
Alvaro Mayoral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4899119/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nature Chemistry, 2013, 5, 775-781.	13.6	394
2	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	4.4	333
3	Zeoliteâ€Encaged Singleâ€Atom Rhodium Catalysts: Highlyâ€Efficient Hydrogen Generation and Shapeâ€Selective Tandem Hydrogenation of Nitroarenes. Angewandte Chemie - International Edition, 2019, 58, 18570-18576.	13.8	281
4	Sustainable Preparation of MIL-100(Fe) and Its Photocatalytic Behavior in the Degradation of Methyl Orange in Water. Crystal Growth and Design, 2017, 17, 1806-1813.	3.0	251
5	Subnanometer Bimetallic Platinum–Zinc Clusters in Zeolites for Propane Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, 19450-19459.	13.8	221
6	Synthesis of â€~unfeasible' zeolites. Nature Chemistry, 2016, 8, 58-62.	13.6	186
7	Rational design of mixed-matrix metal-organic framework membranes for molecular separations. Science, 2022, 376, 1080-1087.	12.6	160
8	Nanoscaled M-MOF-74 Materials Prepared at Room Temperature. Crystal Growth and Design, 2014, 14, 2479-2487.	3.0	155
9	Amino Acid-Assisted Construction of Single-Crystalline Hierarchical Nanozeolites via Oriented-Aggregation and Intraparticle Ripening. Journal of the American Chemical Society, 2019, 141, 3772-3776.	13.7	131
10	Impregnating Subnanometer Metallic Nanocatalysts into Self-Pillared Zeolite Nanosheets. Journal of the American Chemical Society, 2021, 143, 6905-6914.	13.7	124
11	Immobilization of lipase in ordered mesoporous materials: Effect of textural and structural parameters. Microporous and Mesoporous Materials, 2008, 114, 201-213.	4.4	107
12	The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles. Nanoscale, 2014, 6, 13483-13486.	5.6	101
13	Beyond the H ₂ /CO ₂ upper bound: one-step crystallization and separation of nano-sized ZIF-11 by centrifugation and its application in mixed matrix membranes. Journal of Materials Chemistry A, 2015, 3, 6549-6556.	10.3	99
14	Enhanced photocatalytic activity of TiO2 supported on zeolites tested in real wastewaters from the textile industry of Ethiopia. Microporous and Mesoporous Materials, 2016, 225, 88-97.	4.4	85
15	Atomic Resolution Analysis of Silver Ionâ€Exchanged Zeoliteâ€A. Angewandte Chemie - International Edition, 2011, 50, 11230-11233.	13.8	83
16	The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia. Scientific Reports, 2019, 9, 3992.	3.3	79
17	Metal organic framework synthesis in the presence of surfactants: towards hierarchical MOFs?. CrystEngComm, 2015, 17, 1693-1700.	2.6	78
18	Nanoparticle stability from the nano to the meso interval. Nanoscale, 2010, 2, 335-342.	5.6	77

#	Article	IF	CITATIONS
19	Formation and Encapsulation of All-Inorganic Lead Halide Perovskites at Room Temperature in Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2019, 10, 2270-2277.	4.6	77
20	Expansion of the ADOR Strategy for the Synthesis of Zeolites: The Synthesis of IPCâ€12 from Zeolite UOV. Angewandte Chemie - International Edition, 2017, 56, 4324-4327.	13.8	70
21	Hydrodechlorination of chloromethanes with a highly stable Pt on activated carbon catalyst. Journal of Catalysis, 2011, 279, 389-396.	6.2	62
22	Synthesis and structural characterization of Zn _x Fe _{3â^²x} O ₄ ferrite nanoparticles obtained by an electrochemical method. RSC Advances, 2016, 6, 40067-40076.	3.6	62
23	Anisotropic gold nanoparticles and gold plates biosynthesis using alfalfa extracts. Journal of Nanoparticle Research, 2011, 13, 3113-3121.	1.9	61
24	Assembly–Disassembly–Organization–Reassembly Synthesis of Zeolites Based on <i>cfi</i> -Type Layers. Chemistry of Materials, 2017, 29, 5605-5611.	6.7	60
25	New insights into the properties and interactions of carbon chains as revealed by HRTEM and DFT analysis. Carbon, 2014, 66, 436-441.	10.3	58
26	Sepiolite nanoplatform for the simultaneous assembly of magnetite and zinc oxide nanoparticles as photocatalyst for improving removal of organic pollutants. Journal of Hazardous Materials, 2017, 340, 281-290.	12.4	57
27	Beyond gold: rediscovering tetrakis-(hydroxymethyl)-phosphonium chloride (THPC) as an effective agent for the synthesis of ultra-small noble metal nanoparticles and Pt-containing nanoalloys. RSC Advances, 2013, 3, 10427.	3.6	56
28	A novel Co@Au structure formed in bimetallic core@shell nanoparticles. Chemical Communications, 2015, 51, 8442-8445.	4.1	55
29	High Specific Absorption Rate and Transverse Relaxivity Effects in Manganese Ferrite Nanoparticles Obtained by an Electrochemical Route. Journal of Physical Chemistry C, 2015, 119, 6828-6834.	3.1	53
30	Atomic resolution analysis of porous solids: A detailed study of silver ion-exchanged zeolite A. Microporous and Mesoporous Materials, 2013, 166, 117-122.	4.4	52
31	TEM studies of zeolites and ordered mesoporous materials. Micron, 2011, 42, 512-527.	2.2	51
32	Platinum Electrodeposition on Unsupported Carbon Nano-Onions. Langmuir, 2012, 28, 17202-17210.	3.5	49
33	Functional Hybrid Nanopaper by Assembling Nanofibers of Cellulose and Sepiolite. Advanced Functional Materials, 2018, 28, 1703048.	14.9	49
34	Validity of the Néel-Arrhenius model for highly anisotropic CoxFe3â^'xO4 nanoparticles. Journal of Applied Physics, 2015, 118, .	2.5	48
35	Subnanometer Bimetallic Platinum–Zinc Clusters in Zeolites for Propane Dehydrogenation. Angewandte Chemie, 2020, 132, 19618-19627.	2.0	47
36	The Co–Au interface in bimetallic nanoparticles: a high resolution STEM study. Nanoscale, 2010, 2, 2647.	5.6	46

#	Article	IF	CITATIONS
37	Chiral Imprinting with Amino Acids of Ordered Mesoporous Silica Exhibiting Enantioselectivity after Calcination. Chemistry of Materials, 2011, 23, 1280-1287.	6.7	42
38	On the atomic structure of thiol-protected gold nanoparticles: a combined experimental and theoretical study. Physical Chemistry Chemical Physics, 2010, 12, 11785.	2.8	40
39	Atomic Observations of Microporous Materials Highly Unstable under the Electron Beam: The Cases of Tiâ€Doped AlPO ₄ â€5 and Zn–MOFâ€74. ChemCatChem, 2015, 7, 3719-3724.	3.7	38
40	Spontaneous formation of Au–Pt alloyed nanoparticles using pure nano-counterparts as starters: a ligand and size dependent process. Nanoscale, 2015, 7, 10152-10161.	5.6	37
41	Synthesis and characterization of manganese ferrite nanoparticles obtained by electrochemical/chemical method. Materials and Design, 2016, 111, 646-650.	7.0	37
42	STA-20: An ABC-6 Zeotype Structure Prepared by Co-Templating and Solved via a Hypothetical Structure Database and STEM-ADF Imaging. Chemistry of Materials, 2017, 29, 2180-2190.	6.7	37
43	Highly efficient and selective extraction of uranium from aqueous solution using a magnetic device: succinyl-l²-cyclodextrin-APTES@maghemite nanoparticles. Environmental Science: Nano, 2018, 5, 158-168.	4.3	37
44	Thermal Diffusion at Nanoscale: From CoAu Alloy Nanoparticles to Co@Au Core/Shell Structures. Journal of Physical Chemistry C, 2013, 117, 3101-3108.	3.1	35
45	Breaking the Si/Al Limit of Nanosized β Zeolites: Promoting Catalytic Production of Lactide. Chemistry of Materials, 2020, 32, 751-758.	6.7	35
46	On the behavior of Ag nanowires under high temperature: in situ characterization by aberration-corrected STEM. Journal of Materials Chemistry, 2011, 21, 893-898.	6.7	34
47	Synthesis and magnetic behavior of ultra-small bimetallic FeCo/graphite nanoparticles. Nanotechnology, 2013, 24, 505702.	2.6	34
48	Au deposited on CeO2 prepared by a nanocasting route: A high activity catalyst for CO oxidation. Journal of Catalysis, 2014, 317, 167-175.	6.2	34
49	High-Temperature Stable Gold Nanoparticle Catalysts for Application under Severe Conditions: The Role of TiO ₂ Nanodomains in Structure and Activity. ACS Catalysis, 2015, 5, 1078-1086.	11.2	34
50	Synthesis and characterization of ultra-small magnetic FeNi/G and NiCo/G nanoparticles. Nanotechnology, 2012, 23, 085601.	2.6	33
51	Few-layer graphene by assisted-exfoliation of graphite with layered silicate. Carbon, 2014, 73, 99-105.	10.3	33
52	Real-time monitoring of breathing of MIL-53(Al) by environmental SEM. Microporous and Mesoporous Materials, 2015, 203, 17-23.	4.4	33
53	Insights into the capping and structure of MoS2 nanotubes as revealed by aberration-corrected STEM. Nanoscale, 2010, 2, 2286.	5.6	32
54	Spatially-Resolved EELS Analysis of Antibody Distribution on Biofunctionalized Magnetic Nanoparticles. ACS Nano, 2013, 7, 4006-4013.	14.6	32

#	Article	IF	CITATIONS
55	Faceted MoS2 nanotubes and nanoflowers. Materials Chemistry and Physics, 2009, 118, 392-397.	4.0	31
56	Atomic Resolution Analysis of Microporous Titanosilicate ETSâ€10 through Aberration Corrected STEM Imaging. ChemCatChem, 2013, 5, 2595-2598.	3.7	31
57	Synthesis of thermally stable SBT and SBS/SBT intergrowth zeolites. Science, 2021, 373, 104-107.	12.6	31
58	Ten Years of Aberration Corrected Electron Microscopy for Ordered Nanoporous Materials. ChemCatChem, 2020, 12, 1248-1269.	3.7	30
59	The Chemistry of Cosmic Dust Analogs from C, C ₂ , and C ₂ H ₂ in C-rich Circumstellar Envelopes. Astrophysical Journal, 2020, 895, 97.	4.5	30
60	Platinum Electrodeposition on Unsupported Single Wall Carbon Nanotubes and Its Application as Methane Sensing Material. Journal of the Electrochemical Society, 2013, 160, H98-H104.	2.9	29
61	Exploratory Catalyst Screening Studies on the Base Free Conversion of Glycerol to Lactic Acid and Glyceric Acid in Water Using Bimetallic Au–Pt Nanoparticles on Acidic Zeolites. Topics in Catalysis, 2014, 57, 1445-1453.	2.8	29
62	Core@shell, Au@TiO _x nanoparticles by gas phase synthesis. Nanoscale, 2017, 9, 6463-6470.	5.6	29
63	Gas-phase synthesis of nanoparticles: present status and perspectives. MRS Communications, 2018, 8, 947-954.	1.8	29
64	Vapour-phase-transport rearrangement technique for the synthesis of new zeolites. Nature Communications, 2019, 10, 5129.	12.8	29
65	Removal of chromium(VI) using nano-hydrotalcite/SiO2 composite. Journal of Environmental Chemical Engineering, 2015, 3, 1555-1561.	6.7	28
66	Removal of ⁹⁰ Sr from highly Na ⁺ -rich liquid nuclear waste with a layered vanadosilicate. Energy and Environmental Science, 2019, 12, 1857-1865.	30.8	28
67	Direct Atomicâ€Level Imaging of Zeolites: Oxygen, Sodium in Naâ€LTA and Iron in Feâ€MFI. Angewandte Chemie - International Edition, 2020, 59, 19510-19517.	13.8	28
68	Hydrogen Production by Steam Reforming of Methanol over a Ag/ZnO One Dimensional Catalyst. Advanced Materials Research, 0, 132, 205-219.	0.3	27
69	Designing Functionalized Mesoporous Materials for Enzyme Immobilization: Locating Enzymes by Using Advanced TEM Techniques. ChemCatChem, 2013, 5, 903-909.	3.7	27
70	Stability Assessment of Regenerated Hierarchical ZSM-48 Zeolite Designed by Post-Synthesis Treatment for Catalytic Cracking of Light Naphtha. Energy & Fuels, 2017, 31, 14097-14103.	5.1	27
71	Zeoliteâ€Encaged Singleâ€Atom Rhodium Catalysts: Highlyâ€Efficient Hydrogen Generation and Shapeâ€Selective Tandem Hydrogenation of Nitroarenes. Angewandte Chemie, 2019, 131, 18743-18749.	2.0	26
72	Aberration-Corrected STEM Analysis of a Cubic Cd Array Encapsulated in Zeolite A. Journal of Physical Chemistry C, 2013, 117, 24485-24489.	3.1	25

#	Article	IF	CITATIONS
73	Zeolites are no longer a challenge: Atomic resolution data by Aberration-corrected STEM. Micron, 2015, 68, 146-151.	2.2	25
74	Effect of the Pt–Pd molar ratio in bimetallic catalysts supported on sulfated zirconia on the gas-phase hydrodechlorination of chloromethanes. Journal of Catalysis, 2017, 352, 562-571.	6.2	25
75	Magnetite as a platform material in the detection of glucose, ethanol and cholesterol. Sensors and Actuators B: Chemical, 2017, 238, 693-701.	7.8	25
76	<scp>l</scp> - and <scp>d</scp> -Proline Adsorption by Chiral Ordered Mesoporous Silica. Langmuir, 2012, 28, 6638-6644.	3.5	24
77	Imaging the Atomic Position of Light Cations in a Porous Network and the Europium(III) Ion Exchange Capability by Aberrationâ€Corrected Electron Microscopy. Angewandte Chemie - International Edition, 2016, 55, 16127-16131.	13.8	24
78	Synthesis of zeolite A using raw kaolin from Ethiopia and its application in removal of Cr(<scp>III</scp>) from tannery wastewater. Journal of Chemical Technology and Biotechnology, 2018, 93, 146-154.	3.2	24
79	On the influence of diphosphine ligands on the chemical order in small RuPt nanoparticles: combined structural and surface reactivity studies. Dalton Transactions, 2013, 42, 372-382.	3.3	23
80	Polyhedral shaped gold nanoparticles with outstanding near-infrared light absorption. Applied Physics A: Materials Science and Processing, 2009, 97, 11-18.	2.3	22
81	Nanoalloying in real time. A high resolution STEM and computer simulation study. Nanoscale, 2011, 3, 5013.	5.6	22
82	Stabilization of Nanoparticles Produced by Hydrogenation of Palladium–N-Heterocyclic Carbene Complexes on the Surface of Graphene and Implications in Catalysis. ACS Omega, 2018, 3, 15217-15228.	3.5	22
83	In-situ immobilization of enzymes in mesoporous silicas. Solid State Sciences, 2011, 13, 691-697.	3.2	21
84	Synthesis, Swelling, and Exfoliation of Microporous Lamellar Titanosilicate AMâ€4. European Journal of Inorganic Chemistry, 2011, 2011, 2247-2253.	2.0	21
85	Structural analysis of IPC zeolites and related materials using positron annihilation spectroscopy and high-resolution argon adsorption. Physical Chemistry Chemical Physics, 2016, 18, 15269-15277.	2.8	21
86	Structuring of Alkylâ€Triazole Bridged Silsesquioxanes. ChemistrySelect, 2017, 2, 432-442.	1.5	20
87	Synthesis of 3D Large-Pore Germanosilicate Zeolites Using Imidazolium-Based Long Dications. Chemistry of Materials, 2019, 31, 5484-5493.	6.7	20
88	Production of bimetallic nanowires through electron beam irradiation of copper- and silver-containing zeolite A. Nanotechnology, 2007, 18, 165708.	2.6	19
89	Atomic resolution structural insights into PdPt nanoparticle–carbon interactions for the design of highly active and stable electrocatalysts. Electrochimica Acta, 2012, 64, 35-45.	5.2	19
90	Synthesis of hybrid magneto-plasmonic nanoparticles with potential use in photoacoustic detection of circulating tumor cells. Mikrochimica Acta, 2018, 185, 130.	5.0	19

#	Article	IF	CITATIONS
91	Palladium doping of In ₂ O ₃ towards a general and selective catalytic hydrogenation of amides to amines and alcohols. Catalysis Science and Technology, 2019, 9, 6965-6976.	4.1	19
92	Impact of N on the atomic-scale Sb distribution in quaternary GaAsSbN-capped InAs quantum dots. Nanoscale Research Letters, 2012, 7, 653.	5.7	18
93	C _s â€Corrected STEM Imaging of both Pure and Silverâ€Supported Metalâ€Organic Framework MILâ€100(Fe). ChemCatChem, 2017, 9, 3497-3502.	3.7	18
94	Zeolite framework functionalisation by tuneable incorporation of various metals into the IPC-2 zeolite. Inorganic Chemistry Frontiers, 2018, 5, 2746-2755.	6.0	17
95	Structural transformation of MoO3 nanobelts into MoS2 nanotubes. Applied Physics A: Materials Science and Processing, 2009, 96, 861-867.	2.3	16
96	High-Yield Production of Long Branched Au Nanoparticles Characterized by Atomic Resolution Transmission Electron Microscopy. Crystal Growth and Design, 2011, 11, 4538-4543.	3.0	16
97	Pillaring of layered zeolite precursors with ferrierite topology leading to unusual molecular sieves on the micro/mesoporous border. Dalton Transactions, 2018, 47, 3029-3037.	3.3	16
98	Preparation of mesoporous Beta zeolite by fluoride treatment in liquid phase. Textural, acid and catalytic properties. Microporous and Mesoporous Materials, 2019, 284, 296-303.	4.4	16
99	Photoluminescence Enhancement of InAs(Bi) Quantum Dots by Bi Clustering. Applied Physics Express, 2013, 6, 042103.	2.4	15
100	Pursuit of optimal synthetic conditions for obtaining colloidal zero-valent iron nanoparticles by scanning pulsed laser ablation in liquids. Journal of Industrial and Engineering Chemistry, 2020, 81, 340-351.	5.8	15
101	HPMâ€14: A New Germanosilicate Zeolite with Interconnected Extraâ€Large Pores Plus Oddâ€Membered and Small Pores**. Angewandte Chemie - International Edition, 2021, 60, 3438-3442.	13.8	15
102	Gold clusters showing pentagonal atomic arrays revealed by aberration-corrected scanning transmission electron microscopy. Chemical Communications, 2010, 46, 8758.	4.1	14
103	Location of enzyme in lipase-SBA-12 hybrid biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 2013, 90, 23-25.	1.8	14
104	Structures of Silicaâ€Based Nanoporous Materials Revealed by Microscopy. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 521-536.	1.2	14
105	Gold nanoclusters prepared from an eighteenth century two-phases procedure supported on thiol-containing SBA-15 for liquid phase oxidation of cyclohexene with molecular oxygen. Catalysis Today, 2018, 304, 172-180.	4.4	14
106	Observation of Ag Nanoparticles in/on Ag@MIL-100(Fe) Prepared Through Different Procedures. Frontiers in Chemistry, 2019, 7, 686.	3.6	14
107	Electron Microscopy Studies of Local Structural Modulations in Zeolite Crystals. Angewandte Chemie - International Edition, 2020, 59, 19403-19413.	13.8	14
108	Base-free selective oxidation of pectin derived galacturonic acid to galactaric acid using supported gold catalysts. Green Chemistry, 2018, 20, 2763-2774.	9.0	13

#	Article	IF	CITATIONS
109	Some Efforts Toward Understanding Structural Features of MOF/COF. Israel Journal of Chemistry, 2018, 58, 1157-1163.	2.3	13
110	Electrochemical Synthesis and Magnetic Properties of MFe ₂ O ₄ (M = Fe, Mn,) Tj ETQq Nanotechnology, 2019, 19, 2008-2015.	0 0 0 rgBT 0.9	/Overlock 10 13
111	On the structure of bimetallic noble metal nanoparticles as revealed by aberration corrected scanning transmission electron microscopy (STEM). Micron, 2012, 43, 557-564.	2.2	12
112	Controlled 3D-coating of the pores of highly ordered mesoporous antiferromagnetic Co3O4 replicas with ferrimagnetic FexCo3â^'xO4 nanolayers. Nanoscale, 2013, 5, 5561.	5.6	12
113	3D reconstruction of atomic structures from high angle annular dark field (HAADF) STEM images and its application on zeolite silicalite-1. Dalton Transactions, 2014, 43, 14158-14163.	3.3	12
114	Amino-modified periodic mesoporous biphenylene-silica. Microporous and Mesoporous Materials, 2015, 217, 167-172.	4.4	12
115	Expansion of the ADOR Strategy for the Synthesis of Zeolites: The Synthesis of IPCâ€12 from Zeolite UOV. Angewandte Chemie, 2017, 129, 4388-4391.	2.0	12
116	Development of exfoliated layered stannosilicate for hydrogen adsorption. International Journal of Hydrogen Energy, 2014, 39, 13180-13188.	7.1	11
117	Ceneration of gold nanoparticles according to procedures described in the eighteenth century. Gold Bulletin, 2014, 47, 161-165.	2.4	11
118	Imaging the Atomic Position of Light Cations in a Porous Network and the Europium(III) Ion Exchange Capability by Aberration orrected Electron Microscopy. Angewandte Chemie, 2016, 128, 16361-16365.	2.0	11
119	Tuning the size, composition and structure of Au and Co ₅₀ Au ₅₀ nanoparticles by high-power impulse magnetron sputtering in gas-phase synthesis. Nanotechnology, 2019, 30, 065606.	2.6	11
120	Library Creation of Ultrasmall Multiâ€metallic Nanoparticles Confined in Mesoporous MFI Zeolites. Angewandte Chemie - International Edition, 2021, 60, 14571-14577.	13.8	11
121	Coating of Magnetite Nanoparticles with Fucoidan to Enhance Magnetic Hyperthermia Efficiency. Nanomaterials, 2021, 11, 2939.	4.1	11
122	Controlled growth of nano-hydroxyapatite on stilbite: Defluoridation performance. Microporous and Mesoporous Materials, 2017, 254, 86-95.	4.4	10
123	Green synthesis of starch-capped Cu ₂ O nanocubes and their application in the direct electrochemical detection of glucose. RSC Advances, 2021, 11, 13711-13721.	3.6	10
124	Composition-Dependent Cytotoxic and Antibacterial Activity of Biopolymer-Capped Ag/Au Bimetallic Nanoparticles against Melanoma and Multidrug-Resistant Pathogens. Nanomaterials, 2022, 12, 779.	4.1	10
125	GTM-3, an Extra-Large Pore Enantioselective Chiral Zeolitic Catalyst. Journal of the American Chemical Society, 2022, 144, 8249-8256.	13.7	10
126	Chiral periodic mesoporous copper(II) bis(oxazoline) phenylene–silica: A highly efficient and reusable asymmetric heterogeneous catalyst. Journal of Catalysis, 2014, 320, 63-69.	6.2	9

#	Article	IF	CITATIONS
127	Strain mapping accuracy improvement using superâ€resolution techniques. Journal of Microscopy, 2016, 262, 50-58.	1.8	9
128	Nanostructured carbon–metal hybrid aerogels from bacterial cellulose. RSC Advances, 2017, 7, 42203-42210.	3.6	9
129	Nano-crystalline titanium(IV)tungstomolybdate cation exchanger: Synthesis, characterization and ion exchange properties. Journal of Environmental Chemical Engineering, 2017, 5, 1004-1014.	6.7	9
130	Al-promoted increase of surface area and adsorption capacity in ordered mesoporous silica materials with a cubic structure. Chemical Communications, 2011, 47, 12337.	4.1	8
131	Laser Control of Zeolite Nucleation. ChemPhysChem, 2012, 13, 736-740.	2.1	8
132	Location of laccase in ordered mesoporous materials. APL Materials, 2014, 2, .	5.1	8
133	Microwave heating and the fast ADOR process for preparing zeolites. Journal of Materials Chemistry A, 2017, 5, 8037-8043.	10.3	8
134	Control of reactivity through chemical order in very small RuRe nanoparticles. Dalton Transactions, 2017, 46, 15070-15079.	3.3	8
135	Selective catalytic cracking of n-hexane to olefins over SSZ-54 fabricated by facile and novel dual templating method. Fuel, 2018, 227, 48-58.	6.4	8
136	Green synthesis of cavity-containing manganese oxides with superior catalytic performance in toluene oxidation. Applied Catalysis A: General, 2019, 582, 117107.	4.3	8
137	Core–Satellite Gold Nanoparticle Complexes Grown by Inert Gas-Phase Condensation. Journal of Physical Chemistry C, 2020, 124, 24441-24450.	3.1	8
138	On the structure of stellated single crystal Au/Agnanoparticles. CrystEngComm, 2010, 12, 1090-1095.	2.6	7
139	Nanoscale mapping of plasmon resonances of functional multibranched gold nanoparticles. Chemical Communications, 2012, 48, 8667.	4.1	7
140	Tuning Deposition of Magnetic Metallic Nanoparticles from Periodic Pattern to Thin Film Entrainment by Dip Coating Method. Langmuir, 2014, 30, 9028-9035.	3.5	7
141	Silica promoted self-assembled mesoporous aluminas. Impact of the silica precursor on the structural, textural and acidic properties. Catalysis Today, 2015, 250, 115-122.	4.4	7
142	Maghemite nanoparticles bearing di(amidoxime) groups for the extraction of uranium from wastewaters. AIP Advances, 2017, 7, .	1.3	7
143	Structural characterization of HPM-7, a more ordered than expected germanosilicate zeolite. Dalton Transactions, 2020, 49, 7037-7043.	3.3	7
144	Structure Solution and Defect Analysis of an Extra-Large Pore Zeolite with UTL Topology by Electron Microscopy. Journal of Physical Chemistry Letters, 2020, 11, 3350-3356.	4.6	7

#	Article	IF	CITATIONS
145	An Aluminosilicate Zeolite Containing Rings of Tetrahedral Atoms with All Odd Numbers from Five to Eleven. Angewandte Chemie - International Edition, 2021, 60, 5936-5940.	13.8	7
146	Metal-catalyst-free gas-phase synthesis of long-chain hydrocarbons. Nature Communications, 2021, 12, 5937.	12.8	7
147	Synthesis of copper chloride nanowires by thermal treatment in the presence of zeolite X. CrystEngComm, 2010, 12, 3012.	2.6	6
148	Micron-Sized Single-Crystal-like CoAPO-5/Carbon Composites Leading to Hierarchical CoAPO-5 with Both Inter- and Intracrystalline Mesoporosity. Crystal Growth and Design, 2013, 13, 2476-2485.	3.0	6
149	Aberration-corrected STEM analysis of the RHO family of zeolites with embedded isoreticular structures. Microporous and Mesoporous Materials, 2016, 236, 129-133.	4.4	6
150	New Iron Oxide Nanoparticles Catechol-Grafted with Bis(amidoxime)s for Uranium(VI) Depletion of Aqueous Solution. Journal of Nanoscience and Nanotechnology, 2019, 19, 4911-4919.	0.9	6
151	Direct Imaging and Location of Pb ²⁺ and K ⁺ in EMT Framework-Type Zeolite. Journal of Physical Chemistry C, 2021, 125, 6461-6470.	3.1	6
152	Designed Synthesis of STA-30: A Small-Pore Zeolite Catalyst with Topology Type SWY. Chemistry of Materials, 2021, 33, 5242-5256.	6.7	6
153	Sandwich-Type Zeolite Intergrowths with MFI and the Novel Extra-Large Pore IDM-1 as Ordered End-Members. Chemistry of Materials, 2021, 33, 7869-7877.	6.7	6
154	Chiral Copper(II) Bis(oxazoline) Complexes Directly Coordinated to Amineâ€Functionalized Phenylene/Biphenylene Periodic Mesoporous Organosilicas as Heterogeneous ÂCatalysts. European Journal of Inorganic Chemistry, 2016, 2016, 413-421.	2.0	5
155	Protocol optimization for the mild detemplation of mesoporous silica nanoparticles resulting in enhanced texture and colloidal stability. Microporous and Mesoporous Materials, 2016, 220, 110-119.	4.4	5
156	Diameter distribution by deconvolution (DdD): absorption spectra as a practical tool for semiconductor nanoparticle PSD determination. Nanoscale Advances, 2019, 1, 3499-3505.	4.6	5
157	HPMâ€14: A New Germanosilicate Zeolite with Interconnected Extraâ€Large Pores Plus Oddâ€Membered and Small Pores**. Angewandte Chemie, 2021, 133, 3480-3484.	2.0	5
158	Microscopy of Nanoporous Crystals. Springer Handbooks, 2019, , 1391-1450.	0.6	5
159	Next generation of nanozymes: A perspective of the challenges to match biological performance. Journal of Applied Physics, 2021, 130, .	2.5	5
160	Solvothermal synthesis of disordered mesoporous materials based on a Si–N framework in ionic liquids. Microporous and Mesoporous Materials, 2014, 186, 146-154.	4.4	4
161	Understanding the role of Ti-rich domains in the stabilization of gold nanoparticles on mesoporous silica-based catalysts. Journal of Catalysis, 2018, 360, 187-200.	6.2	4
162	Effect of thermal treatment on the photocatalytic behavior of TiO2 supported on zeolites. New Journal of Chemistry, 2018, 42, 12001-12007.	2.8	4

#	Article	IF	CITATIONS
163	Spontaneous Formation of Core@shell Co@Cr Nanoparticles by Gas Phase Synthesis. Applied Nano, 2020, 1, 87-101.	2.0	4
164	Siteâ€Specific Iron Substitution in STAâ€28, a Large Pore Aluminophosphate Zeotype Prepared by Using 1,10â€Phenanthrolines as Frameworkâ€Bound Templates. Angewandte Chemie - International Edition, 2020, 59, 15186-15190.	13.8	4
165	An Aluminosilicate Zeolite Containing Rings of Tetrahedral Atoms with All Odd Numbers from Five to Eleven. Angewandte Chemie, 2021, 133, 6001-6005.	2.0	4
166	Library Creation of Ultrasmall Multiâ€metallic Nanoparticles Confined in Mesoporous MFI Zeolites. Angewandte Chemie, 2021, 133, 14692-14698.	2.0	4
167	Synthesis and Characterization of Branched Gold Nanoparticles. Materials Science Forum, 2010, 644, 57-60.	0.3	3
168	Modulation of the Activity of Gold Clusters Immobilized on Functionalized Mesoporous Materials in the Oxidation of Cyclohexene via the Functional Group. The Case of Aminopropyl Moiety. Molecules, 2020, 25, 5756.	3.8	3
169	Electron Microscopy Studies of Local Structural Modulations in Zeolite Crystals. Angewandte Chemie, 2020, 132, 19571-19581.	2.0	3
170	Synthesis and characterization of polymer/silica/QDs fluorescent nanocomposites with potential application as printing toner. Materials Research Express, 2019, 6, 025314.	1.6	2
171	Siteâ€Specific Iron Substitution in STAâ€28, a Large Pore Aluminophosphate Zeotype Prepared by Using 1,10â€Phenanthrolines as Frameworkâ€Bound Templates. Angewandte Chemie, 2020, 132, 15298-15302.	2.0	2
172	Direct Atomicâ€Level Imaging of Zeolites: Oxygen, Sodium in Naâ€LTA and Iron in Feâ€MFI. Angewandte Chemie, 2020, 132, 19678-19685.	2.0	2
173	Synthesis of large-pore zeolites from chiral structure-directing agents with two <scp>l</scp> -prolinol units. Dalton Transactions, 2020, 49, 9618-9631.	3.3	2
174	Electron Microscopy Techniques to Study Structure/Function Relationships in Catalytic Materials. , 2019, , 97-128.		2
175	Zeolites and Mesoporous Crystals Under the Electron Microscope. , 2015, , 93-138.		2
176	On the Porous Silicate HPMâ€5. European Journal of Inorganic Chemistry, 2017, 2017, 2525-2531.	2.0	1
177	Unveiling unique structural features of the YNU-5 aluminosilicate family. Microporous and Mesoporous Materials, 2021, 317, 110980.	4.4	1
178	Lipase immobilization in ordered mesoporous materials. Studies in Surface Science and Catalysis, 2007, 165, 897-900.	1.5	0
179	Recent Advances on Imaging Porous Frameworks by Electron Microscopy Methods. Microscopy and Microanalysis, 2017, 23, 1798-1799.	0.4	0
180	Innentitelbild: Zeoliteâ€Encaged Singleâ€Atom Rhodium Catalysts: Highlyâ€Efficient Hydrogen Generation and Shapeâ€Selective Tandem Hydrogenation of Nitroarenes (Angew. Chem. 51/2019). Angewandte Chemie, 2019, 131, 18466-18466.	2.0	0

#	Article	IF	CITATIONS
181	Titelbild: Direct Atomic‣evel Imaging of Zeolites: Oxygen, Sodium in Na‣TA and Iron in Feâ€MFI (Angew.) ⁻	ij et <u>0</u> 81 1 (0.784314 rgl