nanogel for Intracellular Codelivery of Doxorubicin and Cisplatin to Osteosarcoma. Advanced Science, 2018, 5, 1700821.	11.2	153
22	A mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedings. Bioactive Materials, 2021, 6, 2829-2840.	15.6	152
23	Recent progress in polymer-based platinum drug delivery systems. Progress in Polymer Science, 2018, 87, 70-106.	24.7	144
24	Dual Drug Backboned Shattering Polymeric Theranostic Nanomedicine for Synergistic Eradication of Patientâ€Derived Lung Cancer. Advanced Materials, 2018, 30, 1706220.	21.0	142
25	Biocompatible reduction-responsive polypeptide micelles as nanocarriers for enhanced chemotherapy efficacy in vitro. Journal of Materials Chemistry B, 2013, 1, 69-81.	5.8	141
26	Harnessing copper-palladium alloy tetrapod nanoparticle-induced pro-survival autophagy for optimized photothermal therapy of drug-resistant cancer. Nature Communications, 2018, 9, 4236.	12.8	139
27	Preparation of photo-cross-linked pH-responsive polypeptide nanogels as potential carriers for controlled drug delivery. Journal of Materials Chemistry, 2011, 21, 11383.	6.7	138
28	Mesenchymal stem cells for cartilage regeneration. Journal of Tissue Engineering, 2020, 11, 204173142094383.	5.5	138
29	Targeted pH-responsive polyion complex micelle for controlled intracellular drug delivery. Chinese Chemical Letters, 2020, 31, 1178-1182.	9.0	137
30	Versatile preparation of intracellular-acidity-sensitive oxime-linked polysaccharide-doxorubicin conjugate for malignancy therapeutic. Biomaterials, 2015, 54, 72-86.	11.4	136
31	Recent advances in delivery of photosensitive metal-based drugs. Coordination Chemistry Reviews, 2019, 387, 154-179.	18.8	136
32	Intracellular microenvironment responsive PEGylated polypeptide nanogels with ionizable cores for efficient doxorubicin loading and triggered release. Journal of Materials Chemistry, 2012, 22, 14168.	6.7	132
33	Adjuvant-pulsed mRNA vaccine nanoparticle for immunoprophylactic and therapeutic tumor suppression in mice. Biomaterials, 2021, 266, 120431.	11.4	131
34	Polymer materials for prevention of postoperative adhesion. Acta Biomaterialia, 2017, 61, 21-40.	8.3	130
35	Engineered three-dimensional scaffolds for enhanced bone regeneration in osteonecrosis. Bioactive Materials, 2020, 5, 584-601.	15.6	128
36	Receptor and Microenvironment Dual-Recognizable Nanogel for Targeted Chemotherapy of Highly Metastatic Malignancy. Nano Letters, 2017, 17, 4526-4533.	9.1	127

#	Article	IF	CITATIONS
37	Cancer Cell Membraneâ€Coated Nanoparticles for Personalized Therapy in Patientâ€Derived Xenograft Models. Advanced Functional Materials, 2019, 29, 1905671.	14.9	125
38	Disulfide crosslinked PEGylated starch micelles as efficient intracellular drug delivery platforms. Soft Matter, 2013, 9, 2224.	2.7	122
39	pH and reduction dual-responsive nanogel cross-linked by quaternization reaction for enhanced cellular internalization and intracellular drug delivery. Polymer Chemistry, 2013, 4, 1199-1207.	3.9	121
40	Role of scaffold mean pore size in meniscus regeneration. Acta Biomaterialia, 2016, 43, 314-326.	8.3	119
41	3D-Printed Poly(ε-caprolactone) Scaffold Augmented With Mesenchymal Stem Cells for Total Meniscal Substitution: A 12- and 24-Week Animal Study in a Rabbit Model. American Journal of Sports Medicine, 2017, 45, 1497-1511.	4.2	118
42	Sarcoma-Targeting Peptide-Decorated Polypeptide Nanogel Intracellularly Delivers Shikonin for Upregulated Osteosarcoma Necroptosis and Diminished Pulmonary Metastasis. Theranostics, 2018, 8, 1361-1375.	10.0	118
43	Component effect of stem cell-loaded thermosensitive polypeptide hydrogels on cartilage repair. Acta Biomaterialia, 2018, 73, 103-111.	8.3	117
44	Self-targeting visualizable hyaluronate nanogel for synchronized intracellular release of doxorubicin and cisplatin in combating multidrug-resistant breast cancer. Nano Research, 2021, 14, 846-857.	10.4	117
45	Tailoring Platinum(IV) Amphiphiles for Self-Targeting All-in-One Assemblies as Precise Multimodal Theranostic Nanomedicine. ACS Nano, 2018, 12, 7272-7281.	14.6	114
46	Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models. Science Translational Medicine, 2021, 13, .	12.4	111
47	Thermosensitive hydrogels based on polypeptides for localized and sustained delivery of anticancer drugs. Biomaterials, 2013, 34, 10338-10347.	11.4	109
48	Self-reinforced endocytoses of smart polypeptide nanogels for "on-demand―drug delivery. Journal of Controlled Release, 2013, 172, 444-455.	9.9	106
49	Disulfide Crossâ€Linked Polyurethane Micelles as a Reductionâ€Triggered Drug Delivery System for Cancer Therapy. Advanced Healthcare Materials, 2014, 3, 752-760.	7.6	105
50	Polymer scaffolds facilitate spinal cord injury repair. Acta Biomaterialia, 2019, 88, 57-77.	8.3	105
51	Synthesis of thermal and oxidation dual responsive polymers for reactive oxygen species (ROS)-triggered drug release. Polymer Chemistry, 2015, 6, 738-747.	3.9	104
52	pH and reduction dual responsive polyurethane triblock copolymers for efficient intracellular drug delivery. Soft Matter, 2013, 9, 2637.	2.7	103
53	Stimuliâ€Responsive Nanoparticles for Controlled Drug Delivery in Synergistic Cancer Immunotherapy. Advanced Science, 2022, 9, e2103444.	11.2	102
54	Challenges and Opportunities of Nanomedicines in Clinical Translation. BIO Integration, 2021, 2, .	1.3	99

#	Article	IF	CITATIONS
55	Smart transformable nanoparticles for enhanced tumor theranostics. Applied Physics Reviews, 2021, 8,	11.3	99
56	Targeted hydroxyethyl starch prodrug for inhibiting the growth and metastasis of prostate cancer. Biomaterials, 2017, 116, 82-94.	11.4	98
57	Mucoadhesive Cationic Polypeptide Nanogel with Enhanced Penetration for Efficient Intravesical Chemotherapy of Bladder Cancer. Advanced Science, 2018, 5, 1800004.	11.2	98
58	Tumor microenvironment-responsive hyaluronate-calcium carbonate hybrid nanoparticle enables effective chemotherapy for primary and advanced osteosarcomas. Nano Research, 2018, 11, 4806-4822.	10.4	98
59	Decisive Role of Hydrophobic Side Groups of Polypeptides in Thermosensitive Gelation. Biomacromolecules, 2012, 13, 2053-2059.	5.4	97
60	Thermo-sensitive polypeptide hydrogel for locally sequential delivery of two-pronged antitumor drugs. Acta Biomaterialia, 2017, 58, 44-53.	8.3	97
61	Glucose-sensitive polypeptide micelles for self-regulated insulin release at physiological pH. Journal of Materials Chemistry, 2012, 22, 12319.	6.7	95
62	Locally Deployable Nanofiber Patch for Sequential Drug Delivery in Treatment of Primary and Advanced Orthotopic Hepatomas. ACS Nano, 2018, 12, 6685-6699.	14.6	95
63	Glucose-sensitive polymer nanoparticles for self-regulated drug delivery. Chemical Communications, 2016, 52, 7633-7652.	4.1	94
64	Bioactive Materials Promote Wound Healing through Modulation of Cell Behaviors. Advanced Science, 2022, 9, e2105152.	11.2	94
65	Scavenger Receptor-Mediated Targeted Treatment of Collagen-Induced Arthritis by Dextran Sulfate-Methotrexate Prodrug. Theranostics, 2017, 7, 97-105.	10.0	92
66	Positively charged polypeptide nanogel enhances mucoadhesion and penetrability of 10-hydroxycamptothecin in orthotopic bladder carcinoma. Journal of Controlled Release, 2017, 259, 136-148.	9.9	91
67	Injectable Hydrogel–Microsphere Construct with Sequential Degradation for Locally Synergistic Chemotherapy. ACS Applied Materials & Interfaces, 2017, 9, 3487-3496.	8.0	90
68	Osteoimmunityâ€Regulating Biomimetically Hierarchical Scaffold for Augmented Bone Regeneration. Advanced Materials, 2022, 34, .	21.0	90
69	Efficacious hepatoma-targeted nanomedicine self-assembled from galactopeptide and doxorubicin driven by two-stage physical interactions. Journal of Controlled Release, 2013, 169, 193-203.	9.9	89
70	Intracellular pH-sensitive supramolecular amphiphiles based on host–guest recognition between benzimidazole and β-cyclodextrin as potential drug delivery vehicles. Polymer Chemistry, 2013, 4, 3265.	3.9	89
71	Biomedical applications of mRNA nanomedicine. Nano Research, 2018, 11, 5281-5309.	10.4	86
72	Versatile synthesis of temperature-sensitive polypeptides by click grafting of oligo(ethylene glycol). Polymer Chemistry, 2011, 2, 2627.	3.9	85

#	Article	IF	CITATIONS
73	Intravesical Hydrogels as Drug Reservoirs. Trends in Biotechnology, 2020, 38, 579-583.	9.3	83
74	Injectable Cholesterolâ€Enhanced Stereocomplex Polylactide Thermogel Loading Chondrocytes for Optimized Cartilage Regeneration. Advanced Healthcare Materials, 2019, 8, e1900312.	7.6	81
75	Preclinical Evaluation of Antitumor Activity of Acid-Sensitive PEGylated Doxorubicin. ACS Applied Materials & amp; Interfaces, 2014, 6, 21202-21214.	8.0	77
76	Biomimetic biphasic scaffolds for osteochondral defect repair. International Journal of Energy Production and Management, 2015, 2, 221-228.	3.7	77
77	Conductive Composite Fiber with Optimized Alignment Guides Neural Regeneration under Electrical Stimulation. Advanced Healthcare Materials, 2021, 10, e2000604.	7.6	77
78	cis-Platinum pro-drug-attached CuFeS ₂ nanoplates for in vivo photothermal/photoacoustic imaging and chemotherapy/photothermal therapy of cancer. Nanoscale, 2017, 9, 16937-16949.	5.6	76
79	Polyion complex micelles with gradient pH-sensitivity for adjustable intracellular drug delivery. Polymer Chemistry, 2015, 6, 397-405.	3.9	75
80	Spatiotemporally Targeted Nanomedicine Overcomes Hypoxia-Induced Drug Resistance of Tumor Cells after Disrupting Neovasculature. Nano Letters, 2020, 20, 6191-6198.	9.1	75
81	Multifunctional Fibers to Shape Future Biomedical Devices. Advanced Functional Materials, 2019, 29, 1902834.	14.9	74
82	Chiral Polypeptide Thermogels Induce Controlled Inflammatory Response as Potential Immunoadjuvants. ACS Applied Materials & Interfaces, 2019, 11, 8725-8730.	8.0	73
83	Poly(<scp>L</scp> â€glutamic acid) grafted with oligo(2â€(2â€(2â€methoxyethoxy)ethoxy)ethyl methacrylate): Thermal phase transition, secondary structure, and selfâ€assembly. Journal of Polymer Science Part A, 2011, 49, 2665-2676.	2.3	72
84	Poly(β-cyclodextrin)-mediated polylactide-cholesterol stereocomplex micelles for controlled drug delivery. Chinese Journal of Polymer Science (English Edition), 2017, 35, 693-699.	3.8	72
85	Reduction-responsive polypeptide nanogel delivers antitumor drug for improved efficacy and safety. Acta Biomaterialia, 2015, 27, 179-193.	8.3	71
86	Polypeptide nanoformulation-induced immunogenic cell death and remission of immunosuppression for enhanced chemoimmunotherapy. Science Bulletin, 2021, 66, 362-373.	9.0	71
87	Synthesis and characterization of star-shaped block copolymer of poly-(É›-caprolactone) and poly(ethyl) Tj ETQq1	1 _{3.8} 78431	.4 rgBT /Cve
88	One-Step "Click Chemistry―Synthesized Cross-Linked Prodrug Nanogel for Highly Selective Intracellular Drug Delivery and Upregulated Antitumor Efficacy. ACS Applied Materials & Interfaces, 2016, 8, 10673-10682.	8.0	70
89	Activated macrophage-targeted dextran–methotrexate/folate conjugate prevents deterioration of collagen-induced arthritis in mice. Journal of Materials Chemistry B, 2016, 4, 2102-2113.	5.8	70
90	Highly Efficient "Grafting From―an αâ€Helical Polypeptide Backbone by Atom Transfer Radical Polymerization. Macromolecular Bioscience, 2011, 11, 192-198.	4.1	69

#	Article	IF	CITATIONS
91	Tumor microenvironment-labile polymer–doxorubicin conjugate thermogel combined with docetaxel for in situ synergistic chemotherapy of hepatoma. Acta Biomaterialia, 2018, 77, 63-73.	8.3	68
92	Role of nanoparticle-mediated immunogenic cell death in cancer immunotherapy. Asian Journal of Pharmaceutical Sciences, 2021, 16, 129-132.	9.1	68
93	Glucose Oxidase-Based Glucose-Sensitive Drug Delivery for Diabetes Treatment. Polymers, 2017, 9, 255.	4.5	67
94	Thermo-responsive "hairy-rod―polypeptides for smart antitumor drug delivery. Polymer Chemistry, 2013, 4, 3345.	3.9	66
95	Polymer nanoparticles as adjuvants in cancer immunotherapy. Nano Research, 2018, 11, 5769-5786.	10.4	66
96	Schiff base bond-linked polysaccharide–doxorubicin conjugate for upregulated cancer therapy. Materials Science and Engineering C, 2017, 76, 1121-1128.	7.3	65
97	Highly Bioadhesive Polymer Membrane Continuously Releases Cytostatic and Anti-Inflammatory Drugs for Peritoneal Adhesion Prevention. ACS Biomaterials Science and Engineering, 2018, 4, 2026-2036.	5.2	65
98	Controlled synthesis of polypeptides. Chinese Chemical Letters, 2020, 31, 3001-3014.	9.0	65
99	3D Printed Personalized Nerve Guide Conduits for Precision Repair of Peripheral Nerve Defects. Advanced Science, 2022, 9, e2103875.	11.2	65
100	Facile one-pot synthesis of glucose-sensitive nanogel via thiol-ene click chemistry for self-regulated drug delivery. Acta Biomaterialia, 2013, 9, 6535-6543.	8.3	63
101	Coâ€delivery of 10â€Hydroxycamptothecin with Doxorubicin Conjugated Prodrugs for Enhanced Anticancer Efficacy. Macromolecular Bioscience, 2013, 13, 584-594.	4.1	63
102	Long-acting hydrogel/microsphere composite sequentially releases dexmedetomidine and bupivacaine for prolonged synergistic analgesia. Biomaterials, 2018, 181, 378-391.	11.4	63
103	Versatile Biofunctionalization of Polypeptide-Based Thermosensitive Hydrogels via Click Chemistry. Biomacromolecules, 2013, 14, 468-475.	5.4	61
104	A Tumor Microenvironmentsâ€Adapted Polypeptide Hydrogel/Nanogel Composite Boosts Antitumor Molecularly Targeted Inhibition and Immunoactivation. Advanced Materials, 2022, 34, e2200449.	21.0	61
105	Synthesis of Amphiphilic Alternating Polyesters with Oligo(ethylene glycol) Side Chains and Potential Use for Sustained Release Drug Delivery. Biomacromolecules, 2011, 12, 2466-2474.	5.4	60
106	Facile preparation of a cationic poly(amino acid) vesicle for potential drug and gene co-delivery. Nanotechnology, 2011, 22, 494012.	2.6	60
107	High-Pressure Compression-Molded Porous Resorbable Polymer/Hydroxyapatite Composite Scaffold for Cranial Bone Regeneration. ACS Biomaterials Science and Engineering, 2016, 2, 1471-1482.	5.2	60
108	Chirality-mediated polypeptide micelles for regulated drug delivery. Acta Biomaterialia, 2015, 11, 346-355.	8.3	59

#	Article	IF	CITATIONS
109	Biofunctionalized composite scaffold to potentiate osteoconduction, angiogenesis, and favorable metabolic microenvironment for osteonecrosis therapy. Bioactive Materials, 2022, 9, 446-460.	15.6	59
110	Acid-labile boronate-bridged dextran–bortezomib conjugate with up-regulated hypoxic tumor suppression. Chemical Communications, 2015, 51, 6812-6815.	4.1	57
111	Reduction-Responsive Polypeptide Micelles for Intracellular Delivery of Antineoplastic Agent. Biomacromolecules, 2017, 18, 3291-3301.	5.4	57
112	Redox-Sensitive Shell-Crosslinked Polypeptide <i>-block-</i> Polysaccharide Micelles for Efficient Intracellular Anticancer Drug Delivery. Macromolecular Bioscience, 2013, 13, 1249-1258.	4.1	56
113	Cystine proportion regulates fate of polypeptide nanogel as nanocarrier for chemotherapeutics. Science China Chemistry, 2021, 64, 293-301.	8.2	56
114	Enhanced endocytosis of acid-sensitive doxorubicin derivatives with intelligent nanogel for improved security and efficacy. Biomaterials Science, 2013, 1, 633-646.	5.4	55
115	Oral delivery of bacteria: Basic principles and biomedical applications. Journal of Controlled Release, 2020, 327, 801-833.	9.9	55
116	Sequentially stimuli-responsive anticancer nanomedicines. Nanomedicine, 2021, 16, 261-264.	3.3	55
117	Calcium ion nanomodulators for mitochondria-targeted multimodal cancer therapy. Asian Journal of Pharmaceutical Sciences, 2022, 17, 1-3.	9.1	55
118	Precision-guided long-acting analgesia by hydrogel-immobilized bupivacaine-loaded microsphere. Theranostics, 2018, 8, 3331-3347.	10.0	54
119	Core-cross-linked micellar nanoparticles from a linear-dendritic prodrug for dual-responsive drug delivery. Polymer Chemistry, 2014, 5, 2801-2808.	3.9	53
120	Evaluation of Polymer Nanoformulations in Hepatoma Therapy by Established Rodent Models. Theranostics, 2019, 9, 1426-1452.	10.0	53
121	Competitive binding-accelerated insulin release from a polypeptide nanogel for potential therapy of diabetes. Polymer Chemistry, 2015, 6, 3807-3815.	3.9	52
122	Biointerface engineering nanoplatforms for cancer-targeted drug delivery. Asian Journal of Pharmaceutical Sciences, 2020, 15, 397-415.	9.1	52
123	Functional Polymerâ€Based Nerve Guide Conduits to Promote Peripheral Nerve Regeneration. Advanced Materials Interfaces, 2020, 7, 2000225.	3.7	52
124	Reduction-responsive cross-linked micelles based on PEGylated polypeptides prepared via click chemistry. Polymer Chemistry, 2013, 4, 3851.	3.9	51
125	Instructive cartilage regeneration modalities with advanced therapeutic implantations under abnormal conditions. Bioactive Materials, 2022, 11, 317-338.	15.6	51
126	Polylactide-Cholesterol Stereocomplex Micelle Encapsulating Chemotherapeutic Agent for Improved Antitumor Efficacy and Safety. Journal of Biomedical Nanotechnology, 2018, 14, 2102-2113.	1.1	50

Jian-Xun Ding

#	Article	IF	CITATIONS
127	Boronic Acid as Glucose-Sensitive Agent Regulates Drug Delivery for Diabetes Treatment. Materials, 2017, 10, 170.	2.9	49
128	Advances in Stimuliâ€Responsive Polypeptide Nanogels. Small Methods, 2018, 2, 1700307.	8.6	48
129	One-pot synthesis of dextran decorated reduced graphene oxide nanoparticles for targeted photo-chemotherapy. Carbohydrate Polymers, 2016, 144, 223-229.	10.2	47
130	Drug binding rate regulates the properties of polysaccharide prodrugs. Journal of Materials Chemistry B, 2016, 4, 5167-5177.	5.8	47
131	Intracellularly Swollen Polypeptide Nanogel Assists Hepatoma Chemotherapy. Theranostics, 2017, 7, 703-716.	10.0	47
132	Bisphosphonateâ€Functionalized Scaffolds for Enhanced Bone Regeneration. Advanced Healthcare Materials, 2019, 8, e1901073.	7.6	46
133	Inhibition of CaMKIIα Activity Enhances Antitumor Effect of Fullerene C60 Nanocrystals by Suppression of Autophagic Degradation. Advanced Science, 2019, 6, 1801233.	11.2	46
134	X-ray-responsive polypeptide nanogel for concurrent chemoradiotherapy. Journal of Controlled Release, 2021, 332, 1-9.	9.9	46
135	Antibacterial zinc oxide hybrid with gelatin coating. Materials Science and Engineering C, 2017, 81, 321-326.	7.3	45
136	Nanomaterials for Combinational Radio–Immuno Oncotherapy. Advanced Functional Materials, 2020, 30, 1910676.	14.9	45
137	Investigating the Effect of Chemical Structure of Semiconducting Polymer Nanoparticle on Photothermal Therapy and Photoacoustic Imaging. Theranostics, 2017, 7, 4029-4040.	10.0	44
138	Polymeric topology and composition constrained polyether–polyester micelles for directional antitumor drug delivery. Acta Biomaterialia, 2013, 9, 8875-8884.	8.3	42
139	Emerging antitumor applications of extracellularly reengineered polymeric nanocarriers. Biomaterials Science, 2015, 3, 988-1001.	5.4	42
140	Thermogel-Coated Poly(ε-Caprolactone) Composite Scaffold for Enhanced Cartilage Tissue Engineering. Polymers, 2016, 8, 200.	4.5	42
141	α-Cyclodextrin concentration-controlled thermo-sensitive supramolecular hydrogels. Materials Science and Engineering C, 2018, 82, 25-28.	7.3	42
142	Dual Hypoxia-Targeting RNAi Nanomedicine for Precision Cancer Therapy. Nano Letters, 2020, 20, 4857-4863.	9.1	42
143	An oxidative stress-responsive electrospun polyester membrane capable of releasing anti-bacterial and anti-inflammatory agents for postoperative anti-adhesion. Journal of Controlled Release, 2021, 335, 359-368.	9.9	42
144	Immunologically Effective Biomaterials. ACS Applied Materials & amp; Interfaces, 2021, 13, 56719-56724.	8.0	42

#	Article	IF	CITATIONS
145	Versatile Polymerâ€Initiating Biomineralization for Tumor Blockade Therapy. Advanced Materials, 2022, 34, e2110094.	21.0	42
146	Efficient recovery of precious metal based on Au–S bond and electrostatic interaction. Green Chemistry, 2014, 16, 4875-4878.	9.0	41
147	pH-responsive metallo-supramolecular nanogel for synergistic chemo-photodynamic therapy. Acta Biomaterialia, 2015, 25, 162-171.	8.3	41
148	Acid-sensitive dextran prodrug: A higher molecular weight makes a better efficacy. Carbohydrate Polymers, 2017, 161, 33-41.	10.2	41
149	Repair of full-thickness articular cartilage defect using stem cell-encapsulated thermogel. Materials Science and Engineering C, 2018, 88, 79-87.	7.3	40
150	Reduction-Responsive Polypeptide Nanogel for Intracellular Drug Delivery in Relieving Collagen-Induced Arthritis. ACS Biomaterials Science and Engineering, 2018, 4, 4154-4162.	5.2	40
151	Polymer-Mediated Penetration-Independent Cancer Therapy. Biomacromolecules, 2019, 20, 4258-4271.	5.4	38
152	Tackling autoimmunity with nanomedicines. Nanomedicine, 2020, 15, 1585-1597.	3.3	38
153	Characterization of nanostructured ureteral stent with gradient degradation in a porcine model. International Journal of Nanomedicine, 2015, 10, 3055.	6.7	37
154	Photothermal Effect-Triggered Drug Release from Hydrogen Bonding-Enhanced Polymeric Micelles. Biomacromolecules, 2018, 19, 1950-1958.	5.4	35
155	Tissue Engineering: Polymer Fiber Scaffolds for Bone and Cartilage Tissue Engineering (Adv. Funct.) Tj ETQq1 1	0.784314 ı 14.9	gBŢ /Overloo
156	Synergistically Enhanced Mucoadhesive and Penetrable Polypeptide Nanogel for Efficient Drug Delivery to Orthotopic Bladder Cancer. Research, 2020, 2020, 8970135.	5.7	35
157	Advanced Nanotheranostics of CRISPR/Cas for Viral Hepatitis and Hepatocellular Carcinoma. Advanced Science, 2021, 8, e2102051.	11.2	35
158	One-Step Synthesis of Targeted Acid-Labile Polysaccharide Prodrug for Efficiently Intracellular Drug Delivery. ACS Biomaterials Science and Engineering, 2018, 4, 539-546.	5.2	34
159	Multiantigenic Nanoformulations Activate Anticancer Immunity Depending on Size. Advanced Functional Materials, 2019, 29, 1903391.	14.9	34
160	pH and dual redox responsive nanogel based on poly(l -glutamic acid) as potential intracellular drug carrier. Journal of Controlled Release, 2011, 152, e11-e13.	9.9	33
161	Molecular weight-modulated electrospun poly(ε-caprolactone) membranes for postoperative adhesion prevention. RSC Advances, 2014, 4, 41696-41704.	3.6	33
162	Gelatin Tight-Coated Poly(lactide-co-glycolide) Scaffold Incorporating rhBMP-2 for Bone Tissue Engineering. Materials, 2015, 8, 1009-1026.	2.9	33

#	Article	IF	CITATIONS
163	Porous Electrospun Fibers with Self‧ealing Functionality: An Enabling Strategy for Trapping Biomacromolecules. Small, 2017, 13, 1701949.	10.0	33
164	Rational construction of polycystine-based nanoparticles for biomedical applications. Journal of Materials Chemistry B, 2022, 10, 7173-7182.	5.8	33
165	Thermogel-mediated sustained drug delivery for in situ malignancy chemotherapy. Materials Science and Engineering C, 2015, 49, 262-268.	7.3	31
166	Cholesterol-Enhanced Polylactide-Based Stereocomplex Micelle for Effective Delivery of Doxorubicin. Materials, 2015, 8, 216-230.	2.9	31
167	Dual-acidity-labile polysaccharide-di-drugs conjugate for targeted cancer chemotherapy. European Journal of Medicinal Chemistry, 2020, 199, 112367.	5.5	31
168	Regulation of tumor microenvironment for pancreatic cancer therapy. Biomaterials, 2021, 270, 120680.	11.4	31
169	Advanced biosafety materials for prevention and theranostics of biosafety issues. Biosafety and Health, 2022, 4, 59-60.	2.7	31
170	Direct formation of cationic polypeptide vesicle as potential carrier for drug and gene. Materials Letters, 2012, 73, 17-20.	2.6	30
171	Physical and biological engineering of polymer scaffolds to potentiate repair of spinal cord injury. Materials and Design, 2021, 201, 109484.	7.0	30
172	pH-responsive drug delivery systems based on clickable poly(L-glutamic acid)-grafted comb copolymers. Macromolecular Research, 2012, 20, 292-301.	2.4	29
173	Biodegradable thermogel as culture matrix of bone marrow mesenchymal stem cells for potential cartilage tissue engineering. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1590-1601.	3.8	29
174	pHâ€Responsive Reversible PEGylation Improves Performance of Antineoplastic Agent. Advanced Healthcare Materials, 2015, 4, 844-855.	7.6	29
175	Intra-Articular Transplantation of Allogeneic BMMSCs Rehabilitates Cartilage Injury of Antigen-Induced Arthritis. Tissue Engineering - Part A, 2015, 21, 2733-2743.	3.1	29
176	Selfâ€ <scp>A</scp> ssemblies of p <scp>H</scp> â€ <scp>A</scp> ctivatable <scp>PEG</scp> ylated Multiarm Poly(lactic acidâ€ <i>co</i> â€glycolic acid)â€ <scp>D</scp> oxorubicin Prodrugs with Improved Longâ€ <scp>T</scp> erm Antitumor Efficacies. Macromolecular Bioscience, 2013, 13, 1300-1307.	4.1	28
177	Tailor-made poly(<scp>l</scp> -lactide)/poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds prepared via high-pressure compression molding/salt leaching. RSC Advances, 2016, 6, 47418-47426.	3.6	28
178	Repair, protection and regeneration of peripheral nerve injury. Neural Regeneration Research, 2015, 10, 1777.	3.0	28
179	Electrospun Polylactide-Nano-HydroxyapatiteVancomycin Composite Scaffolds for Advanced Osteomyelitis Therapy. Journal of Biomedical Nanotechnology, 2019, 15, 1213-1222.	1.1	27
180	Functional Macromolecular Adhesives for Bone Fracture Healing. ACS Applied Materials & Interfaces, 2022, 14, 1-19.	8.0	27

#	Article	IF	CITATIONS
181	The synthesis, deprotection and properties of poly(γ-benzyl-l-glutamate). Science China Chemistry, 2013, 56, 729-738.	8.2	26
182	ERK1/2 Pathway-Mediated Differentiation of IGF-1-Transfected Spinal Cord-Derived Neural Stem Cells into Oligodendrocytes. PLoS ONE, 2014, 9, e106038.	2.5	26
183	Co-delivery of doxorubicin and paclitaxel with linear-dendritic block copolymer for enhanced anti-cancer efficacy. Science China Chemistry, 2014, 57, 624-632.	8.2	26
184	Self-Targeted Polysaccharide Prodrug Suppresses Orthotopic Hepatoma. Molecular Pharmaceutics, 2016, 13, 4231-4235.	4.6	26
185	Decorated reduced graphene oxide for photo-chemotherapy. Journal of Materials Chemistry B, 2016, 4, 929-937.	5.8	26
186	<i>In situ</i> formation of hydrophobic clusters to enhance mechanical performance of biodegradable poly(<scp>I</scp> -glutamic acid)/poly(ε-caprolactone) hydrogel towards meniscus tissue engineering. Journal of Materials Chemistry B, 2018, 6, 7822-7833.	5.8	26
187	Gradiently degraded electrospun polyester scaffolds with cytostatic for urothelial carcinoma therapy. Biomaterials Science, 2019, 7, 963-974.	5.4	26
188	Antiviral biomaterials. Matter, 2021, 4, 1892-1918.	10.0	26
189	In vitro evaluation of anticancer nanomedicines based on doxorubicin and amphiphilic Y-shaped copolymers. International Journal of Nanomedicine, 2012, 7, 2687.	6.7	25
190	Thiourea modified polyethylenimine for efficient gene delivery mediated by the combination of electrostatic interactions and hydrogen bonds. Polymer Chemistry, 2014, 5, 3598.	3.9	25
191	Annealing regulates the performance of an electrospun poly(ε-caprolactone) membrane to accommodate tissue engineering. RSC Advances, 2015, 5, 32604-32608.	3.6	25
192	Scaffolds drive meniscus tissue engineering. RSC Advances, 2015, 5, 77851-77859.	3.6	25
193	l-Cystine-Crosslinked Polypeptide Nanogel as a Reduction-Responsive Excipient for Prostate Cancer Chemotherapy. Polymers, 2016, 8, 36.	4.5	25
194	Osteoinductive Agents-Incorporated Three-Dimensional Biphasic Polymer Scaffold for Synergistic Bone Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 986-995.	5.2	25
195	Polymeric Nanocarriers for Drug Delivery in Osteosarcoma Treatment. Current Pharmaceutical Design, 2015, 21, 5187-5197.	1.9	25
196	Polymer nanotherapeutics to correct autoimmunity. Journal of Controlled Release, 2022, 343, 152-174.	9.9	25
197	Side chain impacts on pH- and thermo-responsiveness of tertiary amine functionalized polypeptides. Journal of Polymer Science Part A, 2014, 52, 671-679.	2.3	24
198	Poly(lactide-co-glycolide)/Hydroxyapatite Porous Scaffold with Microchannels for Bone Regeneration. Polymers, 2016, 8, 218.	4.5	24

#	Article	IF	CITATIONS
199	Targeted sustained delivery of antineoplastic agent with multicomponent polylactide stereocomplex micelle. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1279-1288.	3.3	23
200	Remission of Collagen-Induced Arthritis through Combination Therapy of Microfracture and Transplantation of Thermogel-Encapsulated Bone Marrow Mesenchymal Stem Cells. PLoS ONE, 2015, 10, e0120596.	2.5	22
201	Selective intracellular drug delivery from pH-responsive polyion complex micelle for enhanced malignancy suppression in vivo. Colloids and Surfaces B: Biointerfaces, 2015, 135, 283-290.	5.0	22
202	A comparative study of preventing postoperative tendon adhesion using electrospun polyester membranes with different degradation kinetics. Science China Chemistry, 2015, 58, 1159-1168.	8.2	21
203	A comparative study of linear, Y-shaped and linear-dendritic methoxy poly(ethylene) Tj ETQq1 1 0.784314 rgBT /C in vitro and in vivo. Acta Biomaterialia, 2016, 40, 243-253.	Overlock 1 8.3	0 Tf 50 587 21
204	Porous Polylactide Film Plus Atorvastatin-Loaded Thermogel as an Efficient Device for Peritoneal Adhesion Prevention. ACS Omega, 2018, 3, 2715-2723.	3.5	21
205	Injectable Enzymatically Crossâ€linked Hydrogels with Lightâ€Controlled Degradation Profile. Macromolecular Rapid Communications, 2018, 39, e1800272.	3.9	21
206	Glutathione-degradable drug-loaded nanogel effectively and securely suppresses hepatoma in mouse model. International Journal of Nanomedicine, 2015, 10, 6587.	6.7	19
207	Hydration of hydrogels regulates vascularization in vivo. Biomaterials Science, 2017, 5, 2251-2267.	5.4	19
208	Collagen-Coated Poly(lactide-co-glycolide)/Hydroxyapatite Scaffold Incorporated with DGEA Peptide for Synergistic Repair of Skull Defect. Polymers, 2018, 10, 109.	4.5	19
209	Biomineralized Gd ₂ O ₃ @HSA Nanoparticles as a Versatile Platform for Dualâ€Modal Imaging and Chemoâ€Phototherapyâ€&ynergized Tumor Ablation. Advanced Healthcare Materials, 2019, 8, e1901005.	7.6	19
210	Immunogenic cell death-inducing chemotherapeutic nanoformulations potentiate combination chemoimmunotherapy. Materials and Design, 2021, 202, 109465.	7.0	19
211	Stereocomplex micelle from nonlinear enantiomeric copolymers efficiently transports antineoplastic drug. Nanoscale Research Letters, 2015, 10, 907.	5.7	18
212	Epirubicin-Complexed Polypeptide Micelle Effectively and Safely Treats Hepatocellular Carcinoma. Polymers, 2015, 7, 2410-2430.	4.5	18
213	Biosafety chemistry and biosafety materials: A new perspective to solve biosafety problems. Biosafety and Health, 2022, 4, 15-22.	2.7	18
214	Poly(lactic acid) Controlled Drug Delivery. Advances in Polymer Science, 2017, , 109-138.	0.8	17
215	Drug-Incorporated Electrospun Fibers Efficiently Prevent Postoperative Adhesion. Current Pharmaceutical Design, 2015, 21, 1960-1966.	1.9	17
216	Polymer Nanoplatforms at Work in Prostate Cancer Therapy. Advanced Therapeutics, 2019, 2, 1800122.	3.2	16

#	Article	IF	CITATIONS
217	On-Demand Prolongation of Peripheral Nerve Blockade through Bupivacaine-Loaded Hydrogels with Suitable Residence Periods. ACS Biomaterials Science and Engineering, 2019, 5, 696-709.	5.2	16
218	Construction and validation of steroid-induced rabbit osteonecrosis model. MethodsX, 2022, 9, 101713.	1.6	16
219	An efficient pH sensitive oral insulin delivery system enhanced by deoxycholic acid. Journal of Controlled Release, 2011, 152, e184-e186.	9.9	15
220	Prevention of postoperative tendon adhesion by biodegradable electrospun membrane of poly(lactide-co-glycolide). Chinese Journal of Polymer Science (English Edition), 2015, 33, 587-596.	3.8	15
221	Mesomeric configuration makes polyleucine micelle an optimal nanocarrier. Biomaterials Science, 2016, 4, 814-818.	5.4	15
222	Editorial: Applications of Nanobiotechnology in Pharmacology. Frontiers in Pharmacology, 2019, 10, 1451.	3.5	15
223	PEGylated stereocomplex polylactide coating of stent for upregulated biocompatibility and drug storage. Materials Science and Engineering C, 2017, 81, 443-451.	7.3	13
224	Polymer micro/nanocarrier-assisted synergistic chemohormonal therapy for prostate cancer. Biomaterials Science, 2018, 6, 1433-1444.	5.4	13
225	Calcium Phosphate Cement loaded with 10% vancomycin delivering high early and late local antibiotic concentration in vitro. Orthopaedics and Traumatology: Surgery and Research, 2018, 104, 1271-1275.	2.0	13
226	Reduction-responsive polypeptide nanomedicines significantly inhibit progression of orthotopic osteosarcoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 23, 102085.	3.3	13
227	Identification of MSA-2: An oral antitumor non-nucleotide STING agonist. Signal Transduction and Targeted Therapy, 2021, 6, 18.	17.1	13
228	Poly(<i>L</i> -glutamic acid) Microsphere: Preparation and Application in Oral Drug Controlled Release. Acta Chimica Sinica, 2015, 73, 60.	1.4	13
229	Hydrogel is Superior to Fibrin Gel as Matrix of Stem Cells in Alleviating Antigen-Induced Arthritis. Polymers, 2016, 8, 182.	4.5	12
230	Optimized fluorodendrimer-incorporated hybrid lipid–polymer nanoparticles for efficient siRNA delivery. Biomaterials Science, 2020, 8, 758-762.	5.4	12
231	Nanomedicines for Intravesical Chemotherapy in Bladder Cancer. Current Pharmaceutical Design, 2019, 25, 371-373.	1.9	11
232	Au-aided reduced graphene oxide-based nanohybrids for photo-chemotherapy. Materials Science and Engineering C, 2019, 95, 256-263.	7.3	10
233	Engineered nanomedicines for tumor vasculature blockade therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1691.	6.1	10
234	Guanidinated Thioureaâ€Decorated Polyethylenimines for Enhanced Membrane Penetration and Efficient siRNA Delivery. Advanced Healthcare Materials, 2015, 4, 1369-1375.	7.6	9

#	Article	IF	CITATIONS
235	Polysaccharides for Biomedical Applications. International Journal of Polymer Science, 2019, 2019, 1-2.	2.7	9
236	Micellization of Antineoplastic Agent to Significantly Upregulate Efficacy and Security. Macromolecular Bioscience, 2015, 15, 328-341.	4.1	8
237	Phenylboronic acid-functionalized polypeptide nanogel for glucose-responsive insulin release under physiological pH. Journal of Controlled Release, 2015, 213, e69.	9.9	8
238	Disease Immunotherapy: Immunomodulatory Nanosystems (Adv. Sci. 17/2019). Advanced Science, 2019, 6, 1970100.	11.2	8
239	Biomedicine: Porous Electrospun Fibers with Self‣ealing Functionality: An Enabling Strategy for Trapping Biomacromolecules (Small 47/2017). Small, 2017, 13, 1770249.	10.0	7
240	Biomaterials: Functional Polymerâ€Based Nerve Guide Conduits to Promote Peripheral Nerve Regeneration (Adv. Mater. Interfaces 14/2020). Advanced Materials Interfaces, 2020, 7, 2070081.	3.7	7
241	Preparation of antibacterial silver nanoparticle-coated PLLA grafted hydroxyapatite/PLLA composite electrospun fiber. Journal of Controlled Release, 2015, 213, e62-e63.	9.9	6
242	Microstructure and melting behavior of a solutionâ€cast polylactide stereocomplex: Effect of annealing. Journal of Applied Polymer Science, 2017, 134, .	2.6	6
243	PEGylated Polyurea Bearing Hindered Urea Bond for Drug Delivery. Molecules, 2019, 24, 1538.	3.8	6
244	Editorial: Emerging Micro- and Nanotechnologies for Medical and Pharmacological Applications. Frontiers in Pharmacology, 2021, 12, 648749.	3.5	6
245	Silicon dioxide@graphene oxide-graft-poly(γ-benzyl- <scp> </scp> -glutamate) as an advanced hybrid nanofiller reinforces poly(<scp> </scp> -lactide). RSC Advances, 2016, 6, 5688-5694.	3.6	5
246	Versatile synthesis of functional biodegradable polymers by ring-opening polymerization and microwave-assisted click reaction. Journal of Controlled Release, 2011, 152, e249-e250.	9.9	4
247	Self-programmed pH-sensitive polymeric prodrug micelle for synergistic cancer therapy. Journal of Controlled Release, 2015, 213, e135-e136.	9.9	4
248	PEG-based thermo-responsive poly ($\hat{1}^2$ -thioether ester) for ROS-triggered drug delivery. Journal of Controlled Release, 2015, 213, e22.	9.9	4
249	Polymer Nanoparticle-Based Chemotherapy for Spinal Malignancies. Journal of Nanomaterials, 2016, 2016, 1-14.	2.7	4
250	Smart Polymeric Nanocarriers. Journal of Nanomaterials, 2016, 2016, 1-2.	2.7	4
251	Autoserum: An Optimal Supplement for Bone Marrow Mesenchymal Stem Cells of Liver-Injured Rats. Stem Cells International, 2015, 2015, 1-10.	2.5	3
252	Doxorubicin prodrug thermogel as sustained drug reservoir for in situ malignant therapy. Journal of Controlled Release, 2015, 213, e126-e127.	9.9	3

#	Article	IF	CITATIONS
253	Hydroxyapatite and vancomycin composited electrospun polylactide mat for osteomyelitis and bone defect treatment. Journal of Controlled Release, 2015, 213, e92.	9.9	3
254	Multiantigenic Nanovaccines: Multiantigenic Nanoformulations Activate Anticancer Immunity Depending on Size (Adv. Funct. Mater. 49/2019). Advanced Functional Materials, 2019, 29, 1970336.	14.9	3
255	Chitosan-Based Scaffolds for Cartilage Regeneration. Springer Series on Polymer and Composite Materials, 2016, , 61-82.	0.7	2
256	Synthesis and Biomedical Applications of Functional Polymers. International Journal of Polymer Science, 2021, 2021, 1-2.	2.7	2
257	Editorial: Advanced Materials for the Restoration and Reconstruction of Dental Functions. Frontiers in Bioengineering and Biotechnology, 2021, 9, 756860.	4.1	2
258	Advanced Nanotheranostics of CRISPR/Cas for Viral Hepatitis and Hepatocellular Carcinoma (Adv. Sci.) Tj ETQqO	0 0 rgBT /	Overlock 101
259	pH-responsive PEGylated doxorubicin for efficient cancer chemotherapy. Journal of Controlled Release, 2015, 213, e149.	9.9	1
260	c(RGDfC)-decorated micelle as nanocarrier for targeting therapeutic of colon cancer. Journal of Controlled Release, 2015, 213, e66.	9.9	1
261	Drug Delivery: pH-Responsive Reversible PEGylation Improves Performance of Antineoplastic Agent (Adv. Healthcare Mater. 6/2015). Advanced Healthcare Materials, 2015, 4, 786-786.	7.6	1
262	Editorial (Thematic Issue: Polymeric Nanomedicines for Malignancy Therapy). Current Pharmaceutical Biotechnology, 2016, 17, 210-211.	1.6	1
263	Controlled Syntheses of Functional Polypeptides. ACS Symposium Series, 2017, , 149-170.	0.5	1
264	Systemically administered targeted nanomedicine combined with locally granted nitric oxide suppresses drug-resistance of hepatoma. Journal of Controlled Release, 2017, 259, e84.	9.9	1
265	Ezrin-targeted calcium (II)-crosslinked nanoparticle intracellularly co-delivers doxorubicin and chlorambucil for synergistic chemotherapy of osteosarcoma. Journal of Controlled Release, 2017, 259, e176-e177.	9.9	1
266	Editorial: Synthesis, Functionalization, and Clinical Translation of Pharmaceutical Biomaterials. Frontiers in Bioengineering and Biotechnology, 2021, 9, 707963.	4.1	1
267	pH-sensitive polyion complex micelles for tunable intracellular drug delivery. Journal of Controlled Release, 2015, 213, e55.	9.9	0
268	Two-way combination chemotherapy for synergistic tumor capture. Journal of Controlled Release, 2015, 213, e113-e114.	9.9	0
269	Back Cover: Macromol. Biosci. 3/2015. Macromolecular Bioscience, 2015, 15, 438-438.	4.1	0
270	Multifunctional three-dimensional scaffolds for treatment of spinal cord injury. Journal of Controlled Release, 2015, 213, e12-e13.	9.9	0

#	Article	IF	CITATIONS
271	Correction: Biocompatible reduction-responsive polypeptide micelles as nanocarriers for enhanced chemotherapy efficacy in vitro. Journal of Materials Chemistry B, 2015, 3, 1455-1456.	5.8	Ο
272	Enzymatically Synthesized Polyesters for Drug Delivery. , 2016, , 61-80.		0
273	Cationic dendron-bearing lipid/CD151 siRNA complex inhibits osteosarcoma metastasis by down-regulating matrix metalloproteinase-9. RSC Advances, 2016, 6, 59601-59609.	3.6	Ο
274	Composite scaffold with gradient content of simvastatin for enhanced large cranial defect repair. Journal of Controlled Release, 2017, 259, e53.	9.9	0
275	Osteosarcoma Therapy: Inhibition of CaMKIIα Activity Enhances Antitumor Effect of Fullerene C60 Nanocrystals by Suppression of Autophagic Degradation (Adv. Sci. 8/2019). Advanced Science, 2019, 6, 1970051.	11.2	Ο
276	Versatile Polymerâ€Initiating Biomineralization for Tumor Blockade Therapy (Adv. Mater. 19/2022). Advanced Materials, 2022, 34, .	21.0	0