Zhanglin Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4896481/publications.pdf

Version: 2024-02-01

42 1,850 21 42 papers citations h-index g-index

46 46 46 1881 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Cleavable Self-Aggregating Tags (cSAT) for Therapeutic Peptide Expression and Purification. Methods in Molecular Biology, 2022, 2406, 131-143.	0.9	1
2	Genomic Iterative Replacements of Large Synthetic DNA Fragments in <i>Corynebacterium glutamicum</i> . ACS Synthetic Biology, 2022, 11, 1588-1599.	3.8	5
3	Synthetic acid stress-tolerance modules improve growth robustness and lysine productivity of industrial Escherichia coli in fermentation at low pH. Microbial Cell Factories, 2022, 21, 68.	4.0	3
4	Mitigating Host Burden of Genetic Circuits by Engineering Autonegatively Regulated Parts and Improving Functional Prediction. ACS Synthetic Biology, 2022, 11, 2361-2371.	3.8	7
5	Multiregion singleâ€eell sequencing reveals the transcriptional landscape of the immune microenvironment of colorectal cancer. Clinical and Translational Medicine, 2021, 11, e253.	4.0	48
6	Engineering of the Small Noncoding RNA (sRNA) DsrA Together with the sRNA Chaperone Hfq Enhances the Acid Tolerance of Escherichia coli. Applied and Environmental Microbiology, 2021, 87, .	3.1	14
7	Efficient genome editing for Pseudomonas aeruginosa using CRISPR-Cas12a. Gene, 2021, 790, 145693.	2.2	7
8	Facile expression and purification of active human growth hormone in E. coli by a cleavable self-aggregating tag scheme. Protein Expression and Purification, 2021, 188, 105974.	1.3	5
9	Engineered pHâ€inducible intein <i>Mtu</i> î"lâ€CM variants with markedly reduced premature cleavage activity. AICHE Journal, 2020, 66, e16806.	3.6	4
10	Spy chemistryâ€enabled protein directional immobilization and protein purification. Biotechnology and Bioengineering, 2020, 117, 2923-2932.	3.3	19
11	A modular pathway engineering strategy for the high-level production of \hat{l}^2 -ionone in Yarrowia lipolytica. Microbial Cell Factories, 2020, 19, 49.	4.0	50
12	Nocardioides guangzhouensis sp. nov., an actinobacterium isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 112-119.	1.7	8
13	Characterization of Two Pseudomonas aeruginosa Viruses vB_PaeM_SCUT-S1 and vB_PaeM_SCUT-S2. Viruses, 2019, 11, 318.	3.3	30
14	Structural and Functional Characterization of the Gut Microbiota in Elderly Women With Migraine. Frontiers in Cellular and Infection Microbiology, 2019, 9, 470.	3.9	43
15	New trends in aggregating tags for therapeutic protein purification. Biotechnology Letters, 2018, 40, 745-753.	2.2	15
16	Engineered global regulator H-NS improves the acid tolerance of E. coli. Microbial Cell Factories, 2018, 17, 118.	4.0	31
17	A cleavable selfâ€assembling tag strategy for preparing proteins and peptides with an authentic Nâ€ŧerminus. Biotechnology Journal, 2017, 12, 1600656.	3.5	21
18	Recombinant production of influenza hemagglutinin and HIV-1 GP120 antigenic peptides using a cleavable self-aggregating tag. Scientific Reports, 2016, 6, 35430.	3.3	10

#	Article	IF	Citations
19	Recombinant production of medium- to large-sized peptides in Escherichia coli using a cleavable self-aggregating tag. Microbial Cell Factories, 2016, 15, 136.	4.0	27
20	Semi-rational engineering of cytochrome CYP153A from Marinobacter aquaeolei for improved li‰-hydroxylation activity towards oleic acid. Applied Microbiology and Biotechnology, 2016, 100, 8779-8788.	3.6	14
21	Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8. Microbial Cell Factories, 2015, 14, 88.	4.0	64
22	Aggregating tags for columnâ€free protein purification. Biotechnology Journal, 2015, 10, 1877-1886.	3.5	36
23	Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnology Advances, 2015, 33, 1484-1492.	11.7	160
24	Cleavable Self-Aggregating Tags (cSAT) for Protein Expression and Purification. Methods in Molecular Biology, 2015, 1258, 65-78.	0.9	9
25	Bacterial Sigma Factors as Targets for Engineered or Synthetic Transcriptional Control. Frontiers in Bioengineering and Biotechnology, 2014, 2, 33.	4.1	34
26	Self-assembly amphipathic peptides induce active enzyme aggregation that dramatically increases the operational stability of nitrilase. RSC Advances, 2014, 4, 60675-60684.	3.6	16
27	Engineering of transcriptional regulators enhances microbial stress tolerance. Biotechnology Advances, 2013, 31, 986-991.	11.7	69
28	Self-assembling amphipathic alpha-helical peptides induce the formation of active protein aggregates in vivo. Faraday Discussions, 2013, 166, 243.	3.2	32
29	Facile expression and purification of the antimicrobial peptide histatin 1 with a cleavable self-aggregating tag (cSAT) in Escherichia coli. Protein Expression and Purification, 2013, 88, 248-253.	1.3	18
30	Significant Rewiring of the Transcriptome and Proteome of an Escherichia coli Strain Harboring a Tailored Exogenous Global Regulator IrrE. PLoS ONE, 2012, 7, e37126.	2.5	22
31	Small surfactant-like peptides can drive soluble proteins into active aggregates. Microbial Cell Factories, 2012, 11, 10.	4.0	78
32	Global regulator engineering significantly improved <i>Escherichia coli</i> tolerances toward inhibitors of lignocellulosic hydrolysates. Biotechnology and Bioengineering, 2012, 109, 3133-3142.	3.3	43
33	Streamlined protein expression and purification using cleavable self-aggregating tags. Microbial Cell Factories, 2011, 10, 42.	4.0	45
34	Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli. Microbial Cell Factories, 2011, 10, 9.	4.0	111
35	Laboratory-Evolved Mutants of an Exogenous Global Regulator, IrrE from Deinococcus radiodurans, Enhance Stress Tolerances of Escherichia coli. PLoS ONE, 2011, 6, e16228.	2.5	67
36	Occurrence, characteristics, and applications of fructosyl amine oxidases (amadoriases). Applied Microbiology and Biotechnology, 2010, 86, 1613-1619.	3.6	31

ZHANGLIN LIN

#	Article	IF	CITATIONS
37	Cell lysis methods for highâ€throughput screening or miniaturized assays. Biotechnology Journal, 2009, 4, 210-215.	3.5	20
38	Heat-inducible autolytic vector for high-throughput screening. BioTechniques, 2006, 41, 319-323.	1.8	19
39	Dissection of SARS Coronavirus Spike Protein into Discrete Folded Fragments*. Tsinghua Science and Technology, 2006, 11, 490-494.	6.1	1
40	Functional expression of horseradish peroxidase in Saccharomyces cerevisiae and Pichia pastoris. Protein Engineering, Design and Selection, 2000, 13, 377-384.	2.1	116
41	Functional Expression of Horseradish Peroxidase in E. coli by Directed Evolution. Biotechnology Progress, 1999, 15, 467-471.	2.6	68
42	Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature, 1999, 399, 670-673.	27.8	427