Yong-Sheng Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4899386/publications.pdf

Version: 2024-02-01

4628 5876 30,292 184 81 170 citations h-index g-index papers 189 189 189 17681 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy and Environmental Science, 2013, 6, 2338.	15.6	2,799
2	New horizons for inorganic solid state ion conductors. Energy and Environmental Science, 2018, 11, 1945-1976.	15.6	894
3	Superior Electrochemical Performance and Storage Mechanism of Na ₃ V ₂ (PO ₄) ₃ Cathode for Roomâ€Temperature Sodiumâ€Ion Batteries. Advanced Energy Materials, 2013, 3, 156-160.	10.2	817
4	Porous Li ₄ Ti ₅ O ₁₂ Coated with Nâ€Doped Carbon from Ionic Liquids for Liâ€Ion Batteries. Advanced Materials, 2011, 23, 1385-1388.	11.1	742
5	Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochemistry Communications, 2012, 14, 86-89.	2.3	693
6	Hard Carbon Microtubes Made from Renewable Cotton as Highâ€Performance Anode Material for Sodiumâ€lon Batteries. Advanced Energy Materials, 2016, 6, 1600659.	10.2	655
7	Building aqueous K-ion batteries for energy storage. Nature Energy, 2019, 4, 495-503.	19.8	630
8	Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nature Communications, 2013, 4, 1870.	5.8	628
9	Rational design of layered oxide materials for sodium-ion batteries. Science, 2020, 370, 708-711.	6.0	616
10	Intercalation chemistry of graphite: alkali metal ions and beyond. Chemical Society Reviews, 2019, 48, 4655-4687.	18.7	534
11	A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nature Communications, 2013, 4, 2365.	5.8	515
12	Prototype Sodiumâ€lon Batteries Using an Airâ€Stable and Co/Niâ€Free O3â€Layered Metal Oxide Cathode. Advanced Materials, 2015, 27, 6928-6933.	11.1	504
13	Disodium Terephthalate (Na ₂ C ₈ H ₄ O ₄) as High Performance Anode Material for Lowâ€Cost Roomâ€Temperature Sodiumâ€Ion Battery. Advanced Energy Materials, 2012, 2, 962-965.	10.2	498
14	Fundamentals, status and promise of sodium-based batteries. Nature Reviews Materials, 2021, 6, 1020-1035.	23.3	496
15	"Waterâ€inâ€Saltâ€Electrolyte Makes Aqueous Sodiumâ€Ion Battery Safe, Green, and Longâ€Lasting. Advand Energy Materials, 2017, 7, 1701189.	ced 10.2	487
16	Reversible multi-electron redox chemistry ofÂÏ€-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nature Energy, 2017, 2, .	19.8	486
17	Solidâ€ S tate Sodium Batteries. Advanced Energy Materials, 2018, 8, 1703012.	10.2	478
18	Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Materials, 2017, 7, 130-151.	9.5	469

#	Article	IF	CITATIONS
19	Sodium Storage and Transport Properties in Layered Na ₂ Ti ₃ O ₇ for Roomâ€Temperature Sodiumâ€Ion Batteries. Advanced Energy Materials, 2013, 3, 1186-1194.	10.2	456
20	Ionic liquids and derived materials for lithium and sodium batteries. Chemical Society Reviews, 2018, 47, 2020-2064.	18.7	452
21	Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 71-77.	5.2	432
22	P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nature Communications, 2015, 6, 6954.	5.8	426
23	Single Lithium″on Conducting Polymer Electrolytes Based on a Superâ€Delocalized Polyanion. Angewandte Chemie - International Edition, 2016, 55, 2521-2525.	7.2	411
24	NASICONâ€Structured Materials for Energy Storage. Advanced Materials, 2017, 29, 1601925.	11.1	394
25	Highâ€Entropy Layered Oxide Cathodes for Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 264-269.	7.2	335
26	Atomic Structure and Kinetics of NASICON Na _x V ₂ (PO ₄) ₃ Cathode for Sodiumâ€ion Batteries. Advanced Functional Materials, 2014, 24, 4265-4272.	7.8	323
27	A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 96-104.	5.2	322
28	Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-Type Solid-State Li Batteries. ACS Energy Letters, 2018, 3, 1212-1218.	8.8	321
29	Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nature Communications, 2015, 6, 6401.	5.8	316
30	A long-life lithium-ion battery with a highly porous TiNb ₂ O ₇ anode for large-scale electrical energy storage. Energy and Environmental Science, 2014, 7, 2220-2226.	15.6	312
31	High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life. Nano Letters, 2016, 16, 7148-7154.	4.5	309
32	Batteries: Getting solid. Nature Energy, 2016, 1, .	19.8	295
33	Highly Ordered Mesoporous Crystalline MoSe ₂ Material with Efficient Visibleâ€Lightâ€Driven Photocatalytic Activity and Enhanced Lithium Storage Performance. Advanced Functional Materials, 2013, 23, 1832-1838.	7.8	285
34	3D Flexible Carbon Felt Host for Highly Stable Sodium Metal Anodes. Advanced Energy Materials, 2018, 8, 1702764.	10.2	274
35	Atomic-scale investigation on lithium storage mechanism in TiNb2O7,. Energy and Environmental Science, 2011, 4, 2638.	15.6	256
36	A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 13046-13052.	5.2	246

#	Article	IF	CITATIONS
37	Electrodeposited Aluminum-Doped α-Fe ₂ O ₃ Photoelectrodes: Experiment and Theory. Chemistry of Materials, 2010, 22, 510-517.	3.2	240
38	Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. Energy Storage Materials, 2016, 5, 191-197.	9.5	239
39	A Selfâ€Forming Composite Electrolyte for Solidâ€State Sodium Battery with Ultralong Cycle Life. Advanced Energy Materials, 2017, 7, 1601196.	10.2	231
40	Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nature Communications, 2020, 11, 4188.	5.8	226
41	Highâ€Voltage Aqueous Naâ€Ion Battery Enabled by Inertâ€Cationâ€Assisted Waterâ€Inâ€Salt Electrolyte. Advan Materials, 2020, 32, e1904427.	iced 11.1	221
42	Amorphous iron phosphate: potential host for various charge carrier ions. NPG Asia Materials, 2014, 6, e138-e138.	3.8	213
43	A Size-Dependent Sodium Storage Mechanism in Li ₄ Ti ₅ O ₁₂ Investigated by a Novel Characterization Technique Combining in Situ X-ray Diffraction and Chemical Sodiation. Nano Letters, 2013, 13, 4721-4727.	4.5	212
44	Regulating Pore Structure of Hierarchical Porous Waste Corkâ€Derived Hard Carbon Anode for Enhanced Na Storage Performance. Advanced Energy Materials, 2019, 9, 1902852.	10.2	212
45	Advanced Nanostructured Anode Materials for Sodiumâ€lon Batteries. Small, 2017, 13, 1701835.	5.2	206
46	Revealing High Na-Content P2-Type Layered Oxides as Advanced Sodium-Ion Cathodes. Journal of the American Chemical Society, 2020, 142, 5742-5750.	6.6	206
47	In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries. Nano Energy, 2017, 33, 45-54.	8.2	205
48	Tuning the Closed Pore Structure of Hard Carbons with the Highest Na Storage Capacity. ACS Energy Letters, 2019, 4, 2608-2612.	8.8	205
49	Superior Naâ€6torage Performance of Lowâ€Temperatureâ€6ynthesized Na ₃ (VO _{1â^'<i>x</i>} PO ₄) ₂ F _{1+2<i>x</i>} (O≤i>xâ‰∰) Nanoparticles for Naâ€ion Batteries. Angewandte Chemie - International Edition, 2015, 54, 9911-9916.	7.2	191
50	Hard–Soft Carbon Composite Anodes with Synergistic Sodium Storage Performance. Advanced Functional Materials, 2019, 29, 1901072.	7.8	191
51	Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan. Nature Communications, 2017, 8, 15888.	5.8	188
52	Preâ€Oxidationâ€Tuned Microstructures of Carbon Anodes Derived from Pitch for Enhancing Na Storage Performance. Advanced Energy Materials, 2018, 8, 1800108.	10.2	179
53	Slopeâ€Dominated Carbon Anode with High Specific Capacity and Superior Rate Capability for High Safety Naâ€ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 4361-4365.	7.2	171
54	Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries. Science Advances, 2015, 1, e1500330.	4.7	170

#	Article	lF	CITATIONS
55	Correlated Migration Invokes Higher Na ⁺ â€ion Conductivity in NaSICONâ€Type Solid Electrolytes. Advanced Energy Materials, 2019, 9, 1902373.	10.2	162
56	A Novel High Capacity Positive Electrode Material with Tunnel‶ype Structure for Aqueous Sodiumâ€lon Batteries. Advanced Energy Materials, 2015, 5, 1501005.	10.2	161
57	A ceramic/polymer composite solid electrolyte for sodium batteries. Journal of Materials Chemistry A, 2016, 4, 15823-15828.	5.2	152
58	In Situ Atomic-Scale Observation of Electrochemical Delithiation Induced Structure Evolution of LiCoO ₂ Cathode in a Working All-Solid-State Battery. Journal of the American Chemical Society, 2017, 139, 4274-4277.	6.6	142
59	Ultrastable All-Solid-State Sodium Rechargeable Batteries. ACS Energy Letters, 2020, 5, 2835-2841.	8.8	142
60	Interfacial engineering to achieve an energy density of over 200 Wh kgâ~'1 in sodium batteries. Nature Energy, 2022, 7, 511-519.	19.8	130
61	TiS2 as a high performance potassium ion battery cathode in ether-based electrolyte. Energy Storage Materials, 2018, 12, 216-222.	9.5	129
62	Structural Engineering of Multishelled Hollow Carbon Nanostructures for Highâ€Performance Naâ€lon Battery Anode. Advanced Energy Materials, 2018, 8, 1800855.	10.2	121
63	Ultralow-Concentration Electrolyte for Na-Ion Batteries. ACS Energy Letters, 2020, 5, 1156-1158.	8.8	120
64	Epitaxial Induced Plating Currentâ€Collector Lasting Lifespan of Anodeâ€Free Lithium Metal Battery. Advanced Energy Materials, 2021, 11, 2003709.	10.2	119
65	Using High-Entropy Configuration Strategy to Design Na-Ion Layered Oxide Cathodes with Superior Electrochemical Performance and Thermal Stability. Journal of the American Chemical Society, 2022, 144, 8286-8295.	6.6	112
66	2019 Nobel Prize for the Li-Ion Batteries and New Opportunities and Challenges in Na-Ion Batteries. ACS Energy Letters, 2019, 4, 2689-2690.	8.8	109
67	Flexible Na batteries. InformaÄnÃ-Materiály, 2020, 2, 126-138.	8.5	108
68	A Novel NASICONâ€Typed Na ₄ VMn _{0.5} Fe _{0.5} (PO ₄) ₃ Cathode for Highâ€Performance Naâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2100729.	10.2	108
69	Rapid mechanochemical synthesis of polyanionic cathode with improved electrochemical performance for Na-ion batteries. Nature Communications, 2021, 12, 2848.	5.8	108
70	Novel copper redox-based cathode materials for room-temperature sodium-ion batteries. Chinese Physics B, 2014, 23, 118202.	0.7	105
71	A Highâ€Power Symmetric Naâ€lon Pseudocapacitor. Advanced Functional Materials, 2015, 25, 5778-5785.	7.8	105
72	Advanced Na metal anodes. Journal of Energy Chemistry, 2018, 27, 1584-1596.	7.1	99

#	Article	IF	CITATIONS
73	A novel NASICON-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity. Energy Storage Materials, 2019, 23, 514-521.	9.5	97
74	Novel Largeâ€Scale Synthesis of a C/S Nanocomposite with Mixed Conducting Networks through a Spray Drying Approach for Li–S Batteries. Advanced Energy Materials, 2015, 5, 1500046.	10.2	96
75	The Mystery of Electrolyte Concentration: From Superhigh to Ultralow. ACS Energy Letters, 2020, 5, 3633-3636.	8.8	96
76	Design and Comparative Study of O3/P2 Hybrid Structures for Room Temperature Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 40215-40223.	4.0	95
77	Water-in-Salt Electrolyte Promotes High-Capacity FeFe(CN) < sub > 6 < / sub > Cathode for Aqueous Al-Ion Battery. ACS Applied Materials & amp; Interfaces, 2019, 11, 41356-41362.	4.0	93
78	In Situ Formation of a Stable Interface in Solid-State Batteries. ACS Energy Letters, 2019, 4, 1650-1657.	8.8	93
79	Mn-Rich Phosphate Cathodes for Na-Ion Batteries with Superior Rate Performance. ACS Energy Letters, 2022, 7, 97-107.	8.8	91
80	Impact of the functional group in the polyanion of single lithium-ion conducting polymer electrolytes on the stability of lithium metal electrodes. RSC Advances, 2016, 6, 32454-32461.	1.7	90
81	Engineering Solid Electrolyte Interface at Nanoâ€Scale for Highâ€Performance Hard Carbon in Sodiumâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2100278.	7.8	90
82	Novel Li[(CF ₃ SO ₂)(n-C ₄ F ₉ SO ₂)N]-Based Polymer Electrolytes for Solid-State Lithium Batteries with Superior Electrochemical Performance. ACS Applied Materials & Diterfaces, 2016, 8, 29705-29712.	4.0	87
83	An O3â€type Oxide with Low Sodium Content as the Phaseâ€Transitionâ€Free Anode for Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2018, 57, 7056-7060.	7.2	87
84	Novel Methods for Sodiumâ€lon Battery Materials. Small Methods, 2017, 1, 1600063.	4.6	84
85	Advanced Characterization Techniques in Promoting Mechanism Understanding for Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1707543.	7.8	81
86	MWCNT porous microspheres with an efficient 3D conductive network for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 775-780.	5.2	79
87	Carbon cage encapsulating nano-cluster Li2S by ionic liquid polymerization and pyrolysis for high performance Li–S batteries. Nano Energy, 2015, 13, 467-473.	8.2	76
88	Sodium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolytes for Sodiumâ€lon Batteries. ChemElectroChem, 2016, 3, 1741-1745.	1.7	76
89	A new Na[(FSO ₂)(n-C ₄ F ₉ SO ₂)N]-based polymer electrolyte for solid-state sodium batteries. Journal of Materials Chemistry A, 2017, 5, 7738-7743.	5.2	76
90	Unlocking Sustainable Na-Ion Batteries into Industry. ACS Energy Letters, 2021, 6, 4115-4117.	8.8	76

#	Article	IF	Citations
91	A spray drying approach for the synthesis of a Na ₂ Contraction Sub>Contraction Sub>House Sub>Contraction Sub>House S	5.2	75
92	Allâ€Celluloseâ€Based Quasiâ€Solidâ€State Sodiumâ€Ion Hybrid Capacitors Enabled by Structural Hierarchy. Advanced Functional Materials, 2019, 29, 1903895.	7.8	75
93	lodine Vapor Transport-Triggered Preferential Growth of Chevrel Mo ₆ S ₈ Nanosheets for Advanced Multivalent Batteries. ACS Nano, 2020, 14, 1102-1110.	7.3	72
94	Ultralight Electrolyte for Highâ€Energy Lithium–Sulfur Pouch Cells. Angewandte Chemie - International Edition, 2021, 60, 17547-17555.	7.2	72
95	Toothpaste-like Electrode: A Novel Approach to Optimize the Interface for Solid-State Sodium-Ion Batteries with Ultralong Cycle Life. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32631-32636.	4.0	71
96	A class of liquid anode for rechargeable batteries with ultralong cycle life. Nature Communications, 2017, 8, 14629.	5.8	71
97	Liâ€Rich Li ₂ [Ni _{0.8} Co _{0.1} Mn _{0.1}]O ₂ for Anodeâ€Free Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 8289-8296.	7.2	71
98	Interface Concentrated onfinement Suppressing Cathode Dissolution in Waterâ€inâ€Salt Electrolyte. Advanced Energy Materials, 2020, 10, 2000665.	10.2	70
99	Homogenous metallic deposition regulated by defect-rich skeletons for sodium metal batteries. Energy and Environmental Science, 2021, 14, 6381-6393.	15.6	70
100	Phase Separation of Li ₂ S/S at Nanoscale during Electrochemical Lithiation of the Solidâ€State Lithium–Sulfur Battery Using In Situ TEM. Advanced Energy Materials, 2016, 6, 1600806.	10.2	69
101	Unveiling the role of hydrothermal carbon dots as anodes in sodium-ion batteries with ultrahigh initial coulombic efficiency. Journal of Materials Chemistry A, 2019, 7, 27567-27575.	5.2	69
102	Metal–Insulator Transition Induced by Oxygen Vacancies from Electrochemical Reaction in Ionic Liquidâ€Gated Manganite Films. Advanced Materials Interfaces, 2015, 2, 1500407.	1.9	68
103	Core–Shell Fe _{1–<i>x</i>} S@Na _{2.9} PS _{3.95} Se _{0.05} Nanorods for Room Temperature All-Solid-State Sodium Batteries with High Energy Density. ACS Nano, 2018, 12, 2809-2817.	7.3	68
104	Improved Cycling Stability of Lithiumâ€Metal Anode with Concentrated Electrolytes Based on Lithium (Fluorosulfonyl)(trifluoromethanesulfonyl)imide. ChemElectroChem, 2016, 3, 531-536.	1.7	67
105	Improved Li storage performance in SnO2 nanocrystals by a synergetic doping. Scientific Reports, 2016, 6, 18978.	1.6	67
106	Ni-based cathode materials for Na-ion batteries. Nano Research, 2019, 12, 2018-2030.	5.8	67
107	Nanoscaled Na ₃ PS ₄ Solid Electrolyte for All-Solid-State FeS ₂ /Na Batteries with Ultrahigh Initial Coulombic Efficiency of 95% and Excellent Cyclic Performances. ACS Applied Materials & Description (12300-12304).	4.0	64
108	NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries. Rare Metals, 2018, 37, 480-487.	3.6	63

#	Article	IF	CITATIONS
109	Amorphous anion-rich titanium polysulfides for aluminum-ion batteries. Science Advances, 2021, 7, .	4.7	63
110	Ambient Lithium–SO ₂ Batteries with Ionic Liquids as Electrolytes. Angewandte Chemie - International Edition, 2014, 53, 2099-2103.	7.2	62
111	Novel Concentrated Li[(FSO ₂)(n-C ₄ F ₉ SO ₂)N]-Based Ether Electrolyte for Superior Stability of Metallic Lithium Anode. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4282-4289.	4.0	62
112	The Role of Hydrothermal Carbonization in Sustainable Sodiumâ€Ion Battery Anodes. Advanced Energy Materials, 2022, 12, .	10.2	61
113	Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery. Nature Communications, 2018, 9, 3341.	5.8	60
114	Screening Heteroatom Configurations for Reversible Sloping Capacity Promises Highâ€Power Na″on Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	58
115	Hunting Sodium Dendrites in NASICON-Based Solid-State Electrolytes. Energy Material Advances, 2021, 2021, .	4.7	57
116	Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime. Nature Chemistry, 2021, 13, 1061-1069.	6.6	57
117	Integrated Surface Functionalization of Li-Rich Cathode Materials for Li-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 41802-41813.	4.0	56
118	Sodiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1800880.	10.2	56
119	Suppressing the voltage decay of low-cost P2-type iron-based cathode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 20795-20803.	5.2	54
120	Atomicâ€Scale Monitoring of Electrode Materials in Lithiumâ€Ion Batteries using In Situ Transmission Electron Microscopy. Advanced Energy Materials, 2017, 7, 1700709.	10.2	53
121	Remarkably Improved Electrode Performance of Bulk MnS by Forming a Solid Solution with FeS – Understanding the Li Storage Mechanism. Advanced Functional Materials, 2014, 24, 5557-5566.	7.8	49
122	Revealing an Interconnected Interfacial Layer in Solidâ€State Polymer Sodium Batteries. Angewandte Chemie - International Edition, 2019, 58, 17026-17032.	7.2	48
123	Stabilizing a sodium-metal battery with the synergy effects of a sodiophilic matrix and fluorine-rich interface. Journal of Materials Chemistry A, 2019, 7, 24857-24867.	5.2	48
124	Sodiumâ€Deficient O3â€Na _{0.9} [Ni _{0.4} Mn <i>_x</i> Ti _{0.6â^'<i>x</i>}]O ₂ Layeredâ€Oxide Cathode Materials for Sodiumâ€Ion Batteries. Particle and Particle Systems Characterization, 2016, 33, 538-544.	^{>} 1.2	47
125	Enhanced Structural and Electrochemical Stability of Self-Similar Rice-Shaped SnO ₂ Nanoparticles. ACS Applied Materials & Interfaces, 2017, 9, 9747-9755.	4.0	47
126	High-Charge Density Polymerized Ionic Networks Boosting High Ionic Conductivity as Quasi-Solid Electrolytes for High-Voltage Batteries. ACS Applied Materials & Interfaces, 2019, 11, 4001-4010.	4.0	47

#	Article	IF	CITATIONS
127	A Better Choice to Achieve High Volumetric Energy Density: Anodeâ€Free Lithiumâ€Metal Batteries. Advanced Materials, 2022, 34, e2110323.	11.1	46
128	Carbon-coated rhombohedral Li ₃ V ₂ (PO ₄) ₃ as both cathode and anode materials for lithium-ion batteries: electrochemical performance and lithium storage mechanism. Journal of Materials Chemistry A, 2014, 2, 20231-20236.	5.2	44
129	Disordered carbon anodes for Na-ion batteriesâ€"quo vadis?. Science China Chemistry, 2021, 64, 1679-1692.	4.2	44
130	Topologically protected oxygen redox in a layered manganese oxide cathode for sustainable batteries. Nature Sustainability, 2022, 5, 214-224.	11.5	44
131	Na-deficient O3-type cathode material Na0.8[Ni0.3Co0.2Ti0.5]O2 for room-temperature sodium-ion batteries. Electrochimica Acta, 2015, 158, 258-263.	2.6	43
132	Novel approach for a high-energy-density Li–air battery: tri-dimensional growth of Li2O2 crystals tailored by electrolyte Li+ ion concentrations. Journal of Materials Chemistry A, 2014, 2, 9020.	5.2	41
133	The low-temperature (400 °C) coating of few-layer graphene on porous Li4Ti5O12via C28H16Br2 pyrolysis for lithium-ion batteries. RSC Advances, 2012, 2, 1751.	1.7	40
134	Impact of Anionic Structure of Lithium Salt on the Cycling Stability of Lithium-Metal Anode in Li-S Batteries. Journal of the Electrochemical Society, 2016, 163, A1776-A1783.	1.3	40
135	A new Tin-based O3-Na0.9[Ni0.45â^²/2Mn Sn0.55â^²/2]O2 as sodium-ion battery cathode. Journal of Energy Chemistry, 2019, 31, 132-137.	7.1	39
136	Lowâ€Density Fluorinated Silane Solvent Enhancing Deep Cycle Lithium–Sulfur Batteries' Lifetime. Advanced Materials, 2021, 33, e2102034.	11.1	39
137	Na ₃ V ₂ (PO ₄) ₃ as the Sole Solid Energy Storage Material for Redox Flow Sodiumâ€ion Battery. Advanced Energy Materials, 2019, 9, 1901188.	10.2	38
138	A New Emerging Technology: Na″on Batteries. Small Methods, 2019, 3, 1900184.	4.6	37
139	PEO-NaPF ₆ Blended Polymer Electrolyte for Solid State Sodium Battery. Journal of the Electrochemical Society, 2020, 167, 070523.	1.3	37
140	Slopeâ€Dominated Carbon Anode with High Specific Capacity and Superior Rate Capability for High Safety Naâ€ion Batteries. Angewandte Chemie, 2019, 131, 4405-4409.	1.6	36
141	Additiveâ€Free Selfâ€Presodiation Strategy for Highâ€Performance Naâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2101475.	7.8	36
142	Novel 1.5 V anode materials, ATiOPO4(A = NH4, K, Na), for room-temperature sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 7141-7147.	5.2	35
143	Comprehensive Studies on the Hydrothermal Strategy for the Synthesis of Na ₃ (VO _{1â^²} <i>_x</i> PO ₄) ₂ F _{F₁₊₂<i>(0 ≤i>x ≤) and their Naâ€Storage Performance. Small Methods, 2019, 3, 1800111.</i>}	< ∢π φ>x< ε	subs>
144	Selective adsorption–deposition of gold nanoparticles onto monodispersed hydrothermal carbon spherules: a reduction–deposition coupled mechanism. Journal of Materials Chemistry A, 2015, 3, 1666-1674.	5.2	34

#	Article	IF	CITATIONS
145	Direct Observation of Ordered Oxygen Defects on the Atomic Scale in Li ₂ O ₂ for Liâ€O ₂ Batteries. Advanced Energy Materials, 2015, 5, 1400664.	10.2	32
146	Origin of Air-Stability for Transition Metal Oxide Cathodes in Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 5338-5345.	4.0	32
147	Highly Stable Lithium Storage Performance in a Porous Carbon/Silicon Nanocomposite. ChemSusChem, 2010, 3, 231-235.	3.6	31
148	Controlled Synthesis of Na ₃ (VOPO ₄) ₂ F Cathodes with an Ultralong Cycling Performance. ACS Applied Energy Materials, 2019, 2, 7474-7482.	2.5	31
149	O3-NaFe _(1/3–<i>x</i>) Ni _{1/3} Mn _{1/3} Al <i>_x</i> O ₂ Cathodes with Improved Air Stability for Na-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 33015-33023.	b> 4.0	31
150	Hollow Fe-containing carbon fibers with tubular tertiary structure: preparation and Li-storage properties. Journal of Materials Chemistry, 2009, 19, 1616.	6.7	28
151	Constructing Naâ€lon Cathodes via Alkaliâ€Site Substitution. Advanced Functional Materials, 2020, 30, 1910840.	7.8	28
152	Single Lithiumâ€lon Conducting Polymer Electrolytes Based on a Superâ€Delocalized Polyanion. Angewandte Chemie, 2016, 128, 2567-2571.	1.6	26
153	Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries*. Chinese Physics B, 2020, 29, 048201.	0.7	26
154	Dense Allâ€Electrochemâ€Active Electrodes for Allâ€Solidâ€State Lithium Batteries. Advanced Materials, 2021, 33, e2008723.	11.1	26
155	A sodium–aluminum hybrid battery. Journal of Materials Chemistry A, 2017, 5, 6589-6596.	5.2	25
156	Joint Cationic and Anionic Redox Chemistry for Advanced Mg Batteries. Nano Letters, 2020, 20, 6852-6858.	4.5	25
157	Atomic-Scale Structure-Property Relationships in Lithium Ion Battery Electrode Materials. Annual Review of Materials Research, 2017, 47, 175-198.	4.3	23
158	Recycling Cathodes from Spent Lithium-Ion Batteries Based on the Selective Extraction of Lithium. ACS Sustainable Chemistry and Engineering, 2021, 9, 10196-10204.	3.2	23
159	Screening Heteroatom Configurations for Reversible Sloping Capacity Promises Highâ€Power Naâ€lon Batteries. Angewandte Chemie, 0, , .	1.6	23
160	Wearable Bipolar Rechargeable Aluminum Battery. , 2020, 2, 808-813.		19
161	Large Scale One-Pot Synthesis of Monodispersed Na ₃ (VOPO ₄) ₂ F Cathode for Na-Ion Batteries. Energy Material Advances, 2022, 2022, .	4.7	16
162	Highâ€Entropy Layered Oxide Cathodes for Sodiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 270-275.	1.6	15

#	Article	lF	Citations
163	Anti-P2 structured Na0.5NbO2and its negative strain effect. Energy and Environmental Science, 2015, 8, 2753-2759.	15.6	14
164	An O3â€type Oxide with Low Sodium Content as the Phaseâ€Transitionâ€Free Anode for Sodiumâ€Ion Batteries. Angewandte Chemie, 2018, 130, 7174-7178.	1.6	14
165	Amorphous Redox-Rich Polysulfides for Mg Cathodes. Jacs Au, 2021, 1, 1266-1274.	3.6	14
166	Cereusâ€Shaped Mesoporous Rutile TiO ₂ Formed in Ionic Liquid: Synthesis and Liâ€Storage Properties. ChemElectroChem, 2014, 1, 549-553.	1.7	13
167	Ultralight Electrolyte for Highâ€Energy Lithium–Sulfur Pouch Cells. Angewandte Chemie, 2021, 133, 17688-17696.	1.6	13
168	Thermal Stability of High Power 26650-Type Cylindrical Na-Ion Batteries. Chinese Physics Letters, 2021, 38, 076501.	1.3	13
169	Achieving high initial Coulombic efficiency for competent Na storage by microstructure tailoring from chiral nematic nanocrystalline cellulose., 2022, 4, 914-923.		13
170	Simplifying and accelerating kinetics enabling fast-charge Al batteries. Journal of Materials Chemistry A, 2020, 8, 23834-23843.	5.2	12
171	Modification of NASICON Electrolyte and Its Application in Real Na-Ion Cells. Engineering, 2022, 8, 170-180.	3.2	12
172	Electronic Conductive Inorganic Cathodes Promising Highâ€Energy Organic Batteries. Advanced Materials, 2021, 33, e2005781.	11.1	12
173	Regulated Synthesis of α-NaVOPO ₄ with an Enhanced Conductive Network as a High-Performance Cathode for Aqueous Na-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 6841-6851.	4.0	12
174	Hard carbons derived from pine nut shells as anode materials for Na-ion batteries*. Chinese Physics B, 2019, 28, 068203.	0.7	10
175	Revealing an Interconnected Interfacial Layer in Solidâ€State Polymer Sodium Batteries. Angewandte Chemie, 2019, 131, 17182-17188.	1.6	7
176	All-in-One Ionic–Electronic Dual-Carrier Conducting Framework Thickening All-Solid-State Electrode. ACS Energy Letters, 2022, 7, 766-772.	8.8	7
177	Preferential Extraction of Lithium from Spent Cathodes and the Regeneration of Layered Oxides for Li/Na-lon Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 24255-24264.	4.0	7
178	A phase transfer assisted solvo-thermal strategy for the synthesis of REF3 and Ln3+-doped REF3 nano-/microcrystals. Journal of Colloid and Interface Science, 2014, 436, 171-178.	5.0	6
179	Mg-doped layered oxide cathode for Na-ion batteries. Chinese Physics B, 2022, 31, 068201.	0.7	6
180	Alkaliâ€lon Storage Behaviour in Spinel Lithium Titanate Electrodes. ChemElectroChem, 2015, 2, 1678-1681.	1.7	5

#	Article	IF	CITATIONS
181	Sodium-Ion Batteries: Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3Cathode for Room-Temperature Sodium-Ion Batteries (Adv. Energy Mater. 2/2013). Advanced Energy Materials, 2013, 3, 138-138.	10.2	4
182	Sodiumâ€ion Batteries: Hard–Soft Carbon Composite Anodes with Synergistic Sodium Storage Performance (Adv. Funct. Mater. 24/2019). Advanced Functional Materials, 2019, 29, 1970164.	7.8	4
183	We Editors Are Authors, Too. ACS Energy Letters, 2019, 4, 249-250.	8.8	2
184	Liâ€Rich Li 2 [Ni 0.8 Co 0.1 Mn 0.1]O 2 for Anodeâ€Free Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 8370-8377.	1.6	2