Tian-Yu Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4897744/publications.pdf

Version: 2024-02-01

	279798	345221
2,194	23	36
citations	h-index	g-index
27	27	1270
3/	3/	1379
docs citations	times ranked	citing authors
	citations 37	2,194 23 citations h-index 37 37

#	Article	IF	CITATIONS
1	Toward the development of sustainable concrete with Crumb Rubber: Design-oriented Models, Life-Cycle-Assessment and a site application. Construction and Building Materials, 2022, 315, 125565.	7.2	26
2	A mix-design procedure for alkali-activated concrete based on the concept of reactive modulus. , 2022, , $15\text{-}40$.		0
3	Evaluation of Shear Capacity of Steel Fiber Reinforced Concrete Beams without Stirrups Using Artificial Intelligence Models. Materials, 2022, 15, 2407.	2.9	15
4	Global warming potential of recycled aggregate concrete with supplementary cementitious materials. Journal of Building Engineering, 2022, 52, 104394.	3.4	20
5	Assessment of the variability and uncertainty of using post-customer plastics as natural aggregate replacement in concrete. Construction and Building Materials, 2021, 273, 121747.	7.2	16
6	Modelling fresh and hardened properties of self-compacting concrete containing supplementary cementitious materials using reactive moduli. Construction and Building Materials, 2021, 272, 121954.	7.2	19
7	A comprehensive assessment of the global warming potential of geopolymer concrete. Journal of Cleaner Production, 2021, 297, 126669.	9.3	80
8	An investigation into the feasibility of normal and fibre-reinforced ultra-high performance concrete multi-cell and composite sandwich panels. Journal of Building Engineering, 2021, 41, 102728.	3.4	4
9	A Bayesian model updating approach applied to mechanical properties of recycled aggregate concrete under uniaxial or triaxial compression. Construction and Building Materials, 2021, 301, 124274.	7.2	43
10	Can a local bond test truly reflect impact of recycled aggregate on the bond between deformed steel bars and recycled aggregate concrete?—A critical assessment and development of a generic model. Engineering Structures, 2021, 244, 112826.	5.3	10
11	HDPE and PET as Aggregate Replacement in Concrete: Life-cycle assessment, Material Development and a case study. Journal of Building Engineering, 2021, 44, 103329.	3.4	8
12	A unified model for predicting the compressive strength of recycled aggregate concrete containing supplementary cementitious materials. Journal of Cleaner Production, 2020, 251, 119752.	9.3	84
13	A large-scale life-cycle assessment of recycled aggregate concrete: The influence of functional unit, emissions allocation and carbon dioxide uptake. Journal of Cleaner Production, 2020, 248, 119243.	9.3	81
14	Experimental and Analytical Study of Ultrahigh-Performance Fiber-Reinforced Concrete Curved Beams. Journal of Structural Engineering, 2020, 146, .	3.4	11
15	Mix design and mechanical properties of geopolymer and alkali activated concrete: Review of the state-of-the-art and the development of a new unified approach. Construction and Building Materials, 2020, 256, 119380.	7.2	82
16	The influence of steel fibre properties on the shrinkage of ultra-high performance fibre reinforced concrete. Construction and Building Materials, 2020, 242, 117993.	7.2	52
17	Prediction of triaxial behavior of recycled aggregate concrete using multivariable regression and artificial neural network techniques. Construction and Building Materials, 2019, 226, 534-554.	7.2	87
18	Behaviour and analysis of ultra high performance fibre reinforced concrete (UHPFRC) skew slabs. Engineering Structures, 2019, 199, 109588.	5. 3	10

#	Article	IF	CITATIONS
19	Performance Evaluation of Reinforced Recycled Aggregate Concrete Columns under Cyclic Loadings. Applied Sciences (Switzerland), 2019, 9, 1460.	2.5	25
20	Nanomaterials Applied in Modifications of Geopolymer Composites: a Review. Australian Journal of Civil Engineering, 2019, 17, 32-49.	1.6	21
21	Parametric sensitivity analysis and modelling of mechanical properties of normal- and high-strength recycled aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks. Construction and Building Materials, 2019, 211, 479-491.	7.2	167
22	Behaviour and design of rubberised concrete filled steel tubes under combined loading conditions. Thin-Walled Structures, 2019, 139, 24-38.	5.3	43
23	Experimental investigation of moment redistribution in ultra-high performance fibre reinforced concrete beams. Construction and Building Materials, 2018, 166, 433-444.	7.2	29
24	Mechanical and Durability Properties of Recycled Aggregate Concrete: Effect of Recycled Aggregate Properties and Content. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	178
25	Development of Fly Ash- and Slag-Based Geopolymer Concrete with Calcium Carbonate or Microsilica. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	39
26	A unified approach for mix design of concrete containing supplementary cementitious materials based on reactivity moduli. Journal of Cleaner Production, 2018, 203, 68-82.	9.3	53
27	Characterizations of autogenous and drying shrinkage of ultra-high performance concrete (UHPC): An experimental study. Cement and Concrete Composites, 2018, 91, 156-173.	10.7	165
28	Toward the Development of Sustainable Concretes with Recycled Concrete Aggregates: Comprehensive Review of Studies on Mechanical Properties. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	129
29	Partial Interaction Model of Flexural Behavior of PVA Fiber–Reinforced Concrete Beams with GFRP Bars. Journal of Composites for Construction, 2018, 22, .	3.2	18
30	Geopolymer concrete-filled FRP tubes: Behavior of circular and square columns under axial compression. Composites Part B: Engineering, 2016, 96, 215-230.	12.0	93
31	Effect of Coal Ash Properties on Compressive Strength of Bottom Ash-Based Geopolymer Concrete. Materials Science Forum, 2016, 857, 395-399.	0.3	2
32	Microstructure and Mechanical Properties of Ambiently-Cured Blended Coal Ash-Based Geopolymer Concrete. Materials Science Forum, 2016, 857, 400-404.	0.3	1
33	Behavior of recycled aggregate concrete-filled basalt and carbon FRP tubes. Construction and Building Materials, 2016, 105, 132-143.	7.2	110
34	Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques. Materials and Structures/Materiaux Et Constructions, 2016, 49, 4319-4334.	3.1	96
35	Influence of coal ash properties on compressive behaviour of FA- and BA-based GPC. Magazine of Concrete Research, 2015, 67, 1301-1314.	2.0	35
36	Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceramics International, 2015, 41, 5945-5958.	4.8	230

#	Article	IF	CITATIONS
37	Behavior of steel fiber-reinforced high-strength concrete-filled FRP tube columns under axial compression. Engineering Structures, 2015, 90, 158-171.	5.3	112