List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/489550/publications.pdf Version: 2024-02-01

ISSAM FL NAOA

5

1 Longitudinal patient-reported outcomes and survival among early-stage non-small cell lung cancer patients receiving stereotactic body radiotherapy. Radiotherapy and Oncology, 2022, 167, 116-121. 0. 2 Imaging response assessment for predicting outcomes after bioselection chemotherapy in larynx cancer: A secondary analysis of two prospective trials. Clinical and Translational Radiation 1. 2 Outcomics of Doop Machine Learning Methods 2022 - 51.77	0.6	2 0 1
 Imaging response assessment for predicting outcomes after bioselection chemotherapy in larynx cancer: A secondary analysis of two prospective trials. Clinical and Translational Radiation Oncology, 2022, 33, 30-36. 	3.7	0
A Overview of Deep Machine Learning Methods 2022 51.77	3.7	1
3 Overview of Deep Machine Learning Methods. , 2022, , 51-77.	3.7	
Advanced Topics in Particle Radiotherapy. IEEE Transactions on Radiation and Plasma Medical Sciences, 3. 2022, 6, 247-251.		0
 Predictive Modeling of Survival and Toxicity in Patients With Hepatocellular Carcinoma After Radiotherapy. JCO Clinical Cancer Informatics, 2022, 6, e2100169. 	2.1	0
6 Image guidance for FLASH radiotherapy. Medical Physics, 2022, 49, 4109-4122. 3.	3.0	10
 Improved prediction of radiation pneumonitis by combining biological and radiobiological parameters using a data-driven Bayesian network analysis. Translational Oncology, 2022, 21, 101428. 	3.7	6
Cluster model incorporating heterogeneous dose distribution of partial parotid irradiation for 8 radiotherapy induced xerostomia prediction with machine learning methods. Acta Oncológica, 2022, 1. 61, 842-848.	1.8	2
Precision radiotherapy via information integration of expert human knowledge and Al 9 recommendation to optimize clinical decision making. Computer Methods and Programs in 4. Biomedicine, 2022, 221, 106927.	4.7	8
Head and Neck Tumor Control Probability: Radiation Dose–Volume Effects in Stereotactic Body 10 Radiation Therapy for Locally Recurrent Previously-Irradiated Head and Neck Cancer: Report of the 0. AAPM Working Group. International Journal of Radiation Oncology Biology Physics, 2021, 110, 137-146.	0.8	37
 Single- and Multi-Fraction Stereotactic Radiosurgery Dose Tolerances of the Optic Pathways. International Journal of Radiation Oncology Biology Physics, 2021, 110, 87-99. 	0.8	86
12 National Cancer Institute Workshop on Artificial Intelligence in Radiation Oncology: Training the 2. Next Generation. Practical Radiation Oncology, 2021, 11, 74-83.	2.1	16
 Immunomodulatory Effects of Stereotactic Body Radiation Therapy: Preclinical Insights and Clinical Opportunities. International Journal of Radiation Oncology Biology Physics, 2021, 110, 35-52. 	0.8	54
Local Control After Stereotactic Body Radiation Therapy for Stage I Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2021, 110, 160-171.	0.8	32
Tumor Control Probability Modeling and Systematic Review of the Literature of Stereotactic Body15Radiation Therapy for Prostate Cancer. International Journal of Radiation Oncology Biology Physics,0.2021, 110, 227-236.0.	0.8	23
Artificial Intelligence for Response Evaluation With PET/CT. Seminars in Nuclear Medicine, 2021, 51, 157-169.	4.6	12
Fundamentals of Radiomics in Nuclear Medicine and Hybrid Imaging. , 2021, , 441-469.		1

18 Exploring State Transition Uncertainty in Variational Reinforcement Learning., 2021, , .

#	Article	IF	CITATIONS
19	A deep survival interpretable radiomics model of hepatocellular carcinoma patients. Physica Medica, 2021, 82, 295-305.	0.7	27
20	Application of radiochromic gel dosimetry to commissioning of a megavoltage research linear accelerator for smallâ€field animal irradiation studies. Medical Physics, 2021, 48, 1404-1416.	3.0	3
21	Radiomic and radiogenomic modeling for radiotherapy: strategies, pitfalls, and challenges. Journal of Medical Imaging, 2021, 8, 031902.	1.5	8
22	Neurocognitive Effects and Necrosis in Childhood Cancer Survivors Treated With Radiation Therapy: A PENTEC Comprehensive Review. International Journal of Radiation Oncology Biology Physics, 2021, , .	0.8	29
23	Requirements and reliability of AI in the medical context. Physica Medica, 2021, 83, 72-78.	0.7	30
24	Quantitative Molecular Positron Emission Tomography Imaging Using Advanced Deep Learning Techniques. Annual Review of Biomedical Engineering, 2021, 23, 249-276.	12.3	30
25	Measuring Tumor Microenvironment pH During Radiotherapy Using a Novel Cerenkov Emission Multispectral Optical Probe Based on Silicon Photomultipliers. Frontiers in Physics, 2021, 9, .	2.1	1
26	A Primer on Dose-Response Data Modeling in Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2021, 110, 11-20.	0.8	17
27	Stereotactic Radiosurgery for Vestibular Schwannomas: Tumor Control Probability Analyses and Recommended Reporting Standards. International Journal of Radiation Oncology Biology Physics, 2021, 110, 100-111.	0.8	12
28	Stereotactic Body Radiation Therapy for Spinal Metastases: Tumor Control Probability Analyses and Recommended Reporting Standards. International Journal of Radiation Oncology Biology Physics, 2021, 110, 112-123.	0.8	25
29	Prostate Stereotactic Body Radiation Therapy: An Overview of Toxicity and Dose Response. International Journal of Radiation Oncology Biology Physics, 2021, 110, 237-248.	0.8	40
30	Investigating the SPECT Dose-Function Metrics Associated With Radiation-Induced Lung Toxicity Risk in Patients With Non-small Cell Lung Cancer Undergoing Radiation Therapy. Advances in Radiation Oncology, 2021, 6, 100666.	1.2	3
31	Modeling of Tumor Control Probability in Stereotactic Body Radiation Therapy for Adrenal Tumors. International Journal of Radiation Oncology Biology Physics, 2021, 110, 217-226.	0.8	7
32	Artificial Intelligence Applications to Improve the Treatment of Locally Advanced Non-Small Cell Lung Cancers. Cancers, 2021, 13, 2382.	3.7	5
33	Tumor Control Probability of Radiosurgery and Fractionated Stereotactic Radiosurgery for Brain Metastases. International Journal of Radiation Oncology Biology Physics, 2021, 110, 53-67.	0.8	62
34	Integrating Multiomics Information in Deep Learning Architectures for Joint Actuarial Outcome Prediction in Non-Small Cell Lung Cancer Patients After Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2021, 110, 893-904.	0.8	31
35	Prospective clinical deployment of machine learning in radiation oncology. Nature Reviews Clinical Oncology, 2021, 18, 605-606.	27.6	13
36	In Reply to Schultheiss. International Journal of Radiation Oncology Biology Physics, 2021, 110, 1541-1543.	0.8	0

#	Article	IF	CITATIONS
37	Al in medical physics: guidelines for publication. Medical Physics, 2021, 48, 4711-4714.	3.0	24
38	A simulation study of ionizing radiation acoustic imaging (iRAI) as a realâ€time dosimetric technique for ultraâ€high dose rate radiotherapy (UHDRâ€RT). Medical Physics, 2021, 48, 6137-6151.	3.0	7
39	Combining computed tomography and biologically effective dose in radiomics and deep learning improves prediction of tumor response to robotic lung stereotactic body radiation therapy. Medical Physics, 2021, 48, 6257-6269.	3.0	22
40	Dynamic stochastic deep learning approaches for predicting geometric changes in head and neck cancer. Physics in Medicine and Biology, 2021, 66, 225006.	3.0	3
41	Lessons learned in transitioning to AI in the medical imaging of COVID-19. Journal of Medical Imaging, 2021, 8, 010902-10902.	1.5	13
42	Comparison of quantitative and qualitative scoring approaches for radiation-induced pulmonary fibrosis as applied to a preliminary investigation into the efficacy of mesenchymal stem cell delivery methods in a rat model. BJR Open, 2021, 3, 20210006.	0.6	0
43	Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nature Medicine, 2021, 27, 152-164.	30.7	451
44	A systematic review and quality of reporting checklist for repeatability and reproducibility of radiomic features. Physics and Imaging in Radiation Oncology, 2021, 20, 69-75.	2.9	37
45	Quantum deep reinforcement learning for clinical decision support in oncology: application to adaptive radiotherapy. Scientific Reports, 2021, 11, 23545.	3.3	13
46	Machine Learning and Imaging Informatics in Oncology. Oncology, 2020, 98, 344-362.	1.9	40
47	Quantumâ€inspired algorithm for radiotherapy planning optimization. Medical Physics, 2020, 47, 5-18.	3.0	12
48	Step-size effect on calculated photon and electron beam Cherenkov-to-dose conversion factors. Physica Medica, 2020, 78, 32-37.	0.7	0
49	Introduction to special issue on datasets hosted in The Cancer Imaging Archive (TCIA). Medical Physics, 2020, 47, 6026-6028.	3.0	7
50	Dosimetric Analysis and Normal-Tissue Complication Probability Modeling of Child-Pugh Score and Albumin-Bilirubin Grade Increase After Hepatic Irradiation. International Journal of Radiation Oncology Biology Physics, 2020, 107, 986-995.	0.8	23
51	Current status of Radiomics for cancer management: Challenges versus opportunities for clinical practice. Journal of Applied Clinical Medical Physics, 2020, 21, 7-10.	1.9	8
52	Characterization of the Tumor Immune Microenvironment Identifies M0 Macrophage-Enriched Cluster as a Poor Prognostic Factor in Hepatocellular Carcinoma. JCO Clinical Cancer Informatics, 2020, 4, 1002-1013.	2.1	29
53	Radiation Fractionation Schedules Published During the COVID-19 Pandemic: A Systematic Review of the Quality of Evidence and Recommendations for Future Development. International Journal of Radiation Oncology Biology Physics, 2020, 108, 379-389.	0.8	47
54	Machine and deep learning methods for radiomics. Medical Physics, 2020, 47, e185-e202.	3.0	232

#	Article	IF	CITATIONS
55	The role of machine and deep learning in modern medical physics. Medical Physics, 2020, 47, e125-e126.	3.0	16
56	Introduction to machine and deep learning for medical physicists. Medical Physics, 2020, 47, e127-e147.	3.0	68
57	Oncology Informatics: Status Quo and Outlook. Oncology, 2020, 98, 329-331.	1.9	7
58	Electron Density and Biologically Effective Dose (BED) Radiomics-Based Machine Learning Models to Predict Late Radiation-Induced Subcutaneous Fibrosis. Frontiers in Oncology, 2020, 10, 490.	2.8	20
59	The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology, 2020, 295, 328-338.	7.3	1,869
60	An ionizing radiation acoustic imaging (iRAI) technique for realâ€ŧime dosimetric measurements for FLASH radiotherapy. Medical Physics, 2020, 47, 5090-5101.	3.0	19
61	Tumor Immune Microenvironment Clusters in Localized Prostate Adenocarcinoma: Prognostic Impact of Macrophage Enriched/Plasma Cell Non-Enriched Subtypes. Journal of Clinical Medicine, 2020, 9, 1973.	2.4	10
62	Comparing local control and distant metastasis in NSCLC patients between CyberKnife and conventional SBRT. Radiotherapy and Oncology, 2020, 144, 201-208.	0.6	12
63	Artificial Intelligence: reshaping the practice of radiological sciences in the 21st century. British Journal of Radiology, 2020, 93, 20190855.	2.2	63
64	Predicting late radiation-induced xerostomia with parotid gland PET biomarkers and dose metrics. Radiotherapy and Oncology, 2020, 148, 30-37.	0.6	15
65	Tumor response prediction in 90Y radioembolization with PET-based radiomics features and absorbed dose metrics. EJNMMI Physics, 2020, 7, 74.	2.7	12
66	Dual-Modality X-Ray-Induced Radiation Acoustic and Ultrasound Imaging for Real-Time Monitoring of Radiotherapy. BME Frontiers, 2020, 2020, .	4.5	31
67	Volumetric ¹⁸ Fâ€FDGâ€PET parameters as predictors of locoregional failure in lowâ€risk HPVâ€related oropharyngeal cancer after definitive chemoradiation therapy. Head and Neck, 2019, 41, 366-373.	2.0	23
68	Balancing accuracy and interpretability of machine learning approaches for radiation treatment outcomes modeling. BJR Open, 2019, 1, 20190021.	0.6	45
69	Silicon Photomultipliers for Deep Tissue Cerenkov Emission Detection During External Beam Radiotherapy. IEEE Photonics Journal, 2019, 11, 1-16.	2.0	4
70	Automatic recognition and analysis of metal streak artifacts in head and neck computed tomography for radiomics modeling. Physics and Imaging in Radiation Oncology, 2019, 10, 49-54.	2.9	23
71	NCTN Assessment on Current Applications of Radiomics in Oncology. International Journal of Radiation Oncology Biology Physics, 2019, 104, 302-315.	0.8	44
72	Serum Levels of Hepatocyte Growth Factor and CD40 Ligand Predict Radiation-Induced Liver Injury. Translational Oncology, 2019, 12, 889-894.	3.7	17

#	Article	IF	CITATIONS
73	Cherenkov emissionâ€based external radiotherapy dosimetry: I. Formalism and feasibility. Medical Physics, 2019, 46, 2370-2382.	3.0	14
74	Combining handcrafted features with latent variables in machine learning for prediction of radiationâ€induced lung damage. Medical Physics, 2019, 46, 2497-2511.	3.0	38
75	Machine (Deep) Learning Methods for Image Processing and Radiomics. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019, 3, 104-108.	3.7	89
76	Cherenkov emissionâ€based external radiotherapy dosimetry: II. Electron beam quality specification and uncertainties. Medical Physics, 2019, 46, 2383-2393.	3.0	12
77	Machine learning for automated quality assurance in radiotherapy: A proof of principle using <scp>EPID</scp> data description. Medical Physics, 2019, 46, 1914-1921.	3.0	29
78	Prediction of skin dose in lowâ€ <scp>kV</scp> intraoperative radiotherapy using machine learning models trained on results of <i>inÂvivo</i> dosimetry. Medical Physics, 2019, 46, 1447-1454.	3.0	11
79	Artificial Neural Network With Composite Architectures for Prediction of Local Control in Radiotherapy. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019, 3, 242-249.	3.7	15
80	Development of a Fully Cross-Validated Bayesian Network Approach for Local Control Prediction in Lung Cancer. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019, 3, 232-241.	3.7	42
81	Machine learning for radiomics-based multimodality and multiparametric modeling. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2019, 63, 323-338.	0.7	33
82	Integrating radiomics into clinical trial design. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2019, 63, 339-346.	0.7	9
83	Radiomics in nuclear medicine and hybrid imaging: current standings on clinical applicability. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2019, 63, 321-322.	0.7	0
84	lonizing radiationâ€induced acoustics for radiotherapy and diagnostic radiology applications. Medical Physics, 2018, 45, e707-e721.	3.0	58
85	Characterization of X-Ray Acoustic Computed Tomography for Applications in Radiotherapy Dosimetry. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2, 337-344.	3.7	17
86	Modeling of Normal Tissue Complications Using Imaging and Biomarkers After Radiation Therapy for Hepatocellular Carcinoma. International Journal of Radiation Oncology Biology Physics, 2018, 100, 335-343.	0.8	43
87	Radiation-Induced Edema After Single-Fraction or Multifraction Stereotactic Radiosurgery for Meningioma: A Critical Review. International Journal of Radiation Oncology Biology Physics, 2018, 101, 344-357.	0.8	33
88	A prediction model for early death in non-small cell lung cancer patients following curative-intent chemoradiotherapy. Acta Oncológica, 2018, 57, 226-230.	1.8	35
89	On the Fuzziness of Machine Learning, Neural Networks, and Artificial Intelligence in Radiation Oncology. International Journal of Radiation Oncology Biology Physics, 2018, 100, 1-4.	0.8	17
90	Prospects and Challenges for Clinical Decision Support in the Era of Big Data. JCO Clinical Cancer Informatics, 2018, 2, 1-12.	2.1	23

#	Article	IF	CITATIONS
91	Radiation Therapy Outcomes Models in the Era ofÂRadiomics and Radiogenomics: Uncertainties and Validation. International Journal of Radiation Oncology Biology Physics, 2018, 102, 1070-1073.	0.8	31
92	Editorial: Machine Learning With Radiation Oncology Big Data. Frontiers in Oncology, 2018, 8, 416.	2.8	5
93	Early Changes in Serial CBCT-Measured Parotid Gland Biomarkers Predict Chronic Xerostomia After Head and Neck Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2018, 102, 1319-1329.	0.8	43
94	Novel Quantitative PET Techniques for Clinical Decision Support in Oncology. Seminars in Nuclear Medicine, 2018, 48, 548-564.	4.6	28
95	Machine learning and modeling: Data, validation, communication challenges. Medical Physics, 2018, 45, e834-e840.	3.0	67
96	Can dose outside the PTV influence the risk of distant metastases in stage I lung cancer patients treated with stereotactic body radiotherapy (SBRT)?. Radiotherapy and Oncology, 2018, 128, 513-519.	0.6	19
97	Investigating the role of functional imaging in the management of soft-tissue sarcomas of the extremities. Physics and Imaging in Radiation Oncology, 2018, 6, 53-60.	2.9	4
98	Fluorescence Endomicroscopy Imaging of Mesenchymal Stem Cells in the Rat Lung. Current Protocols in Stem Cell Biology, 2018, 45, e52.	3.0	2
99	Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers. Medical Physics, 2018, 45, 3449-3459.	3.0	214
100	Toward <i>inÂvivo</i> dosimetry in external beam radiotherapy using xâ€ray acoustic computed tomography: A softâ€tissue phantom study validation. Medical Physics, 2018, 45, 4191-4200.	3.0	24
101	Modeling Patient-Specific Dose-Function Response for Enhanced Characterization of Personalized Functional Damage. International Journal of Radiation Oncology Biology Physics, 2018, 102, 1265-1275.	0.8	5
102	The Role of Machine Learning in Knowledge-Based Response-Adapted Radiotherapy. Frontiers in Oncology, 2018, 8, 266.	2.8	30
103	Can radiomics personalise immunotherapy?. Lancet Oncology, The, 2018, 19, 1138-1139.	10.7	25
104	Radiogenomics is the future of treatment response assessment in clinical oncology. Medical Physics, 2018, 45, 4325-4328.	3.0	8
105	A multiobjective Bayesian networks approach for joint prediction of tumor local control and radiation pneumonitis in nonsmallâ€cell lung cancer (<scp>NSCLC</scp>) for responseâ€adapted radiotherapy. Medical Physics, 2018, 45, 3980-3995.	3.0	43
106	Radiomics. Advances in Medical Diagnosis, Treatment, and Care, 2018, , 191-217.	0.1	0
107	Big Data Approaches to Improve Stereotactic Body Radiation Therapy (SBRT) Outcomes. Advances in Medical Diagnosis, Treatment, and Care, 2018, , 94-113.	0.1	0
108	Tracking of Mesenchymal Stem Cells with Fluorescence Endomicroscopy Imaging in Radiotherapy-Induced Lung Injury. Scientific Reports, 2017, 7, 40748.	3.3	19

#	Article	IF	CITATIONS
109	Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211. Medical Physics, 2017, 44, e1-e42.	3.0	162
110	Unraveling biophysical interactions of radiation pneumonitis in non-small-cell lung cancer via Bayesian network analysis. Radiotherapy and Oncology, 2017, 123, 85-92.	0.6	50
111	Computerized Prediction of Treatment Outcomes and Radiomics Analysis. , 2017, , 357-375.		0
112	Toward a standard for the evaluation of <scp>PET</scp> â€Autoâ€5egmentation methods following the recommendations of AAPM task group No. 211: Requirements and implementation. Medical Physics, 2017, 44, 4098-4111.	3.0	35
113	Developing and Validating a Survival Prediction Model for NSCLC Patients Through Distributed Learning Across 3 Countries. International Journal of Radiation Oncology Biology Physics, 2017, 99, 344-352.	0.8	102
114	Beyond imaging: The promise of radiomics. Physica Medica, 2017, 38, 122-139.	0.7	336
115	Experimental evaluation of xâ€ray acoustic computed tomography for radiotherapy dosimetry applications. Medical Physics, 2017, 44, 608-617.	3.0	34
116	Deep reinforcement learning for automated radiation adaptation in lung cancer. Medical Physics, 2017, 44, 6690-6705.	3.0	161
117	A comparative analysis of longitudinal computed tomography and histopathology for evaluating the potential of mesenchymal stem cells in mitigating radiation-induced pulmonary fibrosis. Scientific Reports, 2017, 7, 9056.	3.3	14
118	Enhancement of multimodality texture-based prediction models via optimization of PET and MR image acquisition protocols: a proof of concept. Physics in Medicine and Biology, 2017, 62, 8536-8565.	3.0	23
119	Radiation Sensitivity of the Liver: Models and Clinical Data. , 2017, , 39-47.		2
120	Power-law stochastic neighbor embedding. , 2017, , .		17
121	Radiogenomics and radiotherapy response modeling. Physics in Medicine and Biology, 2017, 62, R179-R206.	3.0	43
122	Image Processing and Analysis of PET and Hybrid PET Imaging. , 2017, , 285-301.		0
123	Tumor control probability modeling for stereotactic body radiation therapy of early-stage lung cancer using multiple bio-physical models. Radiotherapy and Oncology, 2017, 122, 286-294.	0.6	44
124	Image-Guided Fluorescence Endomicroscopy: From Macro- to Micro-Imaging of Radiation-Induced Pulmonary Fibrosis. Scientific Reports, 2017, 7, 17829.	3.3	7
125	Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Scientific Reports, 2017, 7, 10117.	3.3	391
126	Radiomics in precision medicine for lung cancer. Translational Lung Cancer Research, 2017, 6, 635-647.	2.8	26

#	Article	IF	CITATIONS
127	Prediction of the thermal comfort indices using improved support vector machine classifiers and nonlinear kernel functions. Indoor and Built Environment, 2016, 25, 6-16.	2.8	32
128	Big Data Analytics for Prostate Radiotherapy. Frontiers in Oncology, 2016, 6, 149.	2.8	34
129	Mesenchymal Stem Cells Adopt Lung Cell Phenotype in Normal and Radiation-induced Lung Injury Conditions. Applied Immunohistochemistry and Molecular Morphology, 2016, 24, 283-295.	1.2	9
130	PET/MRI and prostate cancer. Clinical and Translational Imaging, 2016, 4, 473-485.	2.1	13
131	A 4D biomechanical lung phantom for joint segmentation/registration evaluation. Physics in Medicine and Biology, 2016, 61, 7012-7030.	3.0	10
132	Proton and light ion RBE for the induction of direct DNA double strand breaks. Medical Physics, 2016, 43, 2131-2140.	3.0	20
133	Outcome modeling techniques for prostate cancer radiotherapy: Data, models, and validation. Physica Medica, 2016, 32, 512-520.	0.7	15
134	Predictors of Dysgeusia in Patients With Oropharyngeal Cancer Treated With Chemotherapy and Intensity Modulated Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2016, 96, 354-361.	0.8	63
135	Perspectives on making big data analytics work for oncology. Methods, 2016, 111, 32-44.	3.8	28
136	The big data effort in radiation oncology: Data mining or data farming?. Advances in Radiation Oncology, 2016, 1, 260-271.	1.2	58
137	Introduction to Big Data in Radiation Oncology: Exploring Opportunities for Research, Quality Assessment, and Clinical Care. International Journal of Radiation Oncology Biology Physics, 2016, 95, 871-872.	0.8	30
138	Lessons From Large-Scale Collection of Patient-Reported Outcomes: Implications for Big Data Aggregation and Analytics. International Journal of Radiation Oncology Biology Physics, 2016, 95, 922-929.	0.8	21
139	On the Detectability of Acoustic Waves Induced Following Irradiation by a Radiotherapy Linear Accelerator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63, 683-690.	3.0	22
140	Pretreatment ¹⁸ F-FDG PET Textural Features in Locally Advanced Non–Small Cell Lung Cancer: Secondary Analysis of ACRIN 6668/RTOG 0235. Journal of Nuclear Medicine, 2016, 57, 842-848.	5.0	75
141	Sci-Thur AM: YIS - 02: Imaging dose distributions through the detection of radiation-induced acoustic waves. Medical Physics, 2016, 43, 4928-4928.	3.0	1
142	Sci-Thur AM: YIS - 10: Modeling Metastasis after Lung SBRT Using Bayesian Network Averaging. Medical Physics, 2016, 43, 4930-4930.	3.0	1
143	The Role of Big Data in Radiation Oncology. , 2016, , 1519-1542.		0
144	Sci-Thur AM: YIS - 04: Stopping power-to-Cherenkov power ratios and beam quality specification for clinical Cherenkov emission dosimetry of electrons: beam-specific effects and experimental validation. Medical Physics, 2016, 43, 4929-4929.	3.0	0

#	Article	IF	CITATIONS
145	Chapter 16: Practical reinforcement learning in dynamic treatment regimes. , 2015, , 263-296.		5
146	Bayesian network ensemble as a multivariate strategy to predict radiation pneumonitis risk. Medical Physics, 2015, 42, 2421-2430.	3.0	43
147	Physics: The Use of Magnetic Resonance Imaging for Radiation Therapy is Accelerating in Utility and Novelty. International Journal of Radiation Oncology Biology Physics, 2015, 93, 953-956.	0.8	1
148	Detection and Prediction of Radiotherapy Errors. , 2015, , 237-241.		4
149	Bioinformatics of Treatment Response. , 2015, , 263-276.		Ο
150	Modeling of Tumor Control Probability (TCP). , 2015, , 311-323.		2
151	Machine Learning Methodology. , 2015, , 21-39.		4
152	Contrasting analytical and data-driven frameworks for radiogenomic modeling of normal tissue toxicities in prostate cancer. Radiotherapy and Oncology, 2015, 115, 107-113.	0.6	24
153	Special section: Selected papers from the Fifth International Workshop on Monte Carlo Techniques in Medical Physics. Physics in Medicine and Biology, 2015, 60, 4947-4950.	3.0	0
154	A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Physics in Medicine and Biology, 2015, 60, 5471-5496.	3.0	698
155	Variability in clinical target volume delineation for intensity modulated radiation therapy in 3 challenging cervix cancer scenarios. Practical Radiation Oncology, 2015, 5, e557-e565.	2.1	11
156	¹⁸ F-FDG PET Uptake Characterization Through Texture Analysis: Investigating the Complementary Nature of Heterogeneity and Functional Tumor Volume in a Multi–Cancer Site Patient Cohort. Journal of Nuclear Medicine, 2015, 56, 38-44.	5.0	374
157	The Role of Big Data in Radiation Oncology. Advances in Bioinformatics and Biomedical Engineering Book Series, 2015, , 164-185.	0.4	0
158	Biomedical informatics and panomics for evidenceâ€based radiation therapy. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2014, 4, 327-340.	6.8	15
159	On the consistency of Monte Carlo track structure DNA damage simulations. Medical Physics, 2014, 41, 121708.	3.0	38
160	Simulation and experimental detection of radiation-induced acoustic waves from a radiotherapy linear accelerator. , 2014, , .		7
161	Non-invasive whole-body plethysmograph for assessment and prediction of radiation-induced lung injury using simultaneously acquired nitric oxide and lung volume measurements. Physiological Measurement, 2014, 35, 1737-1750.	2.1	Ο
162	The role of quantitative PET in predicting cancer treatment outcomes. Clinical and Translational Imaging, 2014, 2, 305-320.	2.1	54

#	Article	IF	CITATIONS
163	The Role of Content-Based Image Retrieval in Mammography CAD. , 2014, , 33-53.		3
164	Patterns of Failure after Stereotactic Body Radiation Therapy or Lobar Resection for Clinical Stage I Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology, 2013, 8, 192-201.	1.1	112
165	Novel multimodality segmentation using level sets and Jensenâ€Rényi divergence. Medical Physics, 2013, 40, 121908.	3.0	18
166	Distribution of lung tissue hysteresis during free breathing. Medical Physics, 2013, 40, 043501.	3.0	13
167	Patterns of Failure after Stereotactic Body Radiation Therapy or Lobar Resection for Clinical Stage I Non-Small-Cell Lung Cancer: Erratum. Journal of Thoracic Oncology, 2013, 8, 1343.	1.1	4
168	WE-C-WAB-02: Joint FDG-PET/MR Imaging for the Early Prediction of Tumor Outcomes. Medical Physics, 2013, 40, 477-477.	3.0	1
169	WE-A-108-11: Patient Specific Quality Assurance Tool in Rectal Brachytherapy. Medical Physics, 2013, 40, 467-468.	3.0	0
170	SU-E-J-109: Registration/Segmentation for Adaptive Radiotherapy Using the Jensen Renyi Divergence. Medical Physics, 2013, 40, 175-175.	3.0	0
171	WE-G-500-05: Red Spectral Shift of Cherenkov Emission with Applications in Image-Guided and Intensity-Modulated Radiation Therapy. Medical Physics, 2013, 40, 504-504.	3.0	0
172	SU-E-T-306: Electronic Equilibrium in RBE of DSB Induction in Monte Carlo Simulations of Low Energy Photon and Electron Track Structures. Medical Physics, 2013, 40, 275-275.	3.0	0
173	TH-A-WAB-02: FDG-PET Imaging Features Can Predict Treatment Outcomes in Head and Neck Cancer. Medical Physics, 2013, 40, 519-519.	3.0	Ο
174	TU-G-108-05: Assessment of Different Machine Learning Techniques for Multivariate Radiation Pneumonitis Modeling. Medical Physics, 2013, 40, 454-454.	3.0	0
175	Analytical modelling of regional radiotherapy dose response of lung. Physics in Medicine and Biology, 2012, 57, 3309-3321.	3.0	13
176	Sci-Fri PM: Delivery - 12: Scatter-B-Gon: Implementing a fast Monte Carlo cone-beam computed tomography scatter correction on real data. Medical Physics, 2012, 39, 4644-4644.	3.0	1
177	Modeling the Risk of Radiation-Induced Acute Esophagitis for Combined Washington University and RTOG Trial 93-11 Lung Cancer Patients. International Journal of Radiation Oncology Biology Physics, 2012, 82, 1674-1679.	0.8	57
178	Pelvic Normal Tissue Contouring Guidelines for Radiation Therapy: A Radiation Therapy Oncology Group Consensus Panel Atlas. International Journal of Radiation Oncology Biology Physics, 2012, 83, e353-e362.	0.8	412
179	Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer. Radiotherapy and Oncology, 2012, 102, 239-245.	0.6	183
180	FDG-PET-based prognostic nomograms for locally advanced cervical cancer. Gynecologic Oncology, 2012, 127, 136-140.	1.4	96

#	Article	IF	CITATIONS
181	Dosimetric predictors of chest wall pain after lung stereotactic body radiotherapy. Radiotherapy and Oncology, 2012, 104, 23-27.	0.6	63
182	Determination of planning target volume for whole stomach irradiation using daily megavoltage computed tomographic images. Practical Radiation Oncology, 2012, 2, e85-e88.	2.1	9
183	Machine learning methods for predicting tumor response in lung cancer. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2012, 2, 173-181.	6.8	15
184	Monte Carlo role in radiobiological modelling of radiotherapy outcomes. Physics in Medicine and Biology, 2012, 57, R75-R97.	3.0	90
185	Special section: Selected papers from the Fourth International Workshop on Recent Advances in Monte Carlo Techniques for Radiation Therapy. Physics in Medicine and Biology, 2012, 57, .	3.0	3
186	Comparative methods for PET image segmentation in pharyngolaryngeal squamous cell carcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 881-891.	6.4	67
187	SU-E-I-04: Implementation of a Fast Monte Carlo Scatter Correction for Cone- Beam Computed Tomography. Medical Physics, 2012, 39, 3625-3625.	3.0	4
188	SUâ€Eâ€Jâ€110: A Novel Level Set Active Contour Algorithm for Multimodality Joint Segmentation/Registration Using the Jensenâ€Rényi Divergence. Medical Physics, 2012, 39, 3678-3678.	3.0	4
189	Relevance Feedback as New Tool for Computer-Aided Diagnosis in Image Databases. Advances in Bioinformatics and Biomedical Engineering Book Series, 2012, , 86-106.	0.4	0
190	SU-D-BRB-03: Prediction of Tumor Outcomes Through Wavelet Image Fusion and Texture Analysis of PET/MR Imaging. Medical Physics, 2012, 39, 3615-3615.	3.0	0
191	WE-E-213CD-08: A Novel Level Set Active Contour Algorithm Using the Jensen-Renyi Divergence for Tumor Segmentation in PET. Medical Physics, 2012, 39, 3961-3961.	3.0	0
192	SU-E-T-05: Comparing DNA Strand Break Yields for Photons under Different Irradiation Conditions with Geant4-DNA. Medical Physics, 2012, 39, 3703-3703.	3.0	0
193	TH-C-213AB-03: Bayesian Network Framework for Biophysical Radiation Pneumonitis Modeling. Medical Physics, 2012, 39, 3993-3994.	3.0	0
194	Technical Note: <scp>DIRART</scp> – A software suite for deformable image registration and adaptive radiotherapy research. Medical Physics, 2011, 38, 67-77.	3.0	82
195	A Bioinformatics Approach for Biomarker Identification in Radiation-Induced Lung Inflammation from Limited Proteomics Data. Journal of Proteome Research, 2011, 10, 1406-1415.	3.7	46
196	Variation in the Gross Tumor Volume and Clinical Target Volume for Preoperative Radiotherapy of Primary Large High-Grade Soft Tissue Sarcoma of the Extremity Among RTOG Sarcoma Radiation Oncologists. International Journal of Radiation Oncology Biology Physics, 2011, 81, e775-e780.	0.8	32
197	Dose–Response for Stereotactic Body Radiotherapy in Early-Stage Non–Small-Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2011, 81, e299-e303.	0.8	109
198	Investigation of a breathing surrogate prediction algorithm for prospective pulmonary gating. Medical Physics, 2011, 38, 1587-1595.	3.0	10

#	Article	IF	CITATIONS
199	Consensus Guidelines for Delineation of Clinical Target Volume for Intensity-Modulated Pelvic Radiotherapy for the Definitive Treatment of Cervix Cancer. International Journal of Radiation Oncology Biology Physics, 2011, 79, 348-355.	0.8	381
200	Glioblastoma in Children: A Single-Institution Experience. International Journal of Radiation Oncology Biology Physics, 2011, 80, 1117-1121.	0.8	63
201	A Bayesian network approach for modeling local failure in lung cancer. Physics in Medicine and Biology, 2011, 56, 1635-1651.	3.0	54
202	Heart irradiation as a risk factor for radiation pneumonitis. Acta OncolÃ ³ gica, 2011, 50, 51-60.	1.8	125
203	SU-E-J-69: An Anomaly Detector for Radiotherapy Quality Assurance Using Machine Learning. Medical Physics, 2011, 38, 3458-3458.	3.0	4
204	WE-G-BRA-02: Model for Time-Dependent Radiation-Induced Lung Disease Risk Based on Systematic Image-Based Scoring and Monte-Carlo Dose Calculations. Medical Physics, 2011, 38, 3826-3826.	3.0	0
205	WE-G-BRA-09: Risk of Radiation-Induced Secondary Cancers in Paediatric Patients: A Comparison of Intensity Modulated Proton Therapy and Intensity Modulated Radiotherapy. Medical Physics, 2011, 38, 3828-3828.	3.0	0
206	SU-E-J-58: Investigation of Joint Registration/segmentation for Multimodality Target Definition in Image-Guided Radiotherapy. Medical Physics, 2011, 38, 3455-3455.	3.0	0
207	SU-E-T-25: A Learning Method for Assessing Margin Definition from Daily Image Deformations. Medical Physics, 2011, 38, 3491-3491.	3.0	0
208	Technical Note: Deformable image registration on partially matched images for radiotherapy applications. Medical Physics, 2010, 37, 141-145.	3.0	15
209	Adaptive learning for relevance feedback: Application to digital mammography. Medical Physics, 2010, 37, 4432-4444.	3.0	16
210	Treatment for M1a Cancer of the Esophagus May Not Be Largely Palliative. Journal of Thoracic Oncology, 2010, 5, 284-285.	1.1	0
211	Predicting Local Failure in Lung Cancer Using Bayesian Networks. , 2010, , .		1
212	PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 2165-2187.	6.4	316
213	Radiation Dose–Volume Effects in the Brain. International Journal of Radiation Oncology Biology Physics, 2010, 76, S20-S27.	0.8	620
214	Radiation Dose–Volume Effects and the Penile Bulb. International Journal of Radiation Oncology Biology Physics, 2010, 76, S130-S134.	0.8	131
215	Modeling radiation-induced lung injury risk with an ensemble of support vector machines. Neurocomputing, 2010, 73, 1861-1867.	5.9	11
216	Stereotactic body radiation therapy versus surgical resection for stage I non–small cell lung cancer. Journal of Thoracic and Cardiovascular Surgery, 2010, 140, 377-386.	0.8	234

#	Article	IF	CITATIONS
217	Development of RTOG Consensus Guidelines for the Definition of the Clinical Target Volume for Postoperative Conformal Radiation Therapy for Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2010, 76, 361-368.	0.8	324
218	Stereotactic Body Radiation Therapy for Early-Stage Non–Small-Cell Lung Cancer: The Pattern of Failure Is Distant. International Journal of Radiation Oncology Biology Physics, 2010, 77, 1146-1150.	0.8	123
219	Radiation Dose–Volume Effects in the Lung. International Journal of Radiation Oncology Biology Physics, 2010, 76, S70-S76.	0.8	878
220	Multimodality Imaging of Gene Transfer with a Receptor-Based Reporter Gene. Journal of Nuclear Medicine, 2010, 51, 1456-1463.	5.0	21
221	Event (error and nearâ€miss) reporting and learning system for process improvement in radiation oncology. Medical Physics, 2010, 37, 5027-5036.	3.0	64
222	Constrained Kalman filtering for IMRT optimization. , 2010, , .		0
223	Datamining approaches for modeling tumor control probability. Acta Oncológica, 2010, 49, 1363-1373.	1.8	48
224	Early and late lung radiographic injury following stereotactic body radiation therapy (SBRT). Lung Cancer, 2010, 69, 77-85.	2.0	105
225	Tools for consensus analysis of experts' contours for radiotherapy structure definitions. Radiotherapy and Oncology, 2010, 97, 572-578.	0.6	91
226	Development, external validation and clinical usefulness of a practical prediction model for radiation-induced dysphagia in lung cancer patients. Radiotherapy and Oncology, 2010, 97, 455-461.	0.6	70
227	Variational methods for image-guided adaptive radiotherapy. , 2010, , .		0
228	TU-D-204C-04: Machine Learning as New Tool for Predicting Radiotherapy Response. Medical Physics, 2010, 37, 3396-3396.	3.0	2
229	Content-Based Image Retrieval for Digital Mammography. , 2010, , 485-508.		10
230	SUâ€GGâ€Tâ€444: Normal Tissue Complication Probability (NTCP) Modeling Using Selfâ€Organizing Map (SOM). Medical Physics, 2010, 37, 3288-3288.	3.0	0
231	SU-GG-J-108: Validation Study of a Software Tool for Consensus Analysis of Experts' Contours for Generating Atlases of Radiotherapy Target and Normal Structures. Medical Physics, 2010, 37, 3170-3170.	3.0	0
232	SU Câ€Jâ€114: A Graphical Tool for Assessing Margin Definition from Daily Deformations. Medical Physics, 2010, 37, 3171-3171.	3.0	0
233	SUâ€GCâ€Jâ€07: Respiratory Phase Effect on Tumor Shrinkage Analysis. Medical Physics, 2010, 37, 3146-3146.	3.0	0
234	SU-GG-T-16: A Dynamical System Approach for Real-Time IMRT Optimization. Medical Physics, 2010, 37, 3187-3187.	3.0	0

ISSAM EL NAQA

#	Article	IF	CITATIONS
235	WEâ€Dâ€204Bâ€04: Distribution of Lung Tissue Motion during Free Breathing. Medical Physics, 2010, 37, 3429-3430.	3.0	0
236	SUâ€GGâ€lâ€153: A Novel Relevance Feedback Approach for Efficient Mammogram Image Retrieval. Medical Physics, 2010, 37, 3136-3137.	3.0	0
237	SU-GG-I-102: Comparative Methods for PET Image Segmentation in Pharyngolaryngeal Squamous Cell Carcinoma. Medical Physics, 2010, 37, 3124-3125.	3.0	0
238	WEâ€Câ€204Bâ€04: Imageâ€Based Scoring of Radiation Injury in Lung for Doseâ€Effect Correlations: Analysis of Sources of Uncertainties. Medical Physics, 2010, 37, 3423-3423.	3.0	0
239	Bioinformatics Methods for Learning Radiation-Induced Lung Inflammation from Heterogeneous Retrospective and Prospective Data. Journal of Biomedicine and Biotechnology, 2009, 2009, 1-14.	3.0	17
240	Improving Clinical Relevance in Ensemble Support Vector Machine Models of Radiation Pneumonitis Risk. , 2009, , .		1
241	Predicting radiotherapy outcomes using statistical learning techniques. Physics in Medicine and Biology, 2009, 54, S9-S30.	3.0	70
242	Computer-Aided Detection and Diagnosis of Breast Cancer With Mammography: Recent Advances. IEEE Transactions on Information Technology in Biomedicine, 2009, 13, 236-251.	3.2	465
243	Learning a Channelized Observer for Image Quality Assessment. IEEE Transactions on Medical Imaging, 2009, 28, 991-999.	8.9	46
244	<i>In Vivo</i> IVUS-Based 3-D Fluid–Structure Interaction Models With Cyclic Bending and Anisotropic Vessel Properties for Human Atherosclerotic Coronary Plaque Mechanical Analysis. IEEE Transactions on Biomedical Engineering, 2009, 56, 2420-2428.	4.2	91
245	A miR-200 microRNA cluster as prognostic marker in advanced ovarian cancer. Gynecologic Oncology, 2009, 114, 457-464.	1.4	262
246	RTOG GU Radiation Oncology Specialists Reach Consensus on Pelvic Lymph Node Volumes for High-Risk Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2009, 74, 383-387.	0.8	364
247	Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognition, 2009, 42, 1162-1171.	8.1	424
248	Variation in the Definition of Clinical Target Volumes for Pelvic Nodal Conformal Radiation Therapy for Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2009, 74, 377-382.	0.8	66
249	Elective Clinical Target Volumes for Conformal Therapy in Anorectal Cancer: A Radiation Therapy Oncology Group Consensus Panel Contouring Atlas. International Journal of Radiation Oncology Biology Physics, 2009, 74, 824-830.	0.8	425
250	Online learning of relevance feedback from expert readers for mammogram retrieval. , 2009, , .		2
251	Bayesian Network Learning for Detecting Reliable Interactions of Dose-Volume Related Parameters in Radiation Pneumonitis. , 2009, , .		8
252	Application of Machine Learning Techniques for Prediction of Radiation Pneumonitis in Lung Cancer Patients. , 2009, , .		6

#	Article	IF	CITATIONS
253	Dosimetric consequences of uncorrected setup errors in helical Tomotherapy treatments of breast-cancer patients. Radiotherapy and Oncology, 2009, 93, 64-70.	0.6	31
254	Deformable registration of abdominal kilovoltage treatment planning CT and tomotherapy daily megavoltage CT for treatment adaptation. Medical Physics, 2009, 36, 329-338.	3.0	42
255	A knowledge-based analysis tool to assess the THMs pollutant total exposure index and cumulative risk. Intelligent Buildings International, 2009, 1, 122-130.	2.3	1
256	SU-DD-A4-04: Predicting Tumor Local Control in Lung Cancer From Pre-Treatment PET/CT Image Features. Medical Physics, 2009, 36, 2426-2427.	3.0	0
257	SU-FF-T-501: The Effect of Monte Carlo-Based Dose Calculations On Tumor Control Probability Modeling. Medical Physics, 2009, 36, 2638-2638.	3.0	Ο
258	MO-FF-A3-05: Tools and Methods for Consensus Generation From Experts' Contours for Radiotherapy Structure Definition. Medical Physics, 2009, 36, 2712-2712.	3.0	0
259	TH-D-BRD-03: Experience with Error Reporting and Tracking Database Tool for Process Improvement in Radiation Oncology. Medical Physics, 2009, 36, 2807-2808.	3.0	0
260	WE-D-211A-02: Modeling and Error Analysis of the Clinical Process in Radiation Therapy. Medical Physics, 2009, 36, 2769-2769.	3.0	0
261	SU-FF-T-84: DIRART - a Software Suite for Deformable Image Registration and Adaptive Radiotherapy Research. Medical Physics, 2009, 36, 2538-2539.	3.0	0
262	WE-D-303A-08: Nonlinear Kernels as a Visual Analytics Tool for Radiotherapy Treatment Outcomes. Medical Physics, 2009, 36, 2777-2777.	3.0	0
263	SU-FF-J-20: A Multimodality Imaging Approach for Predicting Radiation Induced Lung Injury. Medical Physics, 2009, 36, 2479-2479.	3.0	0
264	TU-C-BRB-08: Validating Normal Tissue Complication Probability Models: A Study of Generalizability and Datapooling for Predictive Radiation Pneumonitis Modeling. Medical Physics, 2009, 36, 2723-2723.	3.0	0
265	SU-FF-I-101: Inverse Consistency Deformable Image Registration On Partially Matched Images. Medical Physics, 2009, 36, 2458-2458.	3.0	0
266	Estimation of Setup Uncertainty Using Planar and MVCT Imaging for Gynecologic Malignancies. International Journal of Radiation Oncology Biology Physics, 2008, 71, 1511-1517.	0.8	29
267	4D T motion estimation using deformable image registration and 5D respiratory motion modeling. Medical Physics, 2008, 35, 4577-4590.	3.0	88
268	A fast inverse consistent deformable image registration method based on symmetric optical flow computation. Physics in Medicine and Biology, 2008, 53, 6143-6165.	3.0	91
269	Current role of PET in oncology: Potentials and challenges in the management of non-small cell lung cancer. , 2008, , .		1
270	Image-Based Modeling of Normal Tissue Complication Probability for Radiation Therapy. Cancer Treatment and Research, 2008, , 211-252.	0.5	13

#	Article	IF	CITATIONS
271	Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics, 2008, 24, 325-332.	4.1	516
272	Nonlinear Kernel-Based Approaches for Predicting Normal Tissue Toxicities. , 2008, , .		10
273	A fast inverse consistent deformable image registration method based on symmetric optical flow computation. , 2008, , .		3
274	Targeted Contrast Agent Helps to Monitor Advanced Plaque During Progression: A Magnetic Resonance Imaging Study in Rabbits. Investigative Radiology, 2008, 43, 49-55.	6.2	25
275	Esophageal Carcinoma with Celiac Nodal Metastases; Curative or Palliative?. Journal of Thoracic Oncology, 2008, 3, 751-755.	1.1	16
276	Long-term outcome in children treated for craniopharyngioma with and without radiotherapy. Journal of Neurosurgery: Pediatrics, 2008, 1, 126-130.	1.3	120
277	SUâ€GGâ€Tâ€143: Comparisons of a Monte Carlo IMRT Plan Recalculation Results with the Pinnacle Treatment Planning System. Medical Physics, 2008, 35, 2759-2759.	3.0	1
278	WE-E-AUD C-07: A Robust Approach for Estimating Tumor Volume Change During Radiotherapy of Lung Cancer. Medical Physics, 2008, 35, 2956-2956.	3.0	2
279	WE-E-AUD A-06: Image and Dose Processing for Image Guided Adaptive Radiation Therapy and Outcome Research. Medical Physics, 2008, 35, 2952-2952.	3.0	0
280	SUâ€ÐDâ€A4â€02: Assessment of PET Estimated Tumor Volume by Fourâ€Dimensional Computed Tomography Measurements. Medical Physics, 2008, 35, 2635-2635.	3.0	0
281	WE-C-351-04: 4DCT Motion Estimation and Modeling. Medical Physics, 2008, 35, 2938-2938.	3.0	0
282	Image-based modeling of normal tissue complication probability for radiation therapy. Cancer Treatment and Research, 2008, 139, 215-56.	0.5	16
283	Tracking lung tissue motion and expansion/compression with inverse consistent image registration and spirometry. Medical Physics, 2007, 34, 2155-2163.	3.0	114
284	Level set motion assisted non-rigid 3D image registration. , 2007, , .		2
285	Automated Estimation of the Biophysical Target for Radiotherapy Treatment Planning using Multimodality Image Analysis. , 2007, , .		1
286	Concurrent multimodality image segmentation by active contours for radiotherapy treatment	3.0	107
287	A Nomogram to Predict Radiation Pneumonitis, Derived From a Combined Analysis of RTOG 9311 and Institutional Data. International Journal of Radiation Oncology Biology Physics, 2007, 69, 985-992.	0.8	157
288	Multivariable modeling of radiotherapy outcomes, including dose–volume and clinical factors. International Journal of Radiation Oncology Biology Physics, 2006, 64, 1275-1286.	0.8	152

ISSAM EL NAQA

#	Article	IF	CITATIONS
289	Modeling radiation pneumonitis risk with clinical, dosimetric, and spatial parameters. International Journal of Radiation Oncology Biology Physics, 2006, 65, 112-124.	0.8	186
290	Retrospective Monte Carlo dose calculations with limited beam weight information. Medical Physics, 2006, 34, 334-346.	3.0	17
291	Deblurring of breathing motion artifacts in thoracic PET images by deconvolution methods. Medical Physics, 2006, 33, 3587-3600.	3.0	57
292	18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate?. Journal of Nuclear Medicine, 2006, 47, 1808-12.	5.0	183
293	A Learning Machine Approach for Predicting Thermal Comfort Indices. International Journal of Ventilation, 2005, 3, 363-376.	0.4	18
294	Dose–volume modeling of salivary function in patients with head-and-neck cancer receiving radiotherapy. International Journal of Radiation Oncology Biology Physics, 2005, 62, 1055-1069.	0.8	242
295	Quantitative assessment of coronary artery plaque vulnerability by high-resolution magnetic resonance imaging and computational biomechanics: A pilot study ex vivo. Magnetic Resonance in Medicine, 2005, 54, 1360-1368.	3.0	28
296	CT localization of axillary lymph nodes in relation to the humeral head: Significance of arm position for radiation therapy planning. Radiotherapy and Oncology, 2005, 77, 191-193.	0.6	18
297	TECHNIQUES IN THE DETECTION OF MICROCALCIFICATION CLUSTERS IN DIGITAL MAMMOGRAMS. , 2005, , 45-66.		4
298	Dosimetric correlates for acute esophagitis in patients treated with radiotherapy for lung carcinoma. International Journal of Radiation Oncology Biology Physics, 2004, 58, 1106-1113.	0.8	139
299	Localization of internal mammary lymph nodes by CT simulation: implications for breast radiation therapy planning. Radiotherapy and Oncology, 2004, 73, 355-357.	0.6	5

300 A Guide to Outcome Modeling in Radiotherapy and Oncology. , 0, , .