Lan Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4898482/publications.pdf

Version: 2024-02-01

		394421	395702
34	2,406	19	33
papers	citations	h-index	g-index
25	25	25	2172
35	35	35	3172
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq $1\ 1\ 0.784314\ rgBT$ /Ov	eglock 10 ⁻	Tf 50 742 Tc 1,430
2	Flexible Bicolorimetric Polyacrylamide/Chitosan Hydrogels for Smart Realâ€√Time Monitoring and Promotion of Wound Healing. Advanced Functional Materials, 2021, 31, 2102599.	14.9	131
3	Dihydrolipoic Acid–Gold Nanoclusters Regulate Microglial Polarization and Have the Potential To Alter Neurogenesis. Nano Letters, 2020, 20, 478-495.	9.1	92
4	Licorice isoliquiritigenin suppresses RANKL-induced osteoclastogenesis in vitro and prevents inflammatory bone loss in vivo. International Journal of Biochemistry and Cell Biology, 2012, 44, 1139-1152.	2.8	63
5	Accelerated host angiogenesis and immune responses by ion release from mesoporous bioactive glass. Journal of Materials Chemistry B, 2018, 6, 3274-3284.	5.8	56
6	SPHK1-S1PR1-RANKL Axis Regulates the Interactions Between Macrophages and BMSCs in Inflammatory Bone Loss. Journal of Bone and Mineral Research, 2018, 33, 1090-1104.	2.8	46
7	Imbalance of Interleukin-17+ T-cell and Foxp3+ Regulatory T-cell Dynamics in Rat Periapical Lesions. Journal of Endodontics, 2014, 40, 56-62.	3.1	41
8	Graphene oxide coated Titanium Surfaces with Osteoimmunomodulatory Role to Enhance Osteogenesis. Materials Science and Engineering C, 2020, 113, 110983.	7.3	41
9	In vitro and in vivo evaluation of a nanoparticulate bioceramic paste for dental pulp repair. Acta Biomaterialia, 2014, 10, 5156-5168.	8.3	39
10	Mesoporous silica rods with cone shaped pores modulate inflammation and deliver BMP-2 for bone regeneration. Nano Research, 2020, 13, 2323-2331.	10.4	39
11	Synergistic regulation of osteoimmune microenvironment by IL-4 and RGD to accelerate osteogenesis. Materials Science and Engineering C, 2020, 109, 110508.	7.3	38
12	Injectable sericin based nanocomposite hydrogel for multi-modal imaging-guided immunomodulatory bone regeneration. Chemical Engineering Journal, 2021, 418, 129323.	12.7	37
13	S1P-S1PR1 Signaling: the "Sphinx―in Osteoimmunology. Frontiers in Immunology, 2019, 10, 1409.	4.8	35
14	Gold nanoparticle-directed autophagy intervention for antitumor immunotherapy via inhibiting tumor-associated macrophage M2 polarization. Acta Pharmaceutica Sinica B, 2022, 12, 3124-3138.	12.0	35
15	The Autophagy in Osteoimmonology: Self-Eating, Maintenance, and Beyond. Frontiers in Endocrinology, 2019, 10, 490.	3.5	33
16	Current Application of Beta-Tricalcium Phosphate in Bone Repair and Its Mechanism to Regulate Osteogenesis. Frontiers in Materials, 2021, 8, .	2.4	29
17	The interplay between hemostasis and immune response in biomaterial development for osteogenesis. Materials Today, 2022, 54, 202-224.	14.2	29
18	3D printed \hat{l}^2 -TCP scaffold with sphingosine 1-phosphate coating promotes osteogenesis and inhibits inflammation. Biochemical and Biophysical Research Communications, 2019, 512, 889-895.	2.1	23

#	Article	IF	CITATIONS
19	Current Development of Nano-Drug Delivery to Target Macrophages. Biomedicines, 2022, 10, 1203.	3.2	20
20	Double-layered microsphere based dual growth factor delivery system for guided bone regeneration. RSC Advances, 2018, 8, 16503-16512.	3.6	18
21	Surface engineering of titania nanotubes incorporated with double-layered extracellular vesicles to modulate inflammation and osteogenesis. International Journal of Energy Production and Management, 2021, 8, rbab010.	3.7	18
22	Different Correlation of Sphingosine-1-Phosphate Receptor 1 with Receptor Activator of Nuclear Factor Kappa B Ligand and Regulatory T Cells in Rat Periapical Lesions. Journal of Endodontics, 2015, 41, 479-486.	3.1	15
23	A novel MMP-responsive nanoplatform with transformable magnetic resonance property for quantitative tumor bioimaging and synergetic chemo-photothermal therapy. Nano Today, 2022, 45, 101524.	11.9	15
24	Modulatory Role of Silver Nanoparticles and Mesenchymal Stem Cell–Derived Exosome-Modified Barrier Membrane on Macrophages and Osteogenesis. Frontiers in Chemistry, 2021, 9, 699802.	3.6	13
25	Autophagy in resin monomer-initiated toxicity of dental mesenchymal cells: a novel therapeutic target of N-acetyl cysteine. Journal of Materials Chemistry B, 2015, 3, 6820-6836.	5.8	12
26	Macrophages at Low-Inflammatory Status Improved Osteogenesis via Autophagy Regulation. Tissue Engineering - Part A, $2021, $, .	3.1	12
27	<scp>LiCl</scp> â€induced immunomodulatory periodontal regeneration via the activation of the Wnt/βâ€catenin signaling pathway. Journal of Periodontal Research, 2022, 57, 835-848.	2.7	11
28	Eco-friendly development of an ultrasmall IONP-loaded nanoplatform for bimodal imaging-guided cancer theranostics. Biomaterials Science, 2020, 8, 6375-6386.	5.4	9
29	Porous Nanomaterials Targeting Autophagy in Bone Regeneration. Pharmaceutics, 2021, 13, 1572.	4.5	9
30	Leucine-activated nanohybrid biofilm for skin regeneration <i>via</i> improving cell affinity and neovascularization capacity. Journal of Materials Chemistry B, 2020, 8, 7966-7976.	5.8	7
31	Bioactive Filmâ€Guided Soft–Hard Interface Design Technology for Multiâ€Tissue Integrative Regeneration. Advanced Science, 2022, , 2105945.	11.2	4
32	The Modulatory Role of Growth Hormone in Inflammation and Macrophage Activation. Endocrinology, 2022, 163, .	2.8	3
33	Rational Design and Fabrication of Biomimetic Hierarchical Scaffolds With Bone-Matchable Strength for Bone Regeneration. Frontiers in Materials, 2021, 7, .	2.4	1
34	Gold Nanoclusters Potentially Facilitate Dentin Regeneration by Functioning Immunomodulation. Frontiers in Materials, 2022, 9, .	2.4	1