Reynaldo Villalonga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4898408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supramolecular Chemistry of Cyclodextrins in Enzyme Technology. Chemical Reviews, 2007, 107, 3088-3116.	23.0	354
2	Preparation of core–shell Fe ₃ O ₄ @poly(dopamine) magnetic nanoparticles for biosensor construction. Journal of Materials Chemistry B, 2014, 2, 739-746.	2.9	197
3	Chitosanâ^'Whey Protein Edible Films Produced in the Absence or Presence of Transglutaminase:Â Analysis of Their Mechanical and Barrier Properties. Biomacromolecules, 2006, 7, 744-749.	2.6	151
4	Inactivation of immobilized trypsin under dissimilar conditions produces trypsin molecules with different structures. RSC Advances, 2016, 6, 27329-27334.	1.7	139
5	Enzyme-Powered Gated Mesoporous Silica Nanomotors for On-Command Intracellular Payload Delivery. ACS Nano, 2019, 13, 12171-12183.	7.3	121
6	Electrochemical biosensors based on nucleic acid aptamers. Analytical and Bioanalytical Chemistry, 2020, 412, 55-72.	1.9	120
7	Toward the Design of Smart Delivery Systems Controlled by Integrated Enzyme-Based Biocomputing Ensembles. Journal of the American Chemical Society, 2014, 136, 9116-9123.	6.6	100
8	Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 2017, 8, 15511.	5.8	96
9	Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications, 2013, 49, 6391.	2.2	95
10	Direct Electron Transfer between a Site-Specific Pyrene-Modified Laccase and Carbon Nanotube/Gold Nanoparticle Supramolecular Assemblies for Bioelectrocatalytic Dioxygen Reduction. ACS Catalysis, 2016, 6, 1894-1900.	5.5	89
11	Immobilization of Adamantane-Modified Cytochromecat Electrode Surfaces through Supramolecular Interactions. Langmuir, 2002, 18, 5051-5054.	1.6	88
12	Adamantane/ \hat{l}^2 -cyclodextrin affinity biosensors based on single-walled carbon nanotubes. Biosensors and Bioelectronics, 2009, 24, 1128-1134.	5.3	88
13	Ultrafast Directional Janus Pt–Mesoporous Silica Nanomotors for Smart Drug Delivery. ACS Nano, 2021, 15, 4467-4480.	7.3	88
14	Preparation and functional properties of trypsin modified by carboxymethylcellulose. Journal of Molecular Catalysis B: Enzymatic, 2000, 10, 483-490.	1.8	78
15	Label-free electrochemical aptasensing platform based on mesoporous silica thin film for the detection of prostate specific antigen. Sensors and Actuators B: Chemical, 2018, 255, 309-315.	4.0	78
16	Isolation and characterisation of pectic substances from murta (Ugni molinae Turcz) fruits. Food Chemistry, 2010, 123, 669-678.	4.2	76
17	Dual Functional Graphene Derivative-Based Electrochemical Platforms for Detection of the <i>TP53</i> Gene with Single Nucleotide Polymorphism Selectivity in Biological Samples. Analytical Chemistry, 2015, 87, 2290-2298.	3.2	76
18	Reduced graphene oxide-carboxymethylcellulose layered with platinum nanoparticles/PAMAM dendrimer/magnetic nanoparticles hybrids. Application to the preparation of enzyme electrochemical biosensors. Sensors and Actuators B: Chemical, 2016, 232, 84-90.	4.0	74

#	Article	IF	CITATIONS
19	Decoration of reduced graphene oxide with rhodium nanoparticles for the design of a sensitive electrochemical enzyme biosensor for 17β-estradiol. Biosensors and Bioelectronics, 2017, 89, 343-351.	5.3	72
20	Functional stabilization of cellulase by covalent modification with chitosan. Journal of Chemical Technology and Biotechnology, 2001, 76, 489-493.	1.6	70
21	Versatility of divinylsulfone supports permits the tuning of CALB properties during its immobilization. RSC Advances, 2015, 5, 35801-35810.	1.7	70
22	Biosensors in forensic analysis. A review. Analytica Chimica Acta, 2014, 823, 1-19.	2.6	69
23	Amperometric Biosensor for Hydrogen Peroxide, Using Supramolecularly Immobilized Horseradish Peroxidase on the β yclodextrin oated Gold Electrode. Electroanalysis, 2007, 19, 2538-2542.	1.5	67
24	Ultrasensitive detection of adrenocorticotropin hormone (ACTH) using disposable phenylboronic-modified electrochemical immunosensors. Biosensors and Bioelectronics, 2012, 35, 82-86.	5.3	65
25	Transglutaminase-catalyzed preparation of chitosan–ovalbumin films. Enzyme and Microbial Technology, 2007, 40, 437-441.	1.6	63
26	Rapid Legionella pneumophila determination based on a disposable core–shell Fe 3 O 4 @poly(dopamine) magnetic nanoparticles immunoplatform. Analytica Chimica Acta, 2015, 887, 51-58.	2.6	61
27	Hybrid Decorated Core@Shell Janus Nanoparticles as a Flexible Platform for Targeted Multimodal Molecular Bioimaging of Cancer. ACS Applied Materials & Interfaces, 2018, 10, 31032-31043.	4.0	61
28	Lipase fraction from the viscera of grey mullet (Mugil cephalus). Enzyme and Microbial Technology, 2007, 40, 394-402.	1.6	60
29	Designing Electrochemical Interfaces with Functionalized Magnetic Nanoparticles and Wrapped Carbon Nanotubes as Platforms for the Construction of High-Performance Bienzyme Biosensors. Analytical Chemistry, 2011, 83, 7807-7814.	3.2	60
30	Wiring horseradish peroxidase on gold nanoparticles-based nanostructured polymeric network for the construction of mediatorless hydrogen peroxide biosensor. Electrochimica Acta, 2011, 56, 4672-4677.	2.6	59
31	Enzymeâ€Controlled Sensing–Actuating Nanomachine Based on Janus Au–Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 2013, 19, 7889-7894.	1.7	59
32	Supramolecular Immobilization of Xanthine Oxidase on Electropolymerized Matrix of Functionalized Hybrid Gold Nanoparticles/Single-Walled Carbon Nanotubes for the Preparation of Electrochemical Biosensors. ACS Applied Materials & Interfaces, 2012, 4, 4312-4319.	4.0	58
33	Transglutaminase-catalyzed synthesis of trypsin-cyclodextrin conjugates: Kinetics and stability properties. Biotechnology and Bioengineering, 2003, 81, 732-737.	1.7	57
34	Selfâ€Regulated Glucose‣ensitive Neoglycoenzymeâ€Capped Mesoporous Silica Nanoparticles for Insulin Delivery. Chemistry - A European Journal, 2017, 23, 1353-1360.	1.7	55
35	Reduced graphene oxide-Sb2O5 hybrid nanomaterial for the design of a laccase-based amperometric biosensor for estriol. Electrochimica Acta, 2015, 174, 332-339.	2.6	54
36	Stabilization of invertase by modification of sugar chains with chitosan. Biotechnology Letters, 2000, 22, 347-350.	1.1	52

#	Article	IF	CITATIONS
37	Amperometric magnetoimmunosensor for ErbB2 breast cancer biomarker determination in human serum, cell lysates and intact breast cancer cells. Biosensors and Bioelectronics, 2015, 70, 34-41.	5.3	52
38	Electrochemical aptamer-based bioplatform for ultrasensitive detection of prostate specific antigen. Sensors and Actuators B: Chemical, 2019, 297, 126762.	4.0	52
39	Amperometric aptasensor for carcinoembryonic antigen based on the use of bifunctionalized Janus nanoparticles as biorecognition-signaling element. Analytica Chimica Acta, 2019, 1061, 84-91.	2.6	51
40	Amperometric magnetoimmunoassay for the direct detection of tumor necrosis factor alpha biomarker in human serum. Analytica Chimica Acta, 2014, 838, 37-44.	2.6	50
41	Biomedical nanomotors: efficient glucose-mediated insulin release. Nanoscale, 2017, 9, 14307-14311.	2.8	49
42	Functional stabilization of invertase by covalent modification with pectin. Biotechnology Letters, 2000, 22, 1191-1195.	1.1	48
43	Ferrocene Branched Chitosan for the Construction of a Reagentless Amperometric Hydrogen Peroxide Biosensor. Macromolecular Bioscience, 2007, 7, 435-439.	2.1	47
44	Construction of an amperometric biosensor for xanthine via supramolecular associations. Electrochemistry Communications, 2007, 9, 454-458.	2.3	47
45	Electrochemical biointerfaces based on carbon nanotubes-mesoporous silica hybrid material: Bioelectrocatalysis of hemoglobin and biosensing applications. Biosensors and Bioelectronics, 2018, 111, 144-151.	5.3	47
46	Immobilization of chitosan-modified invertase on alginate-coated chitin support via polyelectrolyte complex formation. Enzyme and Microbial Technology, 2006, 38, 22-27.	1.6	46
47	Stimulus-responsive nanomotors based on gated enzyme-powered Janus Au–mesoporous silica nanoparticles for enhanced cargo delivery. Chemical Communications, 2019, 55, 13164-13167.	2.2	46
48	Graphene–polyamidoamine dendrimer–Pt nanoparticles hybrid nanomaterial for the preparation of mediatorless enzyme biosensor. Journal of Electroanalytical Chemistry, 2014, 717-718, 96-102.	1.9	45
49	Decorating carbon nanotubes with polyethylene glycol-coated magnetic nanoparticles for implementing highly sensitive enzyme biosensors. Journal of Materials Chemistry, 2011, 21, 12858.	6.7	44
50	Thermal stabilization of trypsin by enzymic modification with β-cyclodextrin derivatives. Biotechnology and Applied Biochemistry, 2003, 38, 53.	1.4	42
51	Amperometric biosensor for xanthine with supramolecular architecture. Chemical Communications, 2007, , 942-944.	2.2	42
52	Pyrene-adamantane-β-cyclodextrin: An efficient host–guest system for the biofunctionalization of SWCNT electrodes. Carbon, 2011, 49, 2571-2578.	5.4	42
53	Supramolecular assembly of β-cyclodextrin-modified gold nanoparticles and Cu, Zn-superoxide dismutase on catalase. Journal of Molecular Catalysis B: Enzymatic, 2005, 35, 79-85.	1.8	41
54	An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angewandte Chemie - International Edition, 2019, 58, 14986-14990.	7.2	40

#	Article	IF	CITATIONS
55	Hydrogen Peroxide Biosensor with a Supramolecular Layer-by-Layer Design. Langmuir, 2008, 24, 7654-7657.	1.6	39
56	Effect of Transglutaminase on the Mechanical and Barrier Properties of Whey Protein/Pectin Films Prepared at Complexation pH. Journal of Agricultural and Food Chemistry, 2013, 61, 4593-4598.	2.4	39
57	Covalent immobilization of phenylalanine dehydrogenase on cellulose membrane for biosensor construction. Sensors and Actuators B: Chemical, 2008, 129, 195-199.	4.0	38
58	Janus Au-mesoporous silica nanoparticles as electrochemical biorecognition-signaling system. Electrochemistry Communications, 2013, 30, 51-54.	2.3	38
59	Disposable electrochemical biosensors for Brettanomyces bruxellensis and total yeast content in wine based on core-shell magnetic nanoparticles. Sensors and Actuators B: Chemical, 2019, 279, 15-21.	4.0	38
60	Stabilization of α-amylase by chemical modification with carboxymethylcellulose. Journal of Chemical Technology and Biotechnology, 1999, 74, 635-638.	1.6	37
61	Crumpled reduced graphene oxide–polyamidoamine dendrimer hybrid nanoparticles for the preparation of an electrochemical biosensor. Journal of Materials Chemistry B, 2013, 1, 2289.	2.9	37
62	Decorating graphene oxide/nanogold with dextran-based polymer brushes for the construction of ultrasensitive electrochemical enzyme biosensors. Journal of Materials Chemistry B, 2015, 3, 3518-3524.	2.9	37
63	Gold nanoparticles: Poly(diallyldimethylammonium chloride)–carbon nanotubes composites as platforms for the preparation of electrochemical enzyme biosensors: Application to the determination of cholesterol. Journal of Electroanalytical Chemistry, 2011, 661, 171-178.	1.9	35
64	Dendrimers as Soft Nanomaterials for Electrochemical Immunosensors. Nanomaterials, 2019, 9, 1745.	1.9	35
65	Improved functional properties of trypsin modified by monosubstituted amino-β-cyclodextrins. Journal of Molecular Catalysis B: Enzymatic, 2003, 21, 133-141.	1.8	34
66	Transglutaminase-catalyzed site-specific glycosidation of catalase with aminated dextran. Journal of Biotechnology, 2006, 122, 326-333.	1.9	34
67	Amperometric enzyme biosensor for hydrogen peroxide via Ugi multicomponent reaction. Electrochemistry Communications, 2007, 9, 1655-1660.	2.3	34
68	Superoxide Dismutase Mimetic Activity of the Metal (II) Complexes of a Dithiocarbamate Derivative of β-Cyclodextrin ¹ . Journal of Carbohydrate Chemistry, 1995, 14, 1379-1386.	0.4	33
69	Chemical conjugation of trypsin with monoamine derivatives of cyclodextrins. Enzyme and Microbial Technology, 2002, 31, 543-548.	1.6	33
70	Cyclodextrin-grafted polysaccharides as supramolecular carrier systems for naproxen. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1499-1501.	1.0	33
71	Novel enzyme biosensor for hydrogen peroxide via supramolecular associations. Biosensors and Bioelectronics, 2009, 24, 2028-2033.	5.3	32
72	Supramolecular immobilization of redox enzymes on cyclodextrin-coated magnetic nanoparticles for biosensing applications. Journal of Colloid and Interface Science, 2012, 386, 181-188.	5.0	32

#	Article	IF	CITATIONS
73	Mesoporous silica thin film mechanized with a DNAzyme-based molecular switch for electrochemical biosensing. Electrochemistry Communications, 2015, 58, 57-61.	2.3	32
74	Functionalization of bamboo-like carbon nanotubes with 3-mercaptophenylboronic acid-modified gold nanoparticles for the development of a hybrid glucose enzyme electrochemical biosensor. Sensors and Actuators B: Chemical, 2015, 216, 629-637.	4.0	32
75	Electropolymerized network of polyamidoamine dendron-coated gold nanoparticles as novel nanostructured electrode surface for biosensor construction. Analyst, The, 2012, 137, 342-348.	1.7	31
76	α-Chymotrypsin stabilization by chemical conjugation with O-carboxymethyl-poly-β-cyclodextrin. Process Biochemistry, 2004, 39, 535-539.	1.8	30
77	Polyelectrolyte complex formation mediated immobilization of chitosan-invertase neoglycoconjugate on pectin-coated chitin. Bioprocess and Biosystems Engineering, 2006, 28, 387-395.	1.7	30
78	Polyelectrostatic immobilization of gold nanoparticles-modified peroxidase on alginate-coated gold electrode for mediatorless biosensor construction. Journal of Electroanalytical Chemistry, 2009, 629, 126-132.	1.9	30
79	Novel reduced graphene oxide–glycol chitosan nanohybrid for the assembly of an amperometric enzyme biosensor for phenols. Analyst, The, 2016, 141, 4162-4169.	1.7	30
80	Estrogen receptor \hat{I}_{\pm} determination in serum, cell lysates and breast cancer cells using an amperometric magnetoimmunosensing platform. Sensing and Bio-Sensing Research, 2016, 7, 71-76.	2.2	30
81	Janus Gold Nanostars–Mesoporous Silica Nanoparticles for NIR‣ightâ€Triggered Drug Delivery. Chemistry - A European Journal, 2019, 25, 8471-8478.	1.7	30
82	Amperometric aptasensor with sandwich-type architecture for troponin I based on carboxyethylsilanetriol-modified graphene oxide coated electrodes. Biosensors and Bioelectronics, 2021, 183, 113203.	5.3	28
83	Stabilization of trypsin by chemical modification with β-cyclodextrin monoaldehyde. Biotechnology Letters, 2002, 24, 1455-1459.	1.1	27
84	Nanochannel-based electrochemical assay for transglutaminase activity. Chemical Communications, 2014, 50, 13356-13358.	2.2	27
85	Enzymeâ€Controlled Nanodevice for Acetylcholineâ€īriggered Cargo Delivery Based on Janus Au–Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 2017, 23, 4276-4281.	1.7	27
86	Singleâ€Walled Carbon Nanotubes/Au–Mesoporous Silica Janus Nanoparticles as Building Blocks for the Preparation of a Bienzyme Biosensor. ChemElectroChem, 2015, 2, 1735-1741.	1.7	26
87	Neoglycoenzyme-Gated Mesoporous Silica Nanoparticles: Toward the Design of Nanodevices for Pulsatile Programmed Sequential Delivery. ACS Applied Materials & Interfaces, 2016, 8, 7657-7665.	4.0	26
88	Supramolecular-mediated immobilization of l-phenylalanine dehydrogenase on cyclodextrin-coated Au electrodes for biosensor applications. Biotechnology Letters, 2007, 29, 447-452.	1.1	25
89	Label-free electrochemical genosensor based on mesoporous silica thin film. Analytical and Bioanalytical Chemistry, 2016, 408, 7321-7327.	1.9	25
90	An electrochemical immunosensor for adiponectin using reduced graphene oxide–carboxymethylcellulose hybrid as electrode scaffold. Sensors and Actuators B: Chemical, 2016, 223, 89-94.	4.0	25

#	Article	IF	CITATIONS
91	Title is missing!. Biotechnology Letters, 2002, 24, 1665-1668.	1.1	23
92	Supramolecular immobilization of glucose oxidase on gold coated with cyclodextrin-modified cysteamine core PAMAM G-4 dendron/Pt nanoparticles for mediatorless biosensor design. Analytical and Bioanalytical Chemistry, 2013, 405, 3773-3781.	1.9	23
93	Waterâ€Soluble Reduced Graphene Oxide–Carboxymethylcellulose Hybrid Nanomaterial for Electrochemical Biosensor Design. ChemPlusChem, 2014, 79, 1334-1341.	1.3	23
94	Functional properties and application in peptide synthesis of trypsin modified with cyclodextrin-containing dicarboxylic acids. Journal of Molecular Catalysis B: Enzymatic, 2004, 31, 47-52.	1.8	22
95	Improved Anti-Inflammatory and Pharmacokinetic Properties for Superoxide Dismutase by Chemical Glycosidation with Carboxymethylchitin. Macromolecular Bioscience, 2005, 5, 118-123.	2.1	22
96	Improved Anti-Inflammatory Properties for Naproxen with Cyclodextrin-Grafted Polysaccharides. Macromolecular Bioscience, 2006, 6, 555-561.	2.1	22
97	Antioxidative properties of copper(II) complexes. Journal of Coordination Chemistry, 2009, 62, 100-107.	0.8	22
98	Functional Stabilization of Trypsin by Conjugation with β-Cyclodextrin-Modified Carboxymethylcellulose. Preparative Biochemistry and Biotechnology, 2003, 33, 53-66.	1.0	21
99	Effect of β-cyclodextrin-polysucrose polymer on the stability properties of soluble trypsin. Enzyme and Microbial Technology, 2004, 34, 78-82.	1.6	21
100	Thermal stabilization of trypsin with glycol chitosan. Journal of Molecular Catalysis B: Enzymatic, 2005, 34, 14-17.	1.8	21
101	Immobilizing Cu,Zn-superoxide dismutase in hydrogels of carboxymethylcellulose improves its stability and wound healing properties. Biochemistry (Moscow), 2006, 71, 1324-1328.	0.7	21
102	Supramolecular-mediated thermostabilization of phenylalanine dehydrogenase modified with β-cyclodextrin derivatives. Biochemical Engineering Journal, 2006, 30, 26-32.	1.8	21
103	Structure/Function Relationships of Several Biopolymers as Related to Invertase Stability in Dehydrated Systems. Biomacromolecules, 2008, 9, 741-747.	2.6	21
104	Amperometric magnetobiosensors using poly(dopamine)-modified Fe ₃ O ₄ magnetic nanoparticles for the detection of phenolic compounds. Analytical Methods, 2015, 7, 8801-8808.	1.3	21
105	Determination of SOD-Like activity of Copper(II) complexes with α-Amino acid dithiocarbamates. Journal of Inorganic Biochemistry, 1997, 66, 213-217.	1.5	20
106	Stabilization of α-chymotrypsin by modification with β-cyclodextrin derivatives. Biotechnology and Applied Biochemistry, 2002, 36, 235.	1.4	20
107	Preparation of thermostable trypsin–polysaccharide neoglycoenzymes through Ugi multicomponent reaction. Journal of Molecular Catalysis B: Enzymatic, 2009, 59, 126-130.	1.8	20
108	A Layerâ€by‣ayer Biosensing Architecture Based on Polyamidoamine Dendrimer and Carboxymethylcelluloseâ€Modified Graphene Oxide. Electroanalysis, 2015, 27, 2131-2138.	1.5	20

#	Article	IF	CITATIONS
109	Avidin-gated mesoporous silica nanoparticles for signal amplification in electrochemical biosensor. Electrochemistry Communications, 2019, 108, 106556.	2.3	20
110	Amperometric aptasensor for carcinoembryonic antigen based on a reduced graphene oxide/gold nanoparticles modified electrode. Journal of Electroanalytical Chemistry, 2020, 877, 114511.	1.9	20
111	A chemical circular communication network at the nanoscale. Chemical Science, 2021, 12, 1551-1559.	3.7	20
112	Chemical glycosidation of trypsin with <i>O</i> â€ɛarboxymethylâ€polyâ€î²â€ɛyclodextrin: catalytic and stability properties. Biotechnology and Applied Biochemistry, 2005, 41, 217-223.	1.4	19
113	Partial purification and properties of cyclodextrin glycosiltransferase (CGTase) from alkalophilic Bacillus species. SpringerPlus, 2012, 1, 61.	1.2	19
114	Neoglycoenzymes. Chemical Reviews, 2014, 114, 4868-4917.	23.0	19
115	Disposable electrochemical immunosensor for Brettanomyces bruxellensis based on nanogold-reduced graphene oxide hybrid nanomaterial. Analytical and Bioanalytical Chemistry, 2017, 409, 5667-5674.	1.9	19
116	Hybrid Mesoporous Nanocarriers Act by Processing Logic Tasks: Toward the Design of Nanobots Capable of Reading Information from the Environment. ACS Applied Materials & Interfaces, 2018, 10, 26494-26500.	4.0	19
117	Effects of β-cyclodextrin-dextran polymer on stability properties of trypsin. Biotechnology and Bioengineering, 2003, 83, 743-747.	1.7	18
118	Glycosidation of Cu,Zn-Superoxide Dismutase with End-Group Aminated Dextran. Pharmacological and Pharmacokinetics Properties. Macromolecular Bioscience, 2005, 5, 1220-1225.	2.1	18
119	β-Cyclodextrin modifications as related to enzyme stability in dehydrated systems: Supramolecular transitions and molecular interactions. Carbohydrate Polymers, 2011, 83, 203-209.	5.1	18
120	Gold nanoparticles-decorated silver-bipyridine nanobelts for the construction of mediatorless hydrogen peroxide biosensor. Journal of Colloid and Interface Science, 2016, 482, 105-111.	5.0	18
121	Stabilization of α-chymotrypsin by chemical modification with monoamine cyclodextrin. Process Biochemistry, 2005, 40, 2091-2094.	1.8	17
122	Putrescine–polysaccharide conjugates as transglutaminase substrates and their possible use in producing crosslinked films. Amino Acids, 2010, 38, 669-675.	1.2	17
123	Au–Mesoporous silica nanoparticles gated with disulfide-linked oligo(ethylene glycol) chains for tunable cargo delivery mediated by an integrated enzymatic control unit. Journal of Materials Chemistry B, 2017, 5, 6734-6739.	2.9	17
124	Bienzymatic Supramolecular Complex of Catalase Modified with Cyclodextrin-Branched Carboxymethylcellulose and Superoxide Dismutase: Stability and Anti-Inflammatory Properties. Macromolecular Bioscience, 2007, 7, 70-75.	2.1	16
125	Preparation of β-Cyclodextrin-Dextran Polymers and their Use as Supramolecular Carrier Systems for Naproxen. Polymer Bulletin, 2007, 59, 597-605.	1.7	16
126	IMMOBILIZATION OF INVERTASE–CHITOSAN CONJUGATE ON HYALURONIC-ACID-MODIFIED CHITIN. Journal of Food Biochemistry, 2008, 32, 264-277.	1.2	15

#	Article	IF	CITATIONS
127	Toward chemical communication between nanodevices. Nano Today, 2018, 18, 8-11.	6.2	15
128	Disposable amperometric immunosensor for Saccharomyces cerevisiae based on carboxylated graphene oxide-modified electrodes. Analytical and Bioanalytical Chemistry, 2018, 410, 7901-7907.	1.9	15
129	Increased Conformational and Thermal Stability Properties for Phenylalanine Dehydrogenase by Chemical Glycosidation with End-group Activated Dextran. Biotechnology Letters, 2005, 27, 1311-1317.	1.1	14
130	Invertase Stabilization by Chemical Modification of Sugar Chains with Carboxymethylcellulose. Journal of Bioactive and Compatible Polymers, 2002, 17, 161-172.	0.8	13
131	First Occurrence of Tetrazines in Aqueous Solution: Electrochemistry and Fluorescence. ChemPhysChem, 2015, 16, 3695-3699.	1.0	13
132	Janus nanocarrier powered by bi-enzymatic cascade system for smart delivery. Journal of Materials Chemistry B, 2019, 7, 4669-4676.	2.9	13
133	Dithioacetal-mechanized mesoporous nanosensor for Hg(II) determination. Microporous and Mesoporous Materials, 2020, 297, 110054.	2.2	13
134	Supramolecular-mediated Immobilization of Trypsin on Cyclodextrin-modified Gold Nanospheres. Supramolecular Chemistry, 2005, 17, 387-391.	1.5	12
135	Transglutaminase-catalysed glycosidation of trypsin with aminated polysaccharides. World Journal of Microbiology and Biotechnology, 2006, 22, 595-602.	1.7	12
136	Immobilization of Chitosanâ€Invertase Neoglycoconjugate on Carboxymethylcelluloseâ€Modified Chitin. Preparative Biochemistry and Biotechnology, 2006, 36, 259-271.	1.0	12
137	Layer-by-layer supramolecular architecture of cyclodextrin-modified PAMAM dendrimers and adamantane-modified peroxidase on gold surface for electrochemical biosensing. Electrochimica Acta, 2012, 76, 249-255.	2.6	12
138	Seed-mediated growth of jack-shaped gold nanoparticles from cyclodextrin-coated gold nanospheres. Dalton Transactions, 2013, 42, 14309.	1.6	12
139	Solubilization and Stabilization of Sodium Dicloxacillin by Cyclodextrin Inclusion. Current Drug Discovery Technologies, 2008, 5, 140-145.	0.6	11
140	A copper(II) thiosemicarbazone complex built on gold for the immobilization of lipase and laccase. Journal of Colloid and Interface Science, 2010, 348, 96-100.	5.0	11
141	Gold nanoparticles/silver-bipyridine hybrid nanobelts with tuned peroxidase-like activity. RSC Advances, 2016, 6, 74957-74960.	1.7	11
142	A Versatile New Paradigm for the Design of Optical Nanosensors Based on Enzymeâ€Mediated Detachment of Labeled Reporters: The Example of Urea Detection. Chemistry - A European Journal, 2019, 25, 3575-3581.	1.7	11
143	Gold Nanoparticles Enhancing Dismutation of Superoxide Radical by Its Bis(dithiocarbamato)copper(II) Shell. Inorganic Chemistry, 2011, 50, 4705-4712.	1.9	10
144	Towards nanomedicine with a supramolecular approach: a review. IET Nanobiotechnology, 2005, 152, 159	2.1	9

#	Article	IF	CITATIONS
145	Anti-inflammatory properties of superoxide dismutase modified with carboxymetil-cellulose polymer and hydrogel. Journal of Materials Science: Materials in Medicine, 2006, 17, 427-435.	1.7	9
146	Glycosidation of phenylalanine dehydrogenase with O-carboxymethyl-poly-β-cyclodextrin. Enzyme and Microbial Technology, 2007, 40, 471-475.	1.6	9
147	Electrocatalytic oxidation enhancement at the surface of InGaN films and nanostructures grown directly on Si(111). Electrochemistry Communications, 2015, 60, 158-162.	2.3	9
148	Amperometric xanthine biosensors using glassy carbon electrodes modified with electrografted porous silica nanomaterials loaded with xanthine oxidase. Mikrochimica Acta, 2016, 183, 2023-2030.	2.5	9
149	An enzyme-controlled Janus nanomachine for on-command dual and sequential release. Chemical Communications, 2020, 56, 6440-6443.	2.2	9
150	Metal-Induced Stabilization of Trypsin Modified with α-Oxoglutaric Acidâ€. Biotechnology Letters, 2004, 26, 209-212.	1.1	8
151	Improved Pharmacological Properties for Superoxide Dismutase Modified with Carboxymethycellulose. Journal of Bioactive and Compatible Polymers, 2005, 20, 557-570.	0.8	8
152	Immobilization of Xanthine Oxidase on Carbon Nanotubes Through Double Supramolecular Junctions for Biosensor Construction. Electroanalysis, 2011, 23, 1790-1796.	1.5	8
153	Glucose-Responsive Enzyme-Controlled Mesoporous Nanomachine with a Layer-by-Layer Supramolecular Architecture. ACS Applied Bio Materials, 2019, 2, 3321-3328.	2.3	8
154	Enzyme-controlled mesoporous nanosensor for the detection of living Saccharomyces cerevisiae. Sensors and Actuators B: Chemical, 2020, 303, 127197.	4.0	8
155	Improved Pharmacokinetics Properties for Catalase by Site-Specific Glycosidation with Aminated Dextran. Macromolecular Rapid Communications, 2005, 26, 1304-1308.	2.0	7
156	Vapor sensing and interface properties of reduced graphene oxide–poly(methyl methacrylate) nanocomposite. Journal of Materials Science: Materials in Electronics, 2019, 30, 2908-2919.	1.1	7
157	Supramolecular Chemistry of Cyclodextrins in Cuba. Supramolecular Chemistry, 2003, 15, 161-170.	1.5	6
158	Improved pharmacological properties for superoxide dismutase modified with mannan. Biotechnology and Applied Biochemistry, 2006, 44, 159.	1.4	6
159	Improved pharmacological properties for superoxide dismutase modified with β-cyclodextrin–carboxymethylcellulose polymer. Biotechnology Letters, 2006, 28, 1465-1470.	1.1	6
160	Polyethylene glycolâ€based low generation dendrimers functionalized with <i>β</i> â€cyclodextrin as cryo― and dehydroâ€protectant of catalase formulations. Biotechnology Progress, 2013, 29, 786-795.	1.3	6
161	Functionalized carbon nanotubes decorated with fluorine-doped titanium dioxide nanoparticles on silicon substrate as template for titanium dioxide film photo-anode grown by chemical vapour deposition. Thin Solid Films, 2018, 656, 30-36.	0.8	6
162	<scp>A l</scp> -glutamate-responsive delivery system based on enzyme-controlled self-immolative arylboronate-gated nanoparticles. Organic Chemistry Frontiers, 2019, 6, 1058-1063.	2.3	6

#	Article	IF	CITATIONS
163	Enhanced photoconversion efficiency of hybrid TiO2/nox-MWCNT/Si photoanode for water splitting in neutral medium. Materials Letters, 2021, 285, 129128.	1.3	6
164	Sucrose-Responsive Intercommunicated Janus Nanoparticles Network. Nanomaterials, 2021, 11, 2492.	1.9	6
165	Glycosidation of trypsin with end-group activated dextran. Process Biochemistry, 2006, 41, 1155-1159.	1.8	5
166	Improved pharmacokinetics and stability properties of catalase by chemical glycosidation with end-group activated dextran. Journal of Applied Polymer Science, 2006, 102, 4573-4576.	1.3	5
167	Reduced graphene oxide–poly(methyl methacrylate) nanocomposite as a supercapacitor. Journal of Applied Polymer Science, 2018, 135, 46685.	1.3	5
168	A glutathione disulfide-sensitive Janus nanomachine controlled by an enzymatic AND logic gate for smart delivery. Nanoscale, 2021, 13, 18616-18625.	2.8	5
169	An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angewandte Chemie, 2019, 131, 15128-15132.	1.6	4
170	Nickel oxide nanoparticles-modified glassy carbon electrodes for non-enzymatic determination of total sugars in commercial beverages. Microchemical Journal, 2020, 159, 105538.	2.3	4
171	Impact of supramolecular interactions of dextranâ€Î²â€cyclodextrin polymers on invertase activity in freezeâ€dried systems. Biotechnology Progress, 2015, 31, 791-798.	1.3	3
172	Biospecific immobilisation of mannan-modified α-amylase on Concanavalin A Sepharose. International Journal of Biotechnology, 2004, 6, 385.	1.2	2
173	International conference on enzyme technology "RELATENZ'2005― Enzyme and Microbial Technology, 2007, 40, 381.	1.6	2
174	Biotin‣abeled Electropolymerized Network of Gold Nanoparticles for Amperometric Immunodetection of Human Fibrinogen. ChemElectroChem, 2014, 1, 200-206.	1.7	2
175	Gold surface patterned with cyclodextrin-based molecular nanopores for electrochemical assay of transglutaminase activity. Electrochemistry Communications, 2014, 40, 13-16.	2.3	2
176	A 1-to-2 demultiplexer hybrid nanocarrier for cargo delivery and activation. Chemical Communications, 2020, 56, 9974-9977.	2.2	2
177	Pharmacokinetics and Stability Properties of Catalase Modified with Water-Soluble Polysaccharides. Archiv Der Pharmazie, 2006, 339, 372-377.	2.1	1
178	Advanced Materials in Electroanalysis. Electroanalysis, 2015, 27, 2018-2018.	1.5	1
179	Hybrid magnetic nanoparticles for electrochemical biosensors. , 2021, , 679-720.		1
180	Supramolecular Enzymatic Labeling for Aptamer Switch-Based Electrochemical Biosensor. Biosensors, 2022, 12, 514.	2.3	0