## Enno de Lange

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4896749/publications.pdf Version: 2024-02-01



ENNO DE LANCE

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Stochastic pacing reveals the propensity to cardiac action potential alternans and uncovers its underlying dynamics. Journal of Physiology, 2016, 594, 2537-2553.                             | 2.9 | 17        |
| 2  | Myokit: A simple interface to cardiac cellular electrophysiology. Progress in Biophysics and<br>Molecular Biology, 2016, 120, 100-114.                                                        | 2.9 | 97        |
| 3  | Delayed afterdepolarizations generate both triggers and a vulnerable substrate promoting reentry in cardiac tissue. Heart Rhythm, 2015, 12, 2115-2124.                                        | 0.7 | 59        |
| 4  | Pro- and antiarrhythmic effects of ATP-sensitive potassium current activation on reentry during early afterdepolarization-mediated arrhythmias. Heart Rhythm, 2013, 10, 575-582.              | 0.7 | 14        |
| 5  | Computational tools to investigate genetic cardiac channelopathies. Frontiers in Physiology, 2013, 4, 390.                                                                                    | 2.8 | 6         |
| 6  | Computational Modeling and Numerical Methods for Spatiotemporal Calcium Cycling in Ventricular<br>Myocytes. Frontiers in Physiology, 2012, 3, 114.                                            | 2.8 | 58        |
| 7  | Uncovering the Dynamics of Cardiac Systems Using Stochastic Pacing and Frequency Domain Analyses.<br>PLoS Computational Biology, 2012, 8, e1002399.                                           | 3.2 | 16        |
| 8  | Bi-stable wave propagation and early afterdepolarization–mediated cardiac arrhythmias. Heart<br>Rhythm, 2012, 9, 115-122.                                                                     | 0.7 | 53        |
| 9  | Differential conditions for early afterâ€depolarizations and triggered activity in cardiomyocytes derived from transgenic LQT1 and LQT2 rabbits. Journal of Physiology, 2012, 590, 1171-1180. | 2.9 | 104       |
| 10 | Dynamics of Early Afterdepolarization-Mediated Triggered Activity in Cardiac Monolayers. Biophysical<br>Journal, 2012, 102, 2706-2714.                                                        | 0.5 | 35        |
| 11 | Synchronization of Early Afterdepolarizations and Arrhythmogenesis inÂHeterogeneous Cardiac Tissue<br>Models. Biophysical Journal, 2012, 103, 365-373.                                        | 0.5 | 46        |
| 12 | Accurate Prediction of Alternans in Cardiac Cells Using Stochastic Pacing and Transfer Function<br>Analysis. Biophysical Journal, 2011, 100, 436a.                                            | 0.5 | 0         |
| 13 | Supernormal Excitability Causes Alternans, Block, Wavebreak and Reentry in Cardiac Tissue.<br>Biophysical Journal, 2011, 100, 435a.                                                           | 0.5 | 3         |
| 14 | Effects of stochastic channel gating and distribution on the cardiac action potential. Journal of<br>Theoretical Biology, 2011, 281, 84-96.                                                   | 1.7 | 44        |
| 15 | Effects of Stochastic Channel Gating and Stochastic Channel Distribution on the Cardiac Action<br>Potential. Biophysical Journal, 2010, 98, 334a.                                             | 0.5 | 0         |
| 16 | Alternans Resonance and Propagation Block during Supernormal Conduction in Cardiac Tissue with Decreased [K+]o. Biophysical Journal, 2010, 98, 1129-1138.                                     | 0.5 | 16        |
| 17 | The Transfer Functions of Cardiac Tissue during Stochastic Pacing. Biophysical Journal, 2009, 96, 294-311.                                                                                    | 0.5 | 16        |
| 18 | Predicting single spikes and spike patterns with the Hindmarsh–Rose model. Biological Cybernetics, 2008, 99, 349-360.                                                                         | 1.3 | 23        |

| #  | Article                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Hindmarsh–Rose neuron model: Bifurcation analysis and piecewise-linear approximations. Chaos, 2008, 18, 033128.      | 2.5 | 188       |
| 20 | Synchronization of Bursting Neurons: What Matters in the Network Topology. Physical Review<br>Letters, 2005, 94, 188101. | 7.8 | 378       |