
Richard A Register

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4896344/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epitaxially crystallized polyethylene exhibiting <scp>nearâ€equilibrium</scp> melting temperatures*. Polymer Engineering and Science, 2022, 62, 841-847.	1.5	2
2	Minimum Molecular Weight and Tie Molecule Content for Ductility in Polyethylenes of Varying Crystallinity. Macromolecules, 2022, 55, 3249-3258.	2.2	5
3	Blends of Polyisoprene with Model Styrene–Olefin Copolymers: Mixing Energetics in Blends versus Block Copolymers. Macromolecules, 2021, 54, 3999-4009.	2.2	5
4	Evolution of Polymer Colloid Structure During Precipitation and Phase Separation. Jacs Au, 2021, 1, 936-944.	3.6	9
5	Incorporation of Styrene into a Model Polyolefin for Enhanced Compatibility with Polyisoprene. Macromolecules, 2020, 53, 9142-9151.	2.2	6
6	Tapered Multiblock Star Copolymers: Synthesis, Selective Hydrogenation, and Properties. Macromolecules, 2020, 53, 4422-4434.	2.2	20
7	Morphology and Structure–Property Relationships in Random Ionomers: Two Foundational Articles from <i>Macromolecules</i> . Macromolecules, 2020, 53, 1523-1526.	2.2	16
8	Circumventing Macroscopic Phase Separation in Immiscible Polymer Mixtures by Bottom-up Deposition. Macromolecules, 2020, 53, 5740-5746.	2.2	5
9	Single-End-Functionalized Polycyclopentene via Ring-Opening Metathesis Polymerization with Concurrent Chain Transfer. Macromolecules, 2019, 52, 8079-8087.	2.2	0
10	Estimating the segregation strength of microphaseâ€separated diblock copolymers from the interfacial width. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 932-940.	2.4	11
11	Tuning the phase behavior of semicrystalline hydrogenated polynorbornene via epimerization. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1188-1195.	2.4	5
12	Direct Measurement of the Local Glass Transition in Self-Assembled Copolymers with Nanometer Resolution. ACS Central Science, 2018, 4, 504-511.	5.3	35
13	<i>Endo/Exo</i> Reactivity Ratios in Living Vinyl Addition Polymerization of Substituted Norbornenes. Macromolecular Chemistry and Physics, 2018, 219, 1800059.	1.1	26
14	Ringâ€Opening Metathesis Copolymerization of Cyclopentene Above and Below Its Equilibrium Monomer Concentration. Macromolecular Chemistry and Physics, 2018, 219, 1800030.	1.1	8
15	Tuning Morphology and Melting Temperature in Polyethylene Films by MAPLE. Macromolecules, 2018, 51, 512-519.	2.2	11
16	Rapid Production of Internally Structured Colloids by Flash Nanoprecipitation of Block Copolymer Blends. ACS Nano, 2018, 12, 4660-4668.	7.3	65
17	Role of Chain Connectivity across an Interface on the Dynamics of a Nanostructured Block Copolymer. Physical Review Letters, 2018, 121, 247801.	2.9	12
18	Vinyl Addition Copolymers of Norbornylnorbornene and Hydroxyhexafluoroisopropylnorbornene for Efficient Recovery of <i>n</i> -Butanol from Dilute Aqueous Solution via Pervaporation. Macromolecules, 2018, 51, 3702-3710.	2.2	28

#	Article	IF	CITATIONS
19	Curvature as a Guiding Field for Patterns in Thin Block Copolymer Films. Physical Review Letters, 2018, 121, 087801.	2.9	15
20	Orientation Control and Crystallization in a Soft Confined Phase Separated Block Copolymer. Macromolecules, 2017, 50, 987-996.	2.2	13
21	Synthesis of Narrow-Distribution, High-Molecular-Weight ROMP Polycyclopentene via Suppression of Acyclic Metathesis Side Reactions. ACS Macro Letters, 2017, 6, 112-116.	2.3	32
22	Log-Rolling Block Copolymer Cylinders. Macromolecules, 2017, 50, 3607-3616.	2.2	12
23	Large, Reversible, and Coherent Domain Spacing Dilation Driven by Crystallization under Soft Lamellar Confinement. Macromolecules, 2017, 50, 8106-8116.	2.2	13
24	Lower Critical Ordering Transition of an All-Hydrocarbon Polynorbornene Diblock Copolymer. ACS Macro Letters, 2017, 6, 808-812.	2.3	16
25	Melt Miscibility in Diblock Copolymers Containing Polyethylene and Substituted Hydrogenated Polynorbornenes. Macromolecules, 2017, 50, 5830-5838.	2.2	11
26	Yield Stress Enhancement in Polyethylene–Glassy Diblock Copolymers. Macromolecules, 2017, 50, 9666-9673.	2.2	4
27	A "Layered Look―for Spherical Nanoparticles in Semicrystalline Polymers. ACS Central Science, 2017, 3, 689-691.	5.3	3
28	Coatings with thermally switchable surface energy produced from poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 1 Physics, 2016, 54, 135-140.	0 Tf 50 38 2.4	7 Td (oxide)âŧ 1
29	Mechanical Properties of Star Block Polymer Thermoplastic Elastomers with Glassy and Crystalline End Blocks. Macromolecules, 2016, 49, 9521-9530.	2.2	51
30	Shear-Aligned Block Copolymer Monolayers as Seeds To Control the Orientational Order in Cylinder-Forming Block Copolymer Thin Films. Macromolecules, 2016, 49, 7588-7596.	2.2	21
31	Thermoplastic Elastomers via Combined Crystallization and Vitrification from Homogeneous Melts. Macromolecules, 2016, 49, 269-279.	2.2	30
32	Strategies for the Synthesis of Well-Defined Star Polymers by Anionic Polymerization with Chlorosilane Coupling and Preservation of the Star Architecture during Catalytic Hydrogenation. Macromolecules, 2016, 49, 2063-2070.	2.2	20
33	Living Vinyl Addition Polymerization of Substituted Norbornenes by a <i>t</i> -Bu ₃ P-Ligated Methylpalladium Complex. ACS Macro Letters, 2015, 4, 327-330.	2.3	44
34	Wrinkles and splay conspire to give positive disclinations negative curvature. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12639-12644.	3.3	13
35	Hydroxyhexafluoroisopropylnorbornene Block and Random Copolymers via Vinyl Addition Polymerization and Their Application as Biobutanol Pervaporation Membranes. Chemistry of Materials, 2015, 27, 6791-6801.	3.2	47
36	Progression of Alignment in Thin Films of Cylinder-Forming Block Copolymers upon Shearing. Macromolecules, 2015, 48, 5339-5347.	2.2	24

#	Article	IF	CITATIONS
37	Defect formation and coarsening in hexagonal 2D curved crystals. Soft Matter, 2015, 11, 898-907.	1.2	32
38	Polystyrene-poly(2-ethylhexylmethacrylate) block copolymers: Synthesis, bulk phase behavior, and thin film structure. Polymer, 2014, 55, 2059-2067.	1.8	8
39	Metalâ€Containing Block Copolymer Thin Films Yield Wire Grid Polarizers with High Aspect Ratio. Advanced Materials, 2014, 26, 791-795.	11.1	56
40	Mixed-morphology and mixed-orientation block copolymer bilayers. RSC Advances, 2014, 4, 38412-38417.	1.7	12
41	Sequential Domain Realignment Driven by Conformational Asymmetry in Block Copolymer Thin Films. Macromolecules, 2014, 47, 1193-1198.	2.2	18
42	Large-Area Nanosquare Arrays from Shear-Aligned Block Copolymer Thin Films. Nano Letters, 2014, 14, 5698-5705.	4.5	68
43	Creating Controlled Thickness Gradients in Polymer Thin Films via Flowcoating. Langmuir, 2014, 30, 5637-5644.	1.6	40
44	Thin Films of Homopolymers and Cylinder-Forming Diblock Copolymers under Shear. ACS Nano, 2014, 8, 8015-8026.	7.3	33
45	Cylinder Orientation and Shear Alignment in Thin Films of Polystyrene–Poly(<i>n</i> -hexyl) Tj ETQq1 1 0.7843	314 _. rgBT /(Dverlock 10 T
46	Crystallization dynamics on curved surfaces. Physical Review E, 2013, 88, 012306.	0.8	26
47	Mixing Thermodynamics of Ternary Block–Random Copolymers Containing a Polyethylene Block. Macromolecules, 2013, 46, 2760-2766.	2.2	16
48	Regular Mixing Thermodynamics of Hydrogenated Styrene–Isoprene Block–Random Copolymers. Macromolecules, 2013, 46, 3084-3091.	2.2	18
49	Self-Assembly of Cylinder-Forming Diblock Copolymer Thin Films. Macromolecules, 2013, 46, 6651-6658.	2.2	21
50	Painting with block copolymers. Nature Nanotechnology, 2013, 8, 618-619.	15.6	9
51	Coupling between mean curvature and textures in block copolymer thin films deposited on curved substrates. Soft Matter, 2013, 9, 9385.	1.2	30
52	Flexible Piezoelectric PMN–PT Nanowire-Based Nanocomposite and Device. Nano Letters, 2013, 13, 2393-2398.	4.5	290
53	Simulations of shear-induced morphological transitions in block copolymers. Soft Matter, 2013, 9, 9960.	1.2	32
54	Architecture-Induced Microphase Separation in Nonfrustrated A–B–C Triblock Copolymers. Macromolecules, 2013, 46, 3486-3496.	2.2	15

#	Article	IF	CITATIONS
55	Counit Inclusion in Hydrogenated Polynorbornene Copolymer Crystals. Macromolecules, 2013, 46, 9288-9295.	2.2	9
56	Domain Orientation in Thin Films of Block Copolymers. , 2013, , 1-9.		0
57	Applications of Block Copolymers in Thin Films: Nanopatterning. , 2013, , 1-8.		0
58	Orientational order in cylinder-forming block copolymer thin films. Physical Review E, 2012, 86, 021507.	0.8	22
59	Melt and Solid-State Structures of Polydisperse Polyolefin Multiblock Copolymers. Macromolecules, 2012, 45, 5773-5781.	2.2	82
60	Shear-induced alignment of lamellae in thin films of diblock copolymers. Soft Matter, 2012, 8, 7803.	1.2	20
61	Continuity through dispersity. Nature, 2012, 483, 167-168.	13.7	26
62	Poly(phenylnorbornene) from Ringâ€Opening Metathesis and Its Hydrogenated Derivatives. Macromolecular Chemistry and Physics, 2012, 213, 2027-2033.	1.1	14
63	Alignment of perpendicular lamellae in block copolymer thin films by shearing. Soft Matter, 2012, 8, 5358.	1.2	63
64	Sphere-to-Cylinder Transitions in Thin Films of Diblock Copolymers under Shear: The Role of Wetting Layers. Macromolecules, 2012, 45, 4406-4415.	2.2	23
65	Strainâ€induced crystallization and mechanical properties of functionalized graphene sheetâ€filled natural rubber. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 718-723.	2.4	94
66	Multifunctional elastomer nanocomposites with functionalized graphene single sheets. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 910-916.	2.4	88
67	Synthesis and Phase Behavior of Block-Random Copolymers of Styrene and Hydrogenated Isoprene. Macromolecules, 2011, 44, 4313-4319.	2.2	32
68	Influence of Chain Stiffness on Thermal and Mechanical Properties of Polymer Thin Films. Macromolecules, 2011, 44, 9040-9045.	2.2	77
69	Solid-State Structure and Crystallization in Double-Crystalline Diblock Copolymers of Linear Polyethylene and Hydrogenated Polynorbornene. Macromolecules, 2011, 44, 8835-8844.	2.2	40
70	The crystal–crystal transition in hydrogenated ringâ€opened polynorbornenes: Tacticity, crystal thickening, and alignment. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 68-79.	2.4	21
71	Combinatorial Mapping of Substrate Step Edge Effects on Diblock Copolymer Thin Film Morphology and Orientation. Macromolecular Rapid Communications, 2010, 31, 1003-1009.	2.0	3
72	cis/trans Gradients in living ring-opening metathesis polymerization. Polymer, 2010, 51, 4121-4126.	1.8	10

#	Article	IF	CITATIONS
73	Silicon nanowire polarizers for far ultraviolet (sub-200 nm) applications: Modeling and fabrication. Journal of Applied Physics, 2010, 107, 084305.	1.1	23
74	Shear alignment and realignment of sphere-forming and cylinder-forming block-copolymer thin films. Physical Review E, 2010, 81, 011503.	0.8	42
75	Controlling Order in Block Copolymer Thin Films for Nanopatterning Applications. Annual Review of Chemical and Biomolecular Engineering, 2010, 1, 277-297.	3.3	115
76	Rheology and Structure of Molten, Olefin Multiblock Copolymers. Macromolecules, 2010, 43, 6789-6799.	2.2	91
77	Crystallization in Ordered Polydisperse Polyolefin Diblock Copolymers. Macromolecules, 2010, 43, 4761-4770.	2.2	54
78	Phase Behavior of Magnesium Stearate Blended with Polyethylene Ionomers. Industrial & Engineering Chemistry Research, 2010, 49, 11906-11913.	1.8	10
79	Thermoplastic Elastomers with Composite Crystallineâ~'Glassy Hard Domains and Single-Phase Melts. Macromolecules, 2010, 43, 4954-4960.	2.2	36
80	Crystallization of Defect-Free Polyethylene within Block Copolymer Mesophases. Macromolecules, 2010, 43, 393-401.	2.2	28
81	Thin Films of Block Copolymerâ^'Homopolymer Blends with a Continuously Tunable Density of Spherical Microdomains. Macromolecules, 2010, 43, 6946-6949.	2.2	7
82	Plastic deformation of ethylene/methacrylic acid copolymers and ionomers. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1588-1598.	2.4	20
83	Microphase separation in blockâ€random copolymers of styrene, 4â€acetoxystyrene, and 4â€hydroxystyrene. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 2106-2113.	2.4	23
84	Yielding in ethylene/methacrylic acid ionomers. Polymer, 2009, 50, 585-590.	1.8	17
85	C60 fullerene inclusions in low-molecular-weight polystyrene–poly(dimethylsiloxane) diblock copolymers. Polymer, 2009, 50, 4199-4204.	1.8	20
86	Shear-induced sphere-to-cylinder transition in diblock copolymer thin films. Soft Matter, 2009, 5, 1687.	1.2	51
87	Extensibility and Recovery in a Crystallineâ^'Rubberyâ^'Crystalline Triblock Copolymer. Macromolecules, 2009, 42, 6665-6670.	2.2	25
88	Synthesis of narrow-distribution polycyclopentene using a ruthenium ring-opening metathesis initiator. Polymer, 2008, 49, 877-882.	1.8	29
89	Nitroxideâ€mediated radical polymerization of <i>N</i> â€ethylâ€2â€vinylcarbazole. Polymers for Advanced Technologies, 2008, 19, 556-559.	1.6	12
90	Poly(phenylethylnorbornene)s and their Hydrogenated Derivatives. Macromolecular Rapid Communications, 2008, 29, 713-718.	2.0	12

#	Article	IF	CITATIONS
91	Rate-dependence of yielding in ethylene–methacrylic acid copolymers. Polymer, 2008, 49, 992-998.	1.8	18
92	Block Copolymers Synthesized by ROMP-to-Anionic Polymerization Transformation. Macromolecules, 2008, 41, 5283-5288.	2.2	27
93	Crystallineâ^ Crystalline Diblock Copolymers of Linear Polyethylene and Hydrogenated Polynorbornene. Macromolecules, 2008, 41, 6773-6779.	2.2	45
94	Writing mesoscale patterns in block copolymer thin films through channel flow of a nonsolvent fluid. Applied Physics Letters, 2007, 90, 163105.	1.5	22
95	Large-area, ordered hexagonal arrays of nanoscale holes or dots from block copolymer templates. Applied Physics Letters, 2007, 91, 143110.	1.5	13
96	Shear-Aligned Block Copolymer Thin Films as Nanofabrication Templates. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2007, 20, 493-498.	0.1	5
97	Aluminum nanowire polarizing grids: fabrication and analysis. , 2007, , .		1
98	Silicon nanowire grid polarizer for very deep ultraviolet fabricated from a shear-aligned diblock copolymer template. Optics Letters, 2007, 32, 3125.	1.7	26
99	Orientational Order in Sphere-Forming Block Copolymer Thin Films Aligned under Shear. Macromolecules, 2007, 40, 7299-7305.	2.2	54
100	Self-Cleaning Resins. Journal of the American Chemical Society, 2007, 129, 5756-5759.	6.6	41
101	Enhanced Order of Block Copolymer Cylinders in Single‣ayer Films Using a Sweeping Solidification Front. Advanced Materials, 2007, 19, 2687-2690.	11.1	56
102	Elevation of the glass transition temperature in flexible-chain semicrystalline polymers. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1198-1204.	2.4	4
103	Imaging Block Copolymer Crystallization in Real Time with the Atomic Force Microscope. Macromolecules, 2006, 39, 703-710.	2.2	41
104	Shear alignment of sphere-morphology block copolymer thin films with viscous fluid flow. Physical Review E, 2006, 74, 040801.	0.8	53
105	Morphological Origin of the Multistep Relaxation Behavior in Semicrystalline Ethylene/Methacrylic Acid Ionomers. Macromolecules, 2006, 39, 1079-1086.	2.2	64
106	Ethylene/(meth)acrylic acid ionomers plasticized and reinforced by metal soaps. Polymer, 2006, 47, 2874-2883.	1.8	27
107	Aluminum nanowire polarizing grids: Fabrication and analysis. Applied Physics Letters, 2006, 88, 211114.	1.5	71
108	Mechanisms for current-induced conductivity changes in a conducting polymer. Applied Physics Letters, 2006, 89, 142109.	1.5	43

#	Article	IF	CITATIONS
109	Thin crystal melting produces the low-temperature endotherm in ethylene/methacrylic acid ionomers. Polymer, 2005, 46, 5118-5124.	1.8	54
110	Shear-Induced Alignment in Thin Films of Spherical Nanodomains. Advanced Materials, 2005, 17, 1878-1881.	11.1	146
111	Micromechanical interpretation of the modulus of ethylene–(meth)acrylic acid copolymers. Polymer, 2005, 46, 8838-8845.	1.8	41
112	Origin of directional tear in blown films of ethylene/methacrylic acid copolymers and ionomers. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 97-106.	2.4	11
113	Tear anisotropy in films blown from polyethylenes of different macromolecular architectures. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 413-420.	2.4	14
114	Synthesis and Properties of Well-Defined Elastomeric Poly(alkylnorbornene)s and Their Hydrogenated Derivatives. Macromolecules, 2005, 38, 10320-10322.	2.2	39
115	Ordering mechanisms in two-dimensional sphere-forming block copolymers. Physical Review E, 2005, 71, 061803.	0.8	107
116	Hydrogenated Ring-Opened Polynorbornene:Â A Highly Crystalline Atactic Polymer. Macromolecules, 2005, 38, 1216-1222.	2.2	93
117	Dynamics of a Thermoreversible Transition between Cylindrical and Hexagonally Perforated Lamellar Mesophases. Macromolecules, 2005, 38, 7098-7104.	2.2	34
118	A Highly Regular Hexagonally Perforated Lamellar Structure in a Quiescent Diblock Copolymer. Macromolecules, 2005, 38, 4947-4949.	2.2	50
119	Influence of Interfacial Constraints on the Morphology of Asymmetric Crystalline-Amorphous Diblock Copolymer Films. Macromolecules, 2005, 38, 7745-7753.	2.2	27
120	Macroscopic Orientation of Block Copolymer Cylinders in Single-Layer Films by Shearing. Advanced Materials, 2004, 16, 1736-1740.	11.1	317
121	Acyclic metathesis during ring-opening metathesis polymerization of cyclopentene. Polymer, 2004, 45, 6479-6485.	1.8	27
122	Matched Random Ionomers:Â Carboxylate vs Sulfonate. Macromolecules, 2004, 37, 10205-10207.	2.2	13
123	Pattern coarsening in a 2D hexagonal system. Europhysics Letters, 2004, 67, 800-806.	0.7	126
124	Equilibrium Control of Crystal Thickness and Melting Point through Block Copolymerization. Macromolecules, 2004, 37, 7278-7284.	2.2	46
125	Nano-arrays of optically addressable rare-earth-doped semiconductor quantum dots for quantum computing. , 2004, 5362, 43.		0
126	On the straight and narrow. Nature, 2003, 424, 378-379.	13.7	20

#	Article	IF	CITATIONS
127	Synthesis and Melt Dynamics of Model Sulfonated Ionomers. Macromolecules, 2003, 36, 1170-1177.	2.2	33
128	A replaceable, low thermal mass hot stage for scanning probe microscopy. Review of Scientific Instruments, 2003, 74, 1390-1392.	0.6	8
129	Correction for piezoelectric creep in scanning probe microscopy images using polynomial mapping. Scanning, 2003, 25, 25-33.	0.7	13
130	Rapid method to measure diffusion of paramagnetic species: Mn2+ in poly(ethylene-co-methacrylic) Tj ETQq0 0	0 rgBT /Ov	verlgck 10 Tf 5
131	Scaling of Domain Spacing in Concentrated Solutions of Block Copolymers in Selective Solvents. Macromolecules, 2002, 35, 4044-4049.	2.2	54
132	The Role of Excess Acid Groups in the Dynamics of Ethyleneâ^'Methacrylic Acid Ionomer Melts. Macromolecules, 2002, 35, 6284-6290.	2.2	46
133	Ion Hopping in Ethyleneâ^'Methacrylic Acid Ionomer Melts As Probed by Rheometry and Cation Diffusion Measurements. Macromolecules, 2002, 35, 2358-2364.	2.2	84
134	Steady-Shear Rheology of Block Copolymer Melts:Â Zero-Shear Viscosity and Shear Disordering in Body-Centered-Cubic Systems. Macromolecules, 2002, 35, 2700-2706.	2.2	44
135	Phase Behavior of Styreneâ~'Isoprene Diblock Copolymers in Strongly Selective Solvents. Macromolecules, 2002, 35, 841-849.	2.2	103
136	Well-Defined Diblock Copolymers via Termination of Living ROMP with Anionically Polymerized Macromolecular Aldehydes. Macromolecules, 2002, 35, 1985-1987.	2.2	36
137	Steady-Shear Rheology of Block Copolymer Melts and Concentrated Solutions:Â Disordering Stress in Body-Centered-Cubic Systems. Macromolecules, 2002, 35, 2707-2713.	2.2	61
138	Viscoelastic Properties of Entangled Star Polymer Melts:Â Comparison of Theory and Experiment. Macromolecules, 2002, 35, 169-177.	2.2	25
139	Steady-shear rheology of block copolymer melts and concentrated solutions: Defect-mediated flow at low stresses in body-centered-cubic systems. Journal of Rheology, 2002, 46, 863.	1.3	38
140	Modes of Crystallization in Block Copolymer Microdomains:Â Breakout, Templated, and Confined. Macromolecules, 2002, 35, 2365-2374.	2.2	426
141	Dynamics of pattern coarsening in a two-dimensional smectic system. Physical Review E, 2002, 66, 011706.	0.8	180
142	Well-Ordered Microdomain Structures in Polydisperse Poly(styrene)â^'Poly(acrylic acid) Diblock Copolymers from Controlled Radical Polymerization. Macromolecules, 2002, 35, 6645-6649.	2.2	149
143	In memoriam. Bryce Maxwell. 1919-2001. Polymer Engineering and Science, 2002, 42, 663-664.	1.5	0
144	Efficient emission from a europium complex containing dendron-substituted diketone ligands. Thin Solid Films, 2002, 416, 212-217.	0.8	24

#	Article	IF	CITATIONS
145	Effect of carbazole–oxadiazole excited-state complexes on the efficiency of dye-doped light-emitting diodes. Journal of Applied Physics, 2002, 91, 6717.	1.1	113
146	Polymer Crystallization Confined in One, Two, or Three Dimensions. Macromolecules, 2001, 34, 8968-8977.	2.2	318
147	Large area dense nanoscale patterning of arbitrary surfaces. Applied Physics Letters, 2001, 79, 257-259.	1.5	169
148	Phase behavior and viscoelastic properties of entangled block copolymer gels. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 2183-2197.	2.4	67
149	Block copolymer molecular weight determination via gel permeation chromatography: Choosing a combining rule. Journal of Applied Polymer Science, 2001, 82, 2056-2069.	1.3	36
150	Lateral Dye Distribution With Ink-Jet Dye Doping of Polymer Organic Light Emitting Diodes. Materials Research Society Symposia Proceedings, 2000, 624, 211.	0.1	6
151	Lateral Dye Distribution With Ink-Jet Dye Doping of Polymer Organic Light Emitting Diodes. Materials Research Society Symposia Proceedings, 2000, 625, 123.	0.1	3
152	Direct imaging of polyethylene crystallites within block copolymer microdomains. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 2564-2570.	2.4	31
153	Mechanisms of Ordering in Striped Patterns. , 2000, 290, 1558-1560.		338
154	Mixed Lamellar Films:Â Evolution, Commensurability Effects, and Preferential Defect Formation. Macromolecules, 2000, 33, 80-88.	2.2	110
155	Polyethylene Crystal Orientation Induced by Block Copolymer Cylinders. Macromolecules, 2000, 33, 8361-8366.	2.2	80
156	Phase Behavior of Styreneâ^'lsoprene Diblock Derivatives with Varying Conformational Asymmetry. Macromolecules, 2000, 33, 3461-3466.	2.2	29
157	Reducing Substrate Pinning of Block Copolymer Microdomains with a Buffer Layer of Polymer Brushes. Macromolecules, 2000, 33, 857-865.	2.2	116
158	Polymer Crystallization in 25-nm Spheres. Physical Review Letters, 2000, 84, 4120-4123.	2.9	331
159	Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography. Applied Physics Letters, 2000, 76, 1689-1691.	1.5	255
160	Synthesis of Narrow-Distribution "Perfect―Polyethylene and Its Block Copolymers by Polymerization of Cyclopentene. Macromolecules, 2000, 33, 9215-9221.	2.2	75
161	Statistical Copolymers with Side-Chain Hole and Electron Transport Groups for Single-Layer Electroluminescent Device Applications. Chemistry of Materials, 2000, 12, 2542-2549.	3.2	80
162	X-ray absorption spectroscopy studies of zinc-neutralized ethylene-methacrylic acid ionomers. Polymer, 1999, 40, 283-288.	1.8	34

#	Article	IF	CITATIONS
163	Flexural properties of fiber-reinforced polypropylene composites with and without a transcrystalline layer. Polymers for Advanced Technologies, 1999, 10, 655-668.	1.6	12
164	Doped Organic Light-Emitting Diodes Based on Random Copolymers Containing Both Hole and Electron Transport Groups. Materials Research Society Symposia Proceedings, 1999, 558, 433.	0.1	5
165	Oriented ?-isotactic polypropylene crystallized at atmospheric pressure. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 2821-2827.	2.4	23
166	Layer by layer imaging of diblock copolymer films with a scanning electron microscope. Polymer, 1998, 39, 2733-2744.	1.8	81
167	Crystallization and Ionic Associations in Semicrystalline Ionomers. Macromolecules, 1998, 31, 1432-1435.	2.2	49
168	Thermodynamics of Mixing for Statistical Copolymers of Ethylene and α-Olefins. Macromolecules, 1998, 31, 7886-7894.	2.2	45
169	Using Surface Active Random Copolymers To Control the Domain Orientation in Diblock Copolymer Thin Films. Macromolecules, 1998, 31, 7641-7650.	2.2	300
170	Depth Profiling Block Copolymer Microdomains. Macromolecules, 1998, 31, 2185-2189.	2.2	100
171	Lithography with a Pattern of Block Copolymer Microdomains as a Positive or Negative Resist. ACS Symposium Series, 1998, , 2-11.	0.5	4
172	Chain Orientation in Block Copolymers Exhibiting Cylindrically Confined Crystallization. Macromolecules, 1998, 31, 4891-4898.	2.2	166
173	Characterization of the Microdomain Structure in Polystyreneâ~Polyisoprene Block Copolymers by 1H Spin Diffusion and Small-Angle X-ray Scattering Methods. Macromolecules, 1998, 31, 3282-3291.	2.2	31
174	Interaction Strengths in Styreneâ^'Diene Block Copolymers and Their Hydrogenated Derivatives. Macromolecules, 1998, 31, 201-204.	2.2	44
175	Lithography with a mask of block copolymer microstructures. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 544.	1.6	132
176	Measurement of Thermodynamic Interactions in Ternary Polymer Blends by Small-Angle Neutron Scattering. Macromolecules, 1997, 30, 3363-3368.	2.2	17
177	Anomalous Attractive Interactions in Polypropylene Blends. Macromolecules, 1997, 30, 3036-3041.	2.2	48
178	Crystallization of Asymmetric Diblock Copolymers from Microphase-Separated Melts. Macromolecules, 1997, 30, 4551-4558.	2.2	180
179	Influence of Semicrystalline Homopolymer Addition on the Morphology of Semicrystalline Diblock Copolymers. Macromolecules, 1997, 30, 494-502.	2.2	32
180	Dynamics of Structure Formation and Crystallization in Asymmetric Diblock Copolymers. Macromolecules, 1997, 30, 8338-8343.	2.2	120

#	Article	IF	CITATIONS
181	Block Copolymer Lithography: Periodic Arrays of 1011 Holes in 1 Square Centimeter. Science, 1997, 276, 1401-1404.	6.0	1,814
182	Efficient organic electroluminescent devices using single-layer doped polymer thin films with bipolar carrier transport abilities. IEEE Transactions on Electron Devices, 1997, 44, 1269-1281.	1.6	188
183	Melt rheology. , 1997, , 208-260.		12
184	Low-Shear Melt Rheology of Partially-Neutralized Ethyleneâ^'Methacrylic Acid Ionomers. Macromolecules, 1996, 29, 598-604.	2.2	152
185	Nanolithographic templates from diblock copolymer thin films. Applied Physics Letters, 1996, 68, 2586-2588.	1.5	186
186	Crystallization-induced phase separation in mixtures of model linear and short-chain branched polyethylenes. Journal of Macromolecular Science - Physics, 1996, 35, 23-36.	0.4	13
187	High-Pressure Effects on the Orderâ disorder Transition in Block Copolymer Melts. Macromolecules, 1996, 29, 1473-1481.	2.2	81
188	Ordering Dynamics of Compositionally Asymmetric Styreneâ^'Isoprene Block Copolymers. Macromolecules, 1996, 29, 2929-2938.	2.2	99
189	Nanodispersed metal and metal oxide particles in polymeric matrices from polyacrylonitrile precursors. Macromolecular Symposia, 1996, 106, 73-86.	0.4	3
190	Investigation of Diblock Copolymer thin film Morphology for Nanolithography. Materials Research Society Symposia Proceedings, 1996, 461, 179.	0.1	7
191	Orientation of triblock copolymers in planar extension. Polymer Engineering and Science, 1996, 36, 1414-1424.	1.5	59
192	Integrated threeâ€color organic lightâ€emitting devices. Applied Physics Letters, 1996, 69, 3117-3119.	1.5	86
193	Electroluminescent properties of self-assembled polymer thin films. Advanced Materials, 1995, 7, 395-398.	11.1	94
194	Modeling intercomponent mixing effects in rubber-modified glassy polymers. Journal of Applied Polymer Science, 1995, 57, 105-112.	1.3	1
195	Morphologies of strongly segregated polystyrene-poly(dimethylsiloxane) diblock copolymers. Polymer, 1995, 36, 1569-1575.	1.8	59
196	Photophysical Properties, Self-Assembled Thin Films, and Light-Emitting Diodes of Poly(p-pyridylvinylene)s and Poly(p-pyridinium vinylene)s. Chemistry of Materials, 1995, 7, 2190-2198.	3.2	45
197	Effect of Nonuniform Deuterium Labeling on Small-Angle Neutron Scattering Results for Polymer Blends. Macromolecules, 1995, 28, 8862-8864.	2.2	9
198	Biosynthesis and characterization of hydroxybutyrate-hydroxycaproate copolymers. International Journal of Biological Macromolecules, 1995, 17, 86-92.	3.6	68

#	Article	IF	CITATIONS
199	Dynamics of Structure Formation in Crystallizable Block Copolymers. Macromolecules, 1995, 28, 1422-1428.	2.2	163
200	Poly(pâ€phenylene vinylene)/tris(8â€hydroxy) quinoline aluminum heterostructure light emitting diode. Applied Physics Letters, 1995, 66, 653-655.	1.5	70
201	High-Pressure Effects on the Disordered Phase of Block Copolymer Melts. Macromolecules, 1995, 28, 7148-7156.	2.2	42
202	Crystallization of a Weakly Segregated Polyolefin Diblock Copolymer. Macromolecules, 1995, 28, 4932-4938.	2.2	126
203	Nanodispersed cobalt particles in a thermolysed poly(acrylonitrile) matrix. Journal of Materials Chemistry, 1995, 5, 1197.	6.7	31
204	Characterizing domain mixing effects in hydrogen bond-compatibilized polymer blends. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 2105-2114.	2.4	5
205	Rheology and the Microphase Separation Transition in Styrene-Isoprene Block Copolymers. Macromolecules, 1994, 27, 6026-6032.	2.2	107
206	Observation of a reversible thermotropic order-order transition in a diblock copolymer. Macromolecules, 1994, 27, 490-501.	2.2	147
207	Blends of lightly sulfonated polystyrene ionomers with poly (xylenyl ether). , 1994, , 207-210.		0
208	Probing interdomain mixing effects via specific interactions: a model system approach. Macromolecules, 1993, 26, 2802-2809.	2.2	16
209	Miscibility of polystyrene-based ionomers with poly(2,6-dimethyl-1,4-phenylene oxide). Macromolecules, 1993, 26, 2796-2801.	2.2	21
210	Morphology of lightly carboxylated polystyrene ionomers. Macromolecules, 1993, 26, 2791-2795.	2.2	22
211	Morphology of semicrystalline block copolymers of ethylene-(ethylene-alt-propylene). Macromolecules, 1993, 26, 4640-4645.	2.2	187
212	Miscible blends of zinc-neutralized sulfonated polystyrene and poly(2,6-dimethyl 1,4-phenylene oxide). Journal of Polymer Science, Part B: Polymer Physics, 1992, 30, 569-575.	2.4	65
213	17 Chemical Engineers in Polymer Science: The Need for an Interdisciplinary Approach. Advances in Chemical Engineering, 1991, , 347-358.	0.5	0
214	Carboxylate-containing chain-extended polyurethanes. Journal of Polymer Science, Part B: Polymer Physics, 1991, 29, 581-588.	2.4	67
215	Anomalous small-angle x-ray scattering from nickel-neutralized ionomers. 2. Semicrystalline polymer matrixes. Macromolecules, 1990, 23, 318-323.	2.2	50
216	Anomalous small-angle x-ray scattering from nickel-neutralized ionomers. 1. Amorphous polymer matrixes. Macromolecules, 1990, 23, 310-317.	2.2	41

#	Article	IF	CITATIONS
217	Effect of ionic aggregation on ionomer chain dimensions. 1. Telechelic polystyrenes. Macromolecules, 1990, 23, 2978-2983.	2.2	21
218	Effect of ionic aggregation on ionomer chain dimensions. 2. Sulfonated polyurethanes. Macromolecules, 1990, 23, 3023-3026.	2.2	16
219	Synthesis and characterization of sulphonated polyurethane ionomers based on toluene diisocyanate. Polymer, 1989, 30, 1204-1212.	1.8	57
220	Direct observation of ionic aggregates in sulphonated polystyrene ionomers. Polymer, 1989, 30, 1227-1233.	1.8	52
221	Small-angle X-ray scattering from sulphonated polyurethane ionomers based on toluene diisocyanate. Polymer, 1989, 30, 1213-1220.	1.8	40
222	Effects of matrix polarity and ambient aging on the morphology of sulfonated polyurethane ionomers. Polymer Bulletin, 1989, 22, 565-571.	1.7	20
223	Morphology and cation local structure in a blend of copper-neutralized carboxy-terminated polybutadiene and poly(styrene-co-4-vinylpyridine). Journal of Polymer Science, Part B: Polymer Physics, 1989, 27, 1911-1925.	2.4	10
224	Effect of thermal treatment on cation local structure in manganese-neutralized sulfonated polystyrene ionomers. Macromolecules, 1989, 22, 2224-2229.	2.2	29
225	X-Ray Analysis of Ionomers. ACS Symposium Series, 1989, , 420-438.	0.5	3
226	MDI-based polyurethane ionomers. 2. Structure-property relationships. Macromolecules, 1988, 21, 1005-1008.	2.2	39
227	Anomalous small-angle x-ray scattering from a sulfonated polystyrene ionomer. Macromolecules, 1988, 21, 1698-1703.	2.2	113
228	Structure-property relationships in elastomeric carboxy-telechelic polyisoprene ionomers neutralized with divalent cations. Macromolecules, 1988, 21, 1009-1015.	2.2	39
229	MDI-based polyurethane ionomers. 1. New small-angle x-ray scattering model. Macromolecules, 1988, 21, 998-1004.	2.2	46
230	Crystallization Within Block Copolymer Mesophases. , 0, , 213-243.		46
231	Pattern formation mechanisms in sphere-forming diblock copolymer thin films. Papers in Physics, 0, 10, 100001.	0.2	3
232	Regularity of Deuteration in Linear Polyethylene Prepared by Saturation of Polycyclopentene over Homogeneous Catalysts. Macromolecules, 0, , .	2.2	1
233	Controlling thermomechanical behavior of semicrystalline hydrogenated polynorbornene through the cis―to trans â€cyclopentylene ratio. Journal of Polymer Science, 0, , .	2.0	1