
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4900639/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toxic Potential of Materials at the Nanolevel. Science, 2006, 311, 622-627.	12.6	7,944
2	Understanding biophysicochemical interactions at the nano–bio interface. Nature Materials, 2009, 8, 543-557.	27.5	6,046
3	Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties. ACS Nano, 2008, 2, 2121-2134.	14.6	2,145
4	Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage Environmental Health Perspectives, 2003, 111, 455-460.	6.0	1,773
5	Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery. ACS Nano, 2008, 2, 889-896.	14.6	1,758
6	Comparison of the Abilities of Ambient and Manufactured Nanoparticles To Induce Cellular Toxicity According to an Oxidative Stress Paradigm. Nano Letters, 2006, 6, 1794-1807.	9.1	1,675
7	Air Pollution-Related Illness: Effects of Particles. Science, 2005, 308, 804-806.	12.6	1,326
8	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	14.6	976
9	Polyethyleneimine Coating Enhances the Cellular Uptake of Mesoporous Silica Nanoparticles and Allows Safe Delivery of siRNA and DNA Constructs. ACS Nano, 2009, 3, 3273-3286.	14.6	817
10	Engineered Design of Mesoporous Silica Nanoparticles to Deliver Doxorubicin and P-Glycoprotein siRNA to Overcome Drug Resistance in a Cancer Cell Line. ACS Nano, 2010, 4, 4539-4550.	14.6	817
11	The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radical Biology and Medicine, 2008, 44, 1689-1699.	2.9	780
12	Use of Metal Oxide Nanoparticle Band Gap To Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation. ACS Nano, 2012, 6, 4349-4368.	14.6	718
13	Health effects of air pollution. Journal of Allergy and Clinical Immunology, 2004, 114, 1116-1123.	2.9	669
14	Particulate air pollutants and asthma. Clinical Immunology, 2003, 109, 250-265.	3.2	632
15	Physicochemical Properties Determine Nanomaterial Cellular Uptake, Transport, and Fate. Accounts of Chemical Research, 2013, 46, 622-631.	15.6	627
16	Cationic Polystyrene Nanosphere Toxicity Depends on Cell-Specific Endocytic and Mitochondrial Injury Pathways. ACS Nano, 2008, 2, 85-96.	14.6	584
17	Ambient Particulate Pollutants in the Ultrafine Range Promote Early Atherosclerosis and Systemic Oxidative Stress. Circulation Research, 2008, 102, 589-596.	4.5	551
18	Autonomous in Vitro Anticancer Drug Release from Mesoporous Silica Nanoparticles by pH-Sensitive Nanovalves. Journal of the American Chemical Society, 2010, 132, 12690-12697.	13.7	550

#	Article	IF	CITATIONS
19	Codelivery of an Optimal Drug/siRNA Combination Using Mesoporous Silica Nanoparticles To Overcome Drug Resistance in Breast Cancer <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2013, 7, 994-1005.	14.6	525
20	Nanomaterial Toxicity Testing in the 21st Century: Use of a Predictive Toxicological Approach and High-Throughput Screening. Accounts of Chemical Research, 2013, 46, 607-621.	15.6	501
21	Evaluating the Toxicity of Airborne Particulate Matter and Nanoparticles by Measuring Oxidative Stress Potential—A Workshop Report and Consensus Statement. Inhalation Toxicology, 2008, 20, 75-99.	1.6	482
22	Use of a Rapid Cytotoxicity Screening Approach To Engineer a Safer Zinc Oxide Nanoparticle through Iron Doping. ACS Nano, 2010, 4, 15-29.	14.6	464
23	The health effects of nonindustrial indoor air pollution. Journal of Allergy and Clinical Immunology, 2008, 121, 585-591.	2.9	454
24	Use of Size and a Copolymer Design Feature To Improve the Biodistribution and the Enhanced Permeability and Retention Effect of Doxorubicin-Loaded Mesoporous Silica Nanoparticles in a Murine Xenograft Tumor Model. ACS Nano, 2011, 5, 4131-4144.	14.6	446
25	Nrf2 Is a Key Transcription Factor That Regulates Antioxidant Defense in Macrophages and Epithelial Cells: Protecting against the Proinflammatory and Oxidizing Effects of Diesel Exhaust Chemicals. Journal of Immunology, 2004, 173, 3467-3481.	0.8	411
26	Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nature Nanotechnology, 2016, 11, 479-486.	31.5	393
27	Potential Health Impact of Nanoparticles. Annual Review of Public Health, 2009, 30, 137-150.	17.4	374
28	Processing Pathway Dependence of Amorphous Silica Nanoparticle Toxicity: Colloidal vs Pyrolytic. Journal of the American Chemical Society, 2012, 134, 15790-15804.	13.7	372
29	Quinones and Aromatic Chemical Compounds in Particulate Matter Induce Mitochondrial Dysfunction: Implications for Ultrafine Particle Toxicity. Environmental Health Perspectives, 2004, 112, 1347-1358.	6.0	369
30	Use of Proteomics to Demonstrate a Hierarchical Oxidative Stress Response to Diesel Exhaust Particle Chemicals in a Macrophage Cell Line. Journal of Biological Chemistry, 2003, 278, 50781-50790.	3.4	367
31	Use of a Lipid-Coated Mesoporous Silica Nanoparticle Platform for Synergistic Gemcitabine and Paclitaxel Delivery to Human Pancreatic Cancer in Mice. ACS Nano, 2015, 9, 3540-3557.	14.6	367
32	Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nature Communications, 2017, 8, 1811.	12.8	360
33	Role of Fe Doping in Tuning the Band Gap of TiO ₂ for the Photo-Oxidation-Induced Cytotoxicity Paradigm. Journal of the American Chemical Society, 2011, 133, 11270-11278.	13.7	346
34	Decreased Dissolution of ZnO by Iron Doping Yields Nanoparticles with Reduced Toxicity in the Rodent Lung and Zebrafish Embryos. ACS Nano, 2011, 5, 1223-1235.	14.6	341
35	Aspect Ratio Determines the Quantity of Mesoporous Silica Nanoparticle Uptake by a Small GTPase-Dependent Macropinocytosis Mechanism. ACS Nano, 2011, 5, 4434-4447.	14.6	330
36	Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress. Particle and Fibre Toxicology, 2009, 6, 24.	6.2	328

#	Article	IF	CITATIONS
37	Designed Synthesis of CeO ₂ Nanorods and Nanowires for Studying Toxicological Effects of High Aspect Ratio Nanomaterials. ACS Nano, 2012, 6, 5366-5380.	14.6	323
38	Surface Defects on Plate-Shaped Silver Nanoparticles Contribute to Its Hazard Potential in a Fish Gill Cell Line and Zebrafish Embryos. ACS Nano, 2012, 6, 3745-3759.	14.6	318
39	Use of a High-Throughput Screening Approach Coupled with <i>In Vivo</i> Zebrafish Embryo Screening To Develop Hazard Ranking for Engineered Nanomaterials. ACS Nano, 2011, 5, 1805-1817.	14.6	306
40	The role of particulate pollutants in pulmonary inflammation and asthma: evidence for the involvement of organic chemicals and oxidative stress. Current Opinion in Pulmonary Medicine, 2001, 7, 20-26.	2.6	303
41	A Predictive Toxicological Paradigm for the Safety Assessment of Nanomaterials. ACS Nano, 2009, 3, 1620-1627.	14.6	303
42	How Exposure to Environmental Tobacco Smoke, Outdoor Air Pollutants, and Increased Pollen Burdens Influences the Incidence of Asthma. Environmental Health Perspectives, 2006, 114, 627-633.	6.0	298
43	Dispersion and Stability Optimization of TiO ₂ Nanoparticles in Cell Culture Media. Environmental Science & Technology, 2010, 44, 7309-7314.	10.0	288
44	Comparison of the Pro-Oxidative and Proinflammatory Effects of Organic Diesel Exhaust Particle Chemicals in Bronchial Epithelial Cells and Macrophages. Journal of Immunology, 2002, 169, 4531-4541.	0.8	287
45	Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact, 2017, 7, 28-40.	4.5	277
46	Surface Charge and Cellular Processing of Covalently Functionalized Multiwall Carbon Nanotubes Determine Pulmonary Toxicity. ACS Nano, 2013, 7, 2352-2368.	14.6	265
47	Induction of Heme Oxygenase-1 Expression in Macrophages by Diesel Exhaust Particle Chemicals and Quinones via the Antioxidant-Responsive Element. Journal of Immunology, 2000, 165, 3393-3401.	0.8	258
48	Use of Coated Silver Nanoparticles to Understand the Relationship of Particle Dissolution and Bioavailability to Cell and Lung Toxicological Potential. Small, 2014, 10, 385-398.	10.0	242
49	Surface Oxidation of Graphene Oxide Determines Membrane Damage, Lipid Peroxidation, and Cytotoxicity in Macrophages in a Pulmonary Toxicity Model. ACS Nano, 2018, 12, 1390-1402.	14.6	221
50	USE OF A STRATIFIED OXIDATIVE STRESS MODEL TO STUDY THE BIOLOGICAL EFFECTS OF AMBIENT CONCENTRATED AND DIESEL EXHAUST PARTICULATE MATTER. Inhalation Toxicology, 2002, 14, 459-486.	1.6	216
51	Irinotecan Delivery by Lipid-Coated Mesoporous Silica Nanoparticles Shows Improved Efficacy and Safety over Liposomes for Pancreatic Cancer. ACS Nano, 2016, 10, 2702-2715.	14.6	215
52	Surface Interactions with Compartmentalized Cellular Phosphates Explain Rare Earth Oxide Nanoparticle Hazard and Provide Opportunities for Safer Design. ACS Nano, 2014, 8, 1771-1783.	14.6	212
53	The NF-κB Cascade Is Important in Bcl-xL Expression and for the Anti-Apoptotic Effects of the CD28 Receptor in Primary Human CD4+ Lymphocytes. Journal of Immunology, 2000, 165, 1743-1754.	0.8	205
54	The Adjuvant Effect of Ambient Particulate Matter Is Closely Reflected by the Particulate Oxidant Potential. Environmental Health Perspectives, 2009, 117, 1116-1123.	6.0	203

#	Article	IF	CITATIONS
55	Breast Cancer Chemo-immunotherapy through Liposomal Delivery of an Immunogenic Cell Death Stimulus Plus Interference in the IDO-1 Pathway. ACS Nano, 2018, 12, 11041-11061.	14.6	200
56	New Insights into "Permeability―as in the Enhanced Permeability and Retention Effect of Cancer Nanotherapeutics. ACS Nano, 2017, 11, 9567-9569.	14.6	199
57	Engineering an Effective Immune Adjuvant by Designed Control of Shape and Crystallinity of Aluminum Oxyhydroxide Nanoparticles. ACS Nano, 2013, 7, 10834-10849.	14.6	192
58	Nanotechnology Strategies To Advance Outcomes in Clinical Cancer Care. ACS Nano, 2018, 12, 24-43.	14.6	192
59	Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials. Environmental Science & Technology, 2016, 50, 6124-6145.	10.0	191
60	A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. Journal of Allergy and Clinical Immunology, 2016, 138, 386-396.	2.9	190
61	The Role of a Mitochondrial Pathway in the Induction of Apoptosis by Chemicals Extracted from Diesel Exhaust Particles. Journal of Immunology, 2000, 165, 2703-2711.	0.8	189
62	T-cell activation through the antigen receptor. Part 1: Signaling components, signaling pathways, and signal integration at the T-cell antigen receptor synapse. Journal of Allergy and Clinical Immunology, 2002, 109, 758-770.	2.9	187
63	Thiol Antioxidants Inhibit the Adjuvant Effects of Aerosolized Diesel Exhaust Particles in a Murine Model for Ovalbumin Sensitization. Journal of Immunology, 2002, 168, 2560-2567.	0.8	178
64	Dispersal State of Multiwalled Carbon Nanotubes Elicits Profibrogenic Cellular Responses That Correlate with Fibrogenesis Biomarkers and Fibrosis in the Murine Lung. ACS Nano, 2011, 5, 9772-9787.	14.6	178
65	Importance of oxidative stress in the pathogenesis and treatment of asthma. Current Opinion in Allergy and Clinical Immunology, 2008, 8, 49-56.	2.3	176
66	High Content Screening in Zebrafish Speeds up Hazard Ranking of Transition Metal Oxide Nanoparticles. ACS Nano, 2011, 5, 7284-7295.	14.6	176
67	Interlaboratory Evaluation of <i>in Vitro</i> Cytotoxicity and Inflammatory Responses to Engineered Nanomaterials: The NIEHS Nano GO Consortium. Environmental Health Perspectives, 2013, 121, 683-690.	6.0	176
68	Identification and Optimization of Carbon Radicals on Hydrated Graphene Oxide for Ubiquitous Antibacterial Coatings. ACS Nano, 2016, 10, 10966-10980.	14.6	172
69	Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer. Journal of Clinical Investigation, 2017, 127, 2007-2018.	8.2	168
70	Organ-Specific and Size-Dependent Ag Nanoparticle Toxicity in Gills and Intestines of Adult Zebrafish. ACS Nano, 2015, 9, 9573-9584.	14.6	164
71	Two-Wave Nanotherapy To Target the Stroma and Optimize Gemcitabine Delivery To a Human Pancreatic Cancer Model in Mice. ACS Nano, 2013, 7, 10048-10065.	14.6	163
72	Pluronic F108 Coating Decreases the Lung Fibrosis Potential of Multiwall Carbon Nanotubes by Reducing Lysosomal Injury. Nano Letters, 2012, 12, 3050-3061.	9.1	159

#	Article	IF	CITATIONS
73	Classification NanoSAR Development for Cytotoxicity of Metal Oxide Nanoparticles. Small, 2011, 7, 1118-1126.	10.0	156
74	Quantitative Techniques for Assessing and Controlling the Dispersion and Biological Effects of Multiwalled Carbon Nanotubes in Mammalian Tissue Culture Cells. ACS Nano, 2010, 4, 7241-7252.	14.6	151
75	NADPH Oxidase-Dependent NLRP3 Inflammasome Activation and its Important Role in Lung Fibrosis by Multiwalled Carbon Nanotubes. Small, 2015, 11, 2087-2097.	10.0	149
76	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	31.5	149
77	The Fate of ZnO Nanoparticles Administered to Human Bronchial Epithelial Cells. ACS Nano, 2012, 6, 4921-4930.	14.6	146
78	Nanomaterials in the Environment: From Materials to High-Throughput Screening to Organisms. ACS Nano, 2011, 5, 13-20.	14.6	145
79	Interference in Autophagosome Fusion by Rare Earth Nanoparticles Disrupts Autophagic Flux and Regulation of an Interleukin-1β Producing Inflammasome. ACS Nano, 2014, 8, 10280-10292.	14.6	142
80	Toxicological Profiling of Metal Oxide Nanoparticles in Liver Context Reveals Pyroptosis in Kupffer Cells and Macrophages <i>versus</i> Apoptosis in Hepatocytes. ACS Nano, 2018, 12, 3836-3852.	14.6	141
81	Zebrafish: An In Vivo Model for Nano EHS Studies. Small, 2013, 9, 1608-1618.	10.0	136
82	PdO Doping Tunes Band-Gap Energy Levels as Well as Oxidative Stress Responses to a Co ₃ O ₄ <i>p</i> -Type Semiconductor in Cells and the Lung. Journal of the American Chemical Society, 2014, 136, 6406-6420.	13.7	136
83	The Physical Association of Protein Kinase CÎ, with a Lipid Raft-Associated Inhibitor of κB Factor Kinase (IKK) Complex Plays a Role in the Activation of the NF-κB Cascade by TCR and CD28. Journal of Immunology, 2000, 165, 6933-6940.	0.8	130
84	Enhancing the Imaging and Biosafety of Upconversion Nanoparticles through Phosphonate Coating. ACS Nano, 2015, 9, 3293-3306.	14.6	130
85	Nanomaterial Categorization for Assessing Risk Potential To Facilitate Regulatory Decision-Making. ACS Nano, 2015, 9, 3409-3417.	14.6	129
86	Interlaboratory Evaluation of Rodent Pulmonary Responses to Engineered Nanomaterials: The NIEHS Nano GO Consortium. Environmental Health Perspectives, 2013, 121, 676-682.	6.0	121
87	Development of structure–activity relationship for metal oxide nanoparticles. Nanoscale, 2013, 5, 5644.	5.6	120
88	Role of the Nrf2-Mediated Signaling Pathway as a Negative Regulator of Inflammation: Implications for the Impact of Particulate Pollutants on Asthma. Antioxidants and Redox Signaling, 2006, 8, 88-98.	5.4	118
89	Zebrafish Highâ€Throughput Screening to Study the Impact of Dissolvable Metal Oxide Nanoparticles on the Hatching Enzyme, ZHE1. Small, 2013, 9, 1776-1785.	10.0	112
90	The U.S. Environmental Protection Agency Particulate Matter Health Effects Research Centers Program: a midcourse report of status, progress, and plans Environmental Health Perspectives, 2003, 111, 1074-1092.	6.0	111

#	Article	IF	CITATIONS
91	A Multi-Stakeholder Perspective on the Use of Alternative Test Strategies for Nanomaterial Safety Assessment. ACS Nano, 2013, 7, 6422-6433.	14.6	110
92	Reduction of Acute Inflammatory Effects of Fumed Silica Nanoparticles in the Lung by Adjusting Silanol Display through Calcination and Metal Doping. ACS Nano, 2015, 9, 9357-9372.	14.6	108
93	Air-pollutant chemicals and oxidized lipids exhibit genome-wide synergistic effects on endothelial cells. Genome Biology, 2007, 8, R149.	9.6	107
94	Use of a Pro-Fibrogenic Mechanism-Based Predictive Toxicological Approach for Tiered Testing and Decision Analysis of Carbonaceous Nanomaterials. ACS Nano, 2015, 9, 3032-3043.	14.6	107
95	Safe-by-Design CuO Nanoparticles <i>via</i> Fe-Doping, Cu–O Bond Length Variation, and Biological Assessment in Cells and Zebrafish Embryos. ACS Nano, 2017, 11, 501-515.	14.6	107
96	Differences in the Toxicological Potential of 2D versus Aggregated Molybdenum Disulfide in the Lung. Small, 2015, 11, 5079-5087.	10.0	105
97	Pro-oxidative diesel exhaust particle chemicals inhibit LPS-induced dendritic cell responses involved in T-helper differentiation. Journal of Allergy and Clinical Immunology, 2006, 118, 455-465.	2.9	104
98	Glutathione depletion inhibits dendritic cell maturation and delayed-type hypersensitivity: Implications for systemic disease and immunosenescence. Journal of Allergy and Clinical Immunology, 2007, 119, 1225-1233.	2.9	98
99	Aspect Ratio Plays a Role in the Hazard Potential of CeO ₂ Nanoparticles in Mouse Lung and Zebrafish Gastrointestinal Tract. ACS Nano, 2014, 8, 4450-4464.	14.6	98
100	Impact of weather and climate change with indoor and outdoor air quality in asthma: A Work Group Report of the AAAAI Environmental Exposure and Respiratory Health Committee. Journal of Allergy and Clinical Immunology, 2019, 143, 1702-1710.	2.9	98
101	In Vivo Nasal Challenge with Diesel Exhaust Particles Enhances Expression of the CC Chemokines Rantes, MIP-11 [±] , and MCP-3 in Humans. Clinical Immunology, 2000, 97, 140-145.	3.2	97
102	Where Are We Heading in Nanotechnology Environmental Health and Safety and Materials Characterization?. ACS Nano, 2015, 9, 5627-5630.	14.6	91
103	Liposomal Delivery of Mitoxantrone and a Cholesteryl Indoximod Prodrug Provides Effective Chemo-immunotherapy in Multiple Solid Tumors. ACS Nano, 2020, 14, 13343-13366.	14.6	91
104	Ambient ultrafine particles provide a strong adjuvant effect in the secondary immune response: implication for traffic-related asthma flares. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L374-L383.	2.9	87
105	Improved Efficacy and Reduced Toxicity Using a Custom-Designed Irinotecan-Delivering Silicasome for Orthotopic Colon Cancer. ACS Nano, 2019, 13, 38-53.	14.6	87
106	T-cell activation through the antigen receptor. Part 2: Role of signaling cascades in T-cell differentiation, anergy, immune senescence, and development of immunotherapy. Journal of Allergy and Clinical Immunology, 2002, 109, 901-915.	2.9	86
107	Differential Expression of Syndecan-1 Mediates Cationic Nanoparticle Toxicity in Undifferentiated versus Differentiated Normal Human Bronchial Epithelial Cells. ACS Nano, 2011, 5, 2756-2769.	14.6	86
108	Response Differences between Human CD4+ and CD8+ T-Cells during CD28 Costimulation: Implications for Immune Cell-Based Therapies and Studies Related to the Expansion of Double-Positive T-Cells during Aging. Clinical Immunology, 2000, 96, 187-197.	3.2	82

#	Article	IF	CITATIONS
109	Self-Organizing Map Analysis of Toxicity-Related Cell Signaling Pathways for Metal and Metal Oxide Nanoparticles. Environmental Science & Technology, 2011, 45, 1695-1702.	10.0	80
110	Assessing and Mitigating the Hazard Potential of Two-Dimensional Materials. ACS Nano, 2018, 12, 6360-6377.	14.6	78
111	Use of Polymeric Nanoparticle Platform Targeting the Liver To Induce Treg-Mediated Antigen-Specific Immune Tolerance in a Pulmonary Allergen Sensitization Model. ACS Nano, 2019, 13, 4778-4794.	14.6	78
112	Oxidative Stress and Asthma: Proteome Analysis of Chitinase-like Proteins and FIZZ1 in Lung Tissue and Bronchoalveolar Lavage Fluid. Journal of Proteome Research, 2009, 8, 1631-1638.	3.7	77
113	Nano Day: Celebrating the Next Decade of Nanoscience and Nanotechnology. ACS Nano, 2016, 10, 9093-9103.	14.6	77
114	The flotillins are integral membrane proteins in lipid rafts that contain TCR-associated signaling components: implications for T-cell activation. Clinical Immunology, 2003, 108, 138-151.	3.2	76
115	Diesel exhaust particles exert acute effects on airway inflammation and function in murine allergen provocation models. Journal of Allergy and Clinical Immunology, 2003, 112, 905-914.	2.9	75
116	Sulforaphane-rich broccoli sprout extract attenuates nasal allergic response to diesel exhaust particles. Food and Function, 2014, 5, 35-41.	4.6	72
117	Use of nano engineered approaches to overcome the stromal barrier in pancreatic cancer. Advanced Drug Delivery Reviews, 2018, 130, 50-57.	13.7	72
118	Climate Change and Our Environment: The Effect on Respiratory and Allergic Disease. Journal of Allergy and Clinical Immunology: in Practice, 2013, 1, 137-141.	3.8	69
119	The University of California Center for the Environmental Implications of Nanotechnology. Environmental Science & Technology, 2009, 43, 6453-6457.	10.0	67
120	Evaluation of Toxicity Ranking for Metal Oxide Nanoparticles <i>via</i> an <i>in Vitro</i> Dosimetry Model. ACS Nano, 2015, 9, 9303-9313.	14.6	65
121	Comparative Toxicity of C ₆₀ Aggregates toward Mammalian Cells: Role of Tetrahydrofuran (THF) Decomposition. Environmental Science & Technology, 2009, 43, 6378-6384.	10.0	61
122	Combination Chemoâ€Immunotherapy for Pancreatic Cancer Using the Immunogenic Effects of an Irinotecan Silicasome Nanocarrier Plus Antiâ€PDâ€I. Advanced Science, 2021, 8, 2002147.	11.2	59
123	Custom-Designed Nanomaterial Libraries for Testing Metal Oxide Toxicity. Accounts of Chemical Research, 2013, 46, 632-641.	15.6	58
124	Repetitive Dosing of Fumed Silica Leads to Profibrogenic Effects through Unique Structure–Activity Relationships and Biopersistence in the Lung. ACS Nano, 2016, 10, 8054-8066.	14.6	58
125	Understanding the Transformation, Speciation, and Hazard Potential of Copper Particles in a Model Septic Tank System Using Zebrafish to Monitor the Effluent. ACS Nano, 2015, 9, 2038-2048.	14.6	54
126	Grand Challenges for Nanoscience and Nanotechnology. ACS Nano, 2015, 9, 6637-6640.	14.6	53

#	Article	IF	CITATIONS
127	Proâ€oxidative DEP chemicals induce heat shock proteins and an unfolding protein response in a bronchial epithelial cell line as determined by DIGE analysis. Proteomics, 2007, 7, 3906-3918.	2.2	50
128	Automated Phenotype Recognition for Zebrafish Embryo Based In Vivo High Throughput Toxicity Screening of Engineered Nano-Materials. PLoS ONE, 2012, 7, e35014.	2.5	50
129	Toxicological Profiling of Highly Purified Metallic and Semiconducting Single-Walled Carbon Nanotubes in the Rodent Lung and <i>E. coli</i> . ACS Nano, 2016, 10, 6008-6019.	14.6	49
130	The Crystallinity and Aspect Ratio of Cellulose Nanomaterials Determine Their Proâ€Inflammatory and Immune Adjuvant Effects In Vitro and In Vivo. Small, 2019, 15, e1901642.	10.0	48
131	The Role of Phase II Antioxidant Enzymes in Protecting Memory T Cells from Spontaneous Apoptosis in Young and Old Mice. Journal of Immunology, 2005, 175, 2948-2959.	0.8	47
132	Nitrotyrosine-modified proteins and oxidative stress induced by diesel exhaust particles. Electrophoresis, 2005, 26, 280-292.	2.4	44
133	Use of a fluorescent phosphoprotein dye to characterize oxidative stress-induced signaling pathway components in macrophage and epithelial cultures exposed to diesel exhaust particle chemicals. Electrophoresis, 2005, 26, 2092-2108.	2.4	43
134	Particles slip cell security. Nature Materials, 2008, 7, 519-520.	27.5	43
135	Mammalian Cells Exhibit a Range of Sensitivities to Silver Nanoparticles that are Partially Explicable by Variations in Antioxidant Defense and Metallothionein Expression. Small, 2015, 11, 3797-3805.	10.0	42
136	Mechanistic Differences in Cell Death Responses to Metalâ€Based Engineered Nanomaterials in Kupffer Cells and Hepatocytes. Small, 2020, 16, e2000528.	10.0	41
137	Activation of the Human RANTES Gene Promoter in a Macrophage Cell Line by Lipopolysaccharide Is Dependent on Stress-Activated Protein Kinases and the IήB Kinase Cascade: Implications for Exacerbation of Allergic Inflammation by Environmental Pollutants. Clinical Immunology, 1999, 90, 287-301.	3.2	40
138	Proteome Analysis of Lipid Rafts in Jurkat Cells Characterizes a Raft Subset That Is Involved in NF-κB Activation. Journal of Proteome Research, 2004, 3, 445-454.	3.7	36
139	Environmental Impacts by Fragments Released from Nanoenabled Products: A Multiassay, Multimaterial Exploration by the SUN Approach. Environmental Science & Technology, 2018, 52, 1514-1524.	10.0	36
140	Antigen- and Epitope-Delivering Nanoparticles Targeting Liver Induce Comparable Immunotolerance in Allergic Airway Disease and Anaphylaxis as Nanoparticle-Delivering Pharmaceuticals. ACS Nano, 2021, 15, 1608-1626.	14.6	36
141	Development of Facile and Versatile Platinum Drug Delivering Silicasome Nanocarriers for Efficient Pancreatic Cancer Chemoâ€Immunotherapy. Small, 2021, 17, e2005993.	10.0	35
142	Implementation of a Multidisciplinary Approach to Solve Complex Nano EHS Problems by the UC Center for the Environmental Implications of Nanotechnology. Small, 2013, 9, 1428-1443.	10.0	32
143	Nano-Enabled COVID-19 Vaccines: Meeting the Challenges of Durable Antibody Plus Cellular Immunity and Immune Escape. ACS Nano, 2021, 15, 5793-5818.	14.6	32
144	Multifunctional Lipid Bilayer Nanocarriers for Cancer Immunotherapy in Heterogeneous Tumor Microenvironments, Combining Immunogenic Cell Death Stimuli with Immune Modulatory Drugs. ACS Nano, 2022, 16, 5184-5232.	14.6	32

#	Article	IF	CITATIONS
145	Immune checkpoint inhibition in syngeneic mouse cancer models by a silicasome nanocarrier delivering a GSK3 inhibitor. Biomaterials, 2021, 269, 120635.	11.4	31
146	Advancing alternatives analysis: The role of predictive toxicology in selecting safer chemical products and processes. Integrated Environmental Assessment and Management, 2017, 13, 915-925.	2.9	30
147	Adjuvant effects of ambient particulate matter monitored by proteomics of bronchoalveolar lavage fluid. Proteomics, 2010, 10, 520-531.	2.2	28
148	Feasibility of Biomarker Studies for Engineered Nanoparticles. Journal of Occupational and Environmental Medicine, 2011, 53, S74-S79.	1.7	26
149	Association rule mining of cellular responses induced by metal and metal oxide nanoparticles. Analyst, The, 2014, 139, 943-953.	3.5	26
150	Differential pulmonary effects of CoO and La2O3 metal oxide nanoparticle responses during aerosolized inhalation in mice. Particle and Fibre Toxicology, 2015, 13, 42.	6.2	26
151	Part II: coordinated biosensors – development of enhanced nanobiosensors for biological and medical applications. Nanomedicine, 2007, 2, 599-614.	3.3	25
152	The impact of air pollutants as an adjuvant for allergic sensitization and asthma. Current Allergy and Asthma Reports, 2009, 9, 327-333.	5.3	24
153	Nanoscience and Nanotechnology Impacting Diverse Fields of Science, Engineering, and Medicine. ACS Nano, 2016, 10, 10615-10617.	14.6	22
154	Policy reforms to update chemical safety testing. Science, 2017, 355, 1016-1018.	12.6	21
155	Toxicological Profiling of Highly Purified Singleâ€Walled Carbon Nanotubes with Different Lengths in the Rodent Lung and <i>Escherichia Coli</i> . Small, 2018, 14, e1703915.	10.0	21
156	Nanomaterial libraries and model organisms for rapid high-content analysis of nanosafety. National Science Review, 2018, 5, 365-388.	9.5	20
157	Pro-Inflammatory and Pro-Fibrogenic Effects of Ionic and Particulate Arsenide and Indium-Containing Semiconductor Materials in the Murine Lung. ACS Nano, 2017, 11, 1869-1883.	14.6	19
158	Nano as a Rosetta Stone: The Global Roles and Opportunities for Nanoscience and Nanotechnology. ACS Nano, 2019, 13, 10853-10855.	14.6	16
159	Implications of the Differential Toxicological Effects of Ill–V Ionic and Particulate Materials for Hazard Assessment of Semiconductor Slurries. ACS Nano, 2015, 9, 12011-12025.	14.6	15
160	Dissolution of 2D Molybdenum Disulfide Generates Differential Toxicity among Liver Cell Types Compared to Nonâ€Toxic 2D Boron Nitride Effects. Small, 2021, 17, e2101084.	10.0	15
161	Toxicity profiling of engineered nanomaterials via multivariate dose-response surface modeling. Annals of Applied Statistics, 2012, 6, 1707-1729.	1.1	14
162	Hierarchical Rank Aggregation with Applications to Nanotoxicology. Journal of Agricultural, Biological, and Environmental Statistics, 2013, 18, 159-177.	1.4	13

#	Article	IF	CITATIONS
163	Transformational Impact of Nanomedicine: Reconciling Outcome with Promise. Nano Letters, 2020, 20, 5601-5603.	9.1	13
164	Evidence for LFA-1/ICAM-1 dependent stimulation of protein tyrosine phosphorylation in human B lymphoid cell lines during homotypic adhesion. Journal of Leukocyte Biology, 1995, 57, 343-351.	3.3	12
165	Differential effect of micron- versus nanoscale Ill–V particulates and ionic species on the zebrafish gut. Environmental Science: Nano, 2017, 4, 1350-1364.	4.3	11
166	The Genetic Heterogeneity among Different Mouse Strains Impacts the Lung Injury Potential of Multiwalled Carbon Nanotubes. Small, 2017, 13, 1700776.	10.0	11
167	Use of a liver-targeting nanoparticle platform to intervene in peanut-induced anaphylaxis through delivery of an Ara h2 T-cell epitope. Nano Today, 2022, 42, 101370.	11.9	11
168	Development of Pharmaceutically Adapted Mesoporous Silica Nanoparticles Platform. Journal of Physical Chemistry Letters, 2012, 3, 358-359.	4.6	10
169	Filling Knowledge Gaps that Distinguish the Safety Profiles of Nano versus Bulk Materials. Small, 2013, 9, 1426-1427.	10.0	10
170	Major effect of transcytosis on nano drug delivery to pancreatic cancer. Molecular and Cellular Oncology, 2017, 4, e1335273.	0.7	8
171	Nanotechnology Environmental, Health, and Safety Issues. , 2011, , 159-220.		5
172	Big Roles for Nanocenters. ACS Nano, 2015, 9, 8639-8640.	14.6	5
173	Reply to "Assessing the Safety of Nanomaterials by Genomic Approach Could Be Another Alternative― ACS Nano, 2009, 3, 3830-3831.	14.6	4
174	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126.	14.6	4
175	Silicasome Nanocarriers: Development of Facile and Versatile Platinum Drug Delivering Silicasome Nanocarriers for Efficient Pancreatic Cancer Chemoâ€Immunotherapy (Small 14/2021). Small, 2021, 17, 2170065.	10.0	4
176	Metal Oxides: Zebrafish High-Throughput Screening to Study the Impact of Dissolvable Metal Oxide Nanoparticles on the Hatching Enzyme, ZHE1 (Small 9-10/2013). Small, 2013, 9, 1775-1775.	10.0	2
177	Exciting Times for Nano. ACS Nano, 2013, 7, 10437-10439.	14.6	1
178	A Big Year Ahead for Nano in 2018. ACS Nano, 2017, 11, 11755-11757.	14.6	1
179	Nanoscience and Nanotechnology at UCLA. ACS Nano, 2019, 13, 6127-6129.	14.6	1
180	Growing Contributions of Nano in 2020. ACS Nano, 2020, 14, 16163-16164.	14.6	1

#	Article	IF	CITATIONS
181	Our First and Next Decades at ACS Nano. ACS Nano, 2017, 11, 7553-7555.	14.6	Ο
182	Helmuth Möhwald (1946–2018). ACS Nano, 2018, 12, 3053-3055.	14.6	0
183	The NSF-EPA Centers for the Environmental Implications of Nanotechnology. , 2018, , 151-168.		0
184	Broccosprout® Extract Inhibits the Nasal Allergic Response to Diesel Exhaust Particles in Atopic Individuals. FASEB Journal, 2011, 25, 981.1.	0.5	0
185	Tanks and Truth. ACS Nano, 2022, 16, 4975-4976.	14.6	0