Chandan Bera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4897753/publications.pdf

Version: 2024-02-01

		430874	3	395702	
50	1,198	18		33	
papers	citations	h-index		g-index	
50	50	50		1353	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Photoinduced high thermoelectric power factor in strontium titanate. Physica B: Condensed Matter, 2022, 627, 413552.	2.7	2
2	Interfacial interaction induced OER activity of MOF derived superhydrophilic Co ₃ O ₄ –NiO hybrid nanostructures. Dalton Transactions, 2022, 51, 2019-2025.	3.3	8
3	Super-Hydrophilic Leaflike Sn ₄ P ₃ on the Porous Seamless Graphene–Carbon Nanotube Heterostructure as an Efficient Electrocatalyst for Solar-Driven Overall Water Splitting. ACS Nano, 2022, 16, 4861-4875.	14.6	41
4	Recent developments in biomass derived cellulose aerogel materials for thermal insulation application: a review. Cellulose, 2022, 29, 4805-4833.	4.9	39
5	Nanochannel Mediated Electrical and Photoconductivity of Metal Organic Nanotubes. ACS Sustainable Chemistry and Engineering, 2022, 10, 6981-6987.	6.7	4
6	Rashba spin splitting in two-dimensional electron gas in polar-polar perovskite oxide heterostructure LaVO3/KTaO3: A DFT investigation. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 144, 115394.	2.7	4
7	Ultrathin MoS ₂ wrapped N-doped carbon-coated cobalt nanospheres for OER applications. Sustainable Energy and Fuels, 2021, 5, 801-807.	4.9	16
8	Super-Hydrophilic Hierarchical Ni-Foam-Graphene-Carbon Nanotubes-Ni ₂ P–CuP ₂ Nano-Architecture as Efficient Electrocatalyst for Overall Water Splitting. ACS Nano, 2021, 15, 5586-5599.	14.6	216
9	B-Site Stoichiometry Control of the Magnetotransport Properties of Epitaxial Sr2FeMoO6 Thin Film. ACS Applied Electronic Materials, 2021, 3, 597-604.	4.3	5
10	Anisotropic magnetoresistance and planar Hall effect in (001) and (111) LaVO3/SrTiO3 heterostructures. Physical Review B, 2021, 103, .	3.2	14
11	Photoconductivity of the EuO–KTO Interface: Effect of Intrinsic Carrier Density and Temperature. Journal of Physical Chemistry C, 2021, 125, 15510-15515.	3.1	10
12	High thermoelectric figure of merit predicted in Cu26V2Sn6Se32 colusite induced by vacancy defects and glassy-like vibrational modes. Journal of Applied Physics, 2021, 130, 065106.	2.5	2
13	Thermoelectric properties of the SnS monolayer: Fully <i>ab initio</i> and accelerated calculations. Journal of Applied Physics, 2021, 130, .	2.5	15
14	A review of the recent progress on thermal conductivity of nanofluid. Journal of Molecular Liquids, 2021, 338, 116929.	4.9	70
15	Theoretical prediction of thermoelectric properties of n-type binary Zintl compounds (KSb and KBi). Physica B: Condensed Matter, 2021, 619, 413206.	2.7	9
16	Intense nano-interfacial interactivity stimulates the OER in a MOF-derived superhydrophilic CuO–NiO heterostructure. Sustainable Energy and Fuels, 2021, 5, 5505-5512.	4.9	9
17	Designing an efficient bifunctional electrocatalyst heterostructure. Chemical Communications, 2021, 57, 9426-9429.	4.1	8
18	Large piezoelectric and thermal expansion coefficients with negative Poisson's ratio in strain-modulated tellurene. Nanoscale Advances, 2021, 3, 3279-3287.	4.6	7

#	Article	IF	CITATIONS
19	Unraveling a Graphene Exfoliation Technique Analogy in the Making of Ultrathin Nickel–Iron Oxyhydroxides@Nickel Foam to Promote the OER. ACS Applied Materials & Interfaces, 2021, 13, 55281-55291.	8.0	24
20	Multiple helimagnetic phases in triclinic CuSeO3. Journal of Magnetism and Magnetic Materials, 2020, 497, 165945.	2.3	1
21	Mechanistic insights into surface contribution towards heat transfer in a nanofluid. Nanoscale Advances, 2020, 2, 3507-3513.	4.6	13
22	First principle study of magnetic properties of layered ternary chalcogenide CoAsS. AIP Conference Proceedings, 2020, , .	0.4	0
23	Tuning the electronic properties of 2DEG at oxide interface. AIP Conference Proceedings, 2020, , .	0.4	1
24	The Effect of Janus Asymmetry on Thermal Transport in SnSSe. Journal of Physical Chemistry C, 2020, 124, 17476-17484.	3.1	30
25	Theoretical model for predicting thermoelectric properties of tin chalcogenides. Physical Chemistry Chemical Physics, 2020, 22, 18989-19008.	2.8	26
26	Strong Interactions between the Nanointerfaces of Silica-Supported Mo ₂ C/MoP Heterojunction Promote Hydrogen Evolution Reaction. ACS Applied Materials & Diterfaces, 2020, 12, 57898-57906.	8.0	16
27	Persistent photoconductivity at LaVO3–SrTiO3 interface. Solid State Communications, 2020, 316-317, 113930.	1.9	12
28	<i>In situ</i> modulation of silica-supported MoO ₂ /Mo ₂ C heterojunction for enhanced hydrogen evolution reaction. Catalysis Science and Technology, 2020, 10, 4776-4785.	4.1	9
29	Promoting Electrocatalytic Oxygen Reduction in a Model Composite Using Selective Metal Ions. ACS Applied Energy Materials, 2020, 3, 3645-3652.	5.1	6
30	Probing into the effect of heterojunctions between Cu/Mo2C/Mo2N on HER performance. Catalysis Science and Technology, 2020, 10, 2213-2220.	4.1	17
31	Spin-orbit coupling effect on the thermopower and power factor of CoSbS. Physical Review B, 2020, 101, .	3.2	6
32	Effect of nanoinclusions on the lattice thermal conductivity of SnSe. Nano Express, 2020, 1, 030035.	2.4	4
33	Anisotropy in dielectric properties of polyvinylidene fluoride. AIP Conference Proceedings, 2020, , .	0.4	2
34	Thermoelectric figure of merit and thermal conductivity of type-l clathrate alloy nanowires. MRS Communications, 2019, 9, 370-374.	1.8	9
35	Role of nanoparticle interaction in magnetic heating. MRS Communications, 2019, 9, 1034-1040.	1.8	4
36	New approach for the transformation of metallic waste into nanostructured Fe3O4 and SnO2-Fe3O4 heterostructure and their application in treatment of organic pollutant. Waste Management, 2019, 87, 719-730.	7.4	19

#	Article	IF	CITATIONS
37	A theoretical model of the thermoelectric properties of $SnSx>Selâ^*x>and how to further enhance its thermoelectric performance. Journal of Applied Physics, 2019, 126, .$	2.5	24
38	High anisotropic thermoelectric effect in palladium phosphide sulphide. Physica Status Solidi (B): Basic Research, 2017, 254, .	1.5	9
39	Effect of alloying on thermal conductivity and thermoelectric properties of CoAsS and CoSbS. Physical Chemistry Chemical Physics, 2017, 19, 24928-24933.	2.8	19
40	Electronic structure modification of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>KTaO</mml:mi><mml:mn>3<mml:msup><mml:mrow><mml:mi>Ar</mml:mi><th>3.2</th><th>25</th></mml:mrow></mml:msup></mml:mn></mml:msub></mml:math>	3.2	25
41	The mechanism of nanoparticle-mediated enhanced energy transfer during high-intensity focused ultrasound sonication. Physical Chemistry Chemical Physics, 2017, 19, 19075-19082.	2.8	20
42	Visibleâ€Lightâ€Driven Photoelectrochemical and Photocatalytic Performance of NaNbO ₃ /Ag ₂ S Core–Shell Heterostructures. ChemSusChem, 2016, 9, 1850-1858.	6.8	35
43	Calculating the thermal conductivity of the silicon clathrates using the quasiâ€harmonic approximation. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 802-807.	1.8	45
44	Theoretical and experimental investigations of the thermoelectric properties of Bi2S3. Journal of Applied Physics, 2015, 117 , .	2.5	55
45	Integrated computational materials discovery of silver doped tin sulfide as a thermoelectric material. Physical Chemistry Chemical Physics, 2014, 16, 19894-19899.	2.8	61
46	Monte Carlo simulation of thermal conductivity of Si nanowire: An investigation on the phonon confinement effect on the thermal transport. Journal of Applied Physics, 2012, 112, 074323.	2.5	17
47	Blocking phonons via nanoscale geometrical design. Physical Review B, 2010, 82, .	3.2	48
48	Thermoelectric properties of nanostructured Silâ°'xGex and potential for further improvement. Journal of Applied Physics, 2010, 108, 124306.	2.5	76
49	Marked Effects of Alloying on the Thermal Conductivity of Nanoporous Materials. Physical Review Letters, 2010, 104, 115502.	7.8	86
50	Revisiting the Thermal Conductivity of Nanoporous Materials. , 2009, , .		0