
Luigi Pinna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4896247/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bifunctional Cinchona Alkaloid/Thiourea Catalyzes Direct and Enantioselective Vinylogous Michael Addition of 3â€Alkylidene Oxindoles to Nitroolefins. Angewandte Chemie - International Edition, 2012, 51, 6200-6204.	13.8	116
2	N-(tert-Butoxycarbonyl)-2-(tert-butyldimethylsiloxy)pyrrole: a promising compound for synthesis of chiral nonracemic hydroxylated pyrrolidine derivatives. Journal of Organic Chemistry, 1992, 57, 3760-3763.	3.2	85
3	Optically active phenanthrolines in asymmetric catalysis. IV. Enantioselective hydrosilylation of acetophenone by rhodium/chiral alkyl phenanthroline catalysts Tetrahedron: Asymmetry, 1990, 1, 937-942.	1.8	61
4	Total Syntheses of All Four Isomers of cis-1,2-Dihydroxypyrrolizidine. Journal of Organic Chemistry, 1994, 59, 2906-2909.	3.2	60
5	Total syntheses of N-boc-protected 3′-deoxy-4′-azathymidine and 4′-azauridine. Tetrahedron Letters, 199 35, 4019-4022.	4 1.4	53
6	Direct and Enantioselective Vinylogous Michael Addition of αâ€Alkylidenepyrazolinones to Nitroolefins Catalyzed by Dual <i>Cinchona</i> Alkaloid Thioureas. Advanced Synthesis and Catalysis, 2014, 356, 2330-2336.	4.3	52
7	Total synthesis of 1,5-dideoxy-1,5-iminoalditols. Tetrahedron, 1992, 48, 727-742.	1.9	51
8	Total syntheses of (+)-2,8,8a-tri-epi-swainsonine and (-)-1-epi-swainsonine. Journal of Organic Chemistry, 1993, 58, 3397-3400.	3.2	50
9	Direct Regioâ€, Diastereoâ€, and Enantioselective Vinylogous Michael Addition of Prochiral 3â€Alkylideneoxindoles to Nitroolefins. Advanced Synthesis and Catalysis, 2013, 355, 1881-1886.	4.3	50
10	Asymmetric hydroformylation of N-acyl 1-aminoacrylic acid derivatives by rhodium/chiral diphosphine catalysts. Tetrahedron: Asymmetry, 1991, 2, 623-632.	1.8	49
11	Hydroformylation of styrene catalyzed by rhodium complexes with 2-diphenylphosphinopyridine. Journal of Molecular Catalysis, 1991, 66, 183-190.	1.2	46
12	Homochiral α,β-unsaturated γ-lactams: Versatile templates. Tetrahedron: Asymmetry, 1992, 3, 1035-1048.	1.8	46
13	Parallel, Stereoselective Syntheses of both Enantiomers of Muricatacin and Their Sulfur and Nitrogen Relatives Using the Silyloxy Diene-Based Methodology. Journal of Organic Chemistry, 1997, 62, 4513-4517.	3.2	46
14	RECENT ADVANCES IN THE STEREOSELECTIVE SYNTHESIS OF HYDROXYLATED PYRROLIZIDINES. A REVIEW. Organic Preparations and Procedures International, 1996, 28, 641-682.	1.3	45
15	Variable Strategy toward Carbasugars and Relatives. 2.1Diversity-Based Synthesis of β-d-Xylo, β-d-Ribo, β-l-Arabino, and β-l-Lyxo 4a-Carbafuranoses and (4a-Carbafuranosyl)thiols. Journal of Organic Chemistry, 2001, 66, 8070-8075.	3.2	43
16	Variable Strategy toward Carbasugars and Relatives. 1. Stereocontrolled Synthesis of Pseudo-β-d-gulopyranose, Pseudo-β-d-xylofuranose, (Pseudo-β-d-gulopyranosyl)amine, and (Pseudo-β-d-xylofuranosyl)amine. Journal of Organic Chemistry, 2000, 65, 6307-6318.	3.2	42
17	Uncatalyzed, Diastereoselective Vinylogous Mukaiyama Aldol Reactions on Aqueous Media: Pyrrole vs Furan 2-Silyloxy Dienes. Journal of Organic Chemistry, 2010, 75, 8681-8684.	3.2	40
18	Diastereo- and Enantioselective Catalytic Vinylogous Mukaiyama-Mannich Reactions of Pyrrole-Based Silyl Dienolates with Alkyl-Substituted Aldehydes. Journal of Organic Chemistry, 2011, 76, 10291-10298.	3.2	39

Luigi Pinna

#	Article	IF	CITATIONS
19	Streamlined, Asymmetric Synthesis of 8,4â€~-Oxyneolignans. Journal of Organic Chemistry, 2006, 71, 8552-8558.	3.2	37
20	Organocatalytic, Asymmetric Eliminative [4+2] Cycloaddition of Allylidene Malononitriles with Enals: Rapid Entry to Cyclohexadieneâ€Embedding Linear and Angular Polycycles. Angewandte Chemie - International Edition, 2015, 54, 7386-7390.	13.8	37
21	N-tert-butoxycarbonyl-2-(tert-butyldimethylsiloxy)pyrrole as a glycine anion equivalent: A flexible enantioselective access to polyhydroxy-α-amino acids. Tetrahedron Letters, 1994, 35, 2423-2426.	1.4	35
22	Variable Strategy toward Carbasugars and Relatives. 4.1Viable Access to (4a-Carbapentofuranosyl)amines, (5a-Carbahexopyranosyl)amines, and Amino Acids Thereof. Journal of Organic Chemistry, 2002, 67, 5338-5342.	3.2	35
23	Variable Strategy toward Carbasugars and Relatives. 5.1Focus on Preparation of Chiral Nonracemic Medium-Sized Carbocycles. Journal of Organic Chemistry, 2003, 68, 5881-5885.	3.2	35
24	Completely regioselective hydroformylation of methyl n-acetamidoacrylate by chiral rhodium phosphine catalysts Tetrahedron: Asymmetry, 1990, 1, 693-696.	1.8	33
25	Lewis Acid Assisted Vinylogous Mannich and Mukaiyama Aldol Reactions: A Route to Densely Hydroxylated Indolizidine Alkaloid Analogues. European Journal of Organic Chemistry, 1999, 1999, 1395-1400.	2.4	33
26	Selective reactions using N-(tert-butoxycarbonyl)-2-(tert-butyldimethylsiloxy)pyrrole: concise asymmetric syntheses of (+)-1-deoxy-8-epi-castanospermine and its enantiomer. Journal of the Chemical Society Perkin Transactions 1, 1993, , 2991.	0.9	32
27	The Utility of Furan-, Pyrrole-, and Thiophene-Based 2-Silyloxy Dienes As Demonstrated by Modular Synthesis of Annonaceous Acetogenin Core Units and Their Pyrrolidine and Thiolane Analogues. Journal of Organic Chemistry, 2000, 65, 2048-2064.	3.2	32
28	Modular Approach toward the Construction of the Core Motifs of Annonaceous Acetogenins and Variants Thereof. Journal of Organic Chemistry, 1998, 63, 1368-1369.	3.2	31
29	Diastereoselective synthesis of a novel lactam peptidomimetic exploiting vinylogous Mannich addition of 2-silyloxyfuran reagents. Tetrahedron: Asymmetry, 1999, 10, 765-773.	1.8	30
30	Exploiting the Distal Reactivity of Indolyl Methylenemalononitriles: An Asymmetric Organocatalyzed [4+2] Cycloaddition with Enals Enables the Assembly of Elusive Dihydrocarbazoles. Chemistry - A European Journal, 2016, 22, 12637-12640.	3.3	30
31	2-(tert-butyldimethylsiloxy)thiophene: Application to total syntheses of both enantiomers of 2′,3′-dideoxy-4′-thiocytidine. Tetrahedron Letters, 1995, 36, 1941-1944.	1.4	28
32	Asymmetric total synthesis of 1-deoxy-7,8-di-epi-castanospermine. Organic and Biomolecular Chemistry, 2010, 8, 1725.	2.8	25
33	Total synthesis of 2,3-dideoxy-C-methylheptose derivatives. Tetrahedron: Asymmetry, 1993, 4, 681-686.	1.8	24
34	Advances in Chemical Synthesis of Carbasugars and Analogues. Studies in Natural Products Chemistry, 2003, 29, 449-520.	1.8	24
35	Variable Strategy toward Carbasugars and Relatives. 6.1Diastereoselective Synthesis of 2-Deoxy-2-amino-5a-carba-β-l-mannopyranuronic Acid and 2-Deoxy-2-amino-5a-carba-β-l-mannopyranose. Journal of Organic Chemistry, 2004, 69, 1625-1628.	3.2	24
36	New Enantioselective Entry to Cycloheptane Amino Acid Polyols. Journal of Organic Chemistry, 2006, 71, 225-230.	3.2	24

Luigi Pinna

#	Article	IF	CITATIONS
37	Highly stereoselective total synthesis of octopyranose derivatives. Tetrahedron, 1991, 47, 8025-8030.	1.9	23
38	Total Syntheses of 2,4-Diamino-2,4-dideoxy-l-arabinose and 2,4-Diamino-2,4-dideoxy-l-ribose. Journal of Organic Chemistry, 1996, 61, 5172-5174.	3.2	23
39	Diastereoselective synthesis of. Tetrahedron: Asymmetry, 1997, 8, 3237-3243.	1.8	23
40	Efficient total syntheses of (1R, 2R, 3R, 9R, 9aR)-1,2,3,9-tetrahydroxyquinolizidine and its enantiomer. Tetrahedron, 1993, 49, 6627-6636.	1.9	22
41	Variable Strategy toward Carbasugars and Relatives As Illustrated by Diastereoselective Synthesis of 1-Deoxy-1-amino-pseudo-l²-d-gulopyranose (Alias 1,2,4-Tri-epi-validamine). Organic Letters, 1999, 1, 1213-1215.	4.6	20
42	Synthesis of a Small Repertoire of Non-Racemic 5a-Carbahexopyranoses and 1-Thio-5a-carbahexopyranoses. European Journal of Organic Chemistry, 2002, 2002, 1956.	2.4	20
43	Further Uses of Pyrroleâ€Based Dienoxysilane Synthons: A Full Aldol Approach to Azabicyclo[<i>x</i> .2.1]alkane Systems. European Journal of Organic Chemistry, 2008, 2008, 2273-2287.	2.4	18
44	Asymmetric synthesis of 4-amino-2,3,4-trideoxyaldonic acids: novel gaba c-glycoconjugates. Tetrahedron, 1993, 49, 6489-6496.	1.9	16
45	Unlocking Access to Enantiopure Fused Uracils by Chemodivergent [4+2] Cross ycloadditions: DFTâ€6upported Homoâ€6ynergistic Organocatalytic Approach. Angewandte Chemie - International Edition, 2020, 59, 20055-20064.	13.8	12
46	Unlocking Access to Enantiopure Fused Uracils by Chemodivergent [4+2] Cross ycloadditions: DFT‧upported Homo‧ynergistic Organocatalytic Approach. Angewandte Chemie, 2020, 132, 20230-20239.	2.0	5
47	Advances in Chemical Synthesis of Carbasugars and Analogues. ChemInform, 2004, 35, no.	0.0	0