
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4895452/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Geometric and Electronic Structure/Function Correlations in Non-Heme Iron Enzymes. Chemical Reviews, 2000, 100, 235-350.	47.7	1,594
2	Non-heme iron enzymes: Contrasts to heme catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3589-3594.	7.1	215
3	Electronic Structure of Heme-Nitrosyls and Its Significance for Nitric Oxide Reactivity, Sensing, Transport, and Toxicity in Biological Systems. Inorganic Chemistry, 2010, 49, 6293-6316.	4.0	191
4	Iron and manganese oxo complexes, oxo wall and beyond. Nature Reviews Chemistry, 2020, 4, 404-419.	30.2	167
5	Spectroscopic Properties and Electronic Structure of Five- and Six-Coordinate Iron(II) Porphyrin NO Complexes:Â Effect of the Axial N-Donor Ligand. Inorganic Chemistry, 2006, 45, 2795-2811.	4.0	157
6	Reversing nitrogen fixation. Nature Reviews Chemistry, 2018, 2, 278-289.	30.2	157
7	Mono- and dinuclear non-heme iron–nitrosyl complexes: Models for key intermediates in bacterial nitric oxide reductases. Coordination Chemistry Reviews, 2013, 257, 244-259.	18.8	156
8	Electronic Structure of Six-Coordinate Iron(III)â´'Porphyrin NO Adducts: The Elusive Iron(III)â´'NO(radical) State and Its Influence on the Properties of These Complexes. Journal of the American Chemical Society, 2008, 130, 15288-15303.	13.7	141
9	Spectroscopic Properties and Electronic Structure of Low-Spin Fe(III)â^Alkylperoxo Complexes:Â Homolytic Cleavage of the Oâ^'O Bond. Journal of the American Chemical Society, 2001, 123, 8271-8290.	13.7	132
10	Hydrogen Sulfide Oxidation by Myoglobin. Journal of the American Chemical Society, 2016, 138, 8476-8488.	13.7	130
11	The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase. Science, 2016, 352, 953-958.	12.6	129
12	Electronic Structure of High-Spin Iron(III)-Alkylperoxo Complexes and Its Relation to Low-Spin Analogues:? Reaction Coordinate of O-O Bond Homolysis. Journal of the American Chemical Society, 2001, 123, 12802-12816.	13.7	127
13	Structural and Electronic Differences of Copper(I) Complexes with Tris(pyrazolyl)methane and Hydrotris(pyrazolyl)borate Ligands. Inorganic Chemistry, 2006, 45, 1698-1713.	4.0	127
14	Electronic Structure and Reactivity of Low-Spin Fe(III)â^'Hydroperoxo Complexes:  Comparison to Activated Bleomycin. Journal of the American Chemical Society, 2002, 124, 10810-10822.	13.7	121
15	Density-functional investigation on the mechanism of H-atom abstraction by lipoxygenase. Journal of Biological Inorganic Chemistry, 2003, 8, 294-305.	2.6	119
16	Binding and activation of nitrite and nitric oxide by copper nitrite reductase and corresponding model complexes. Dalton Transactions, 2012, 41, 3355-3368.	3.3	115
17	Electronic structure of iron(II)-porphyrin nitroxyl complexes: Molecular mechanism of fungal nitric oxide reductase (P450nor). Journal of Computational Chemistry, 2006, 27, 1338-1351.	3.3	110
18	Catalytic Cyclopropanation by Myoglobin Reconstituted with Iron Porphycene: Acceleration of Catalysis due to Rapid Formation of the Carbene Species. Journal of the American Chemical Society, 2017, 139, 17265-17268.	13.7	110

#	Article	IF	CITATIONS
19	Direct Hydrogen-Atom Abstraction by Activated Bleomycin:Â An Experimental and Computational Study. Journal of the American Chemical Society, 2006, 128, 4719-4733.	13.7	109
20	The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chemical Reviews, 2021, 121, 14682-14905.	47.7	109
21	Heme-Nitrosyls: Electronic Structure Implications for Function in Biology. Accounts of Chemical Research, 2015, 48, 2117-2125.	15.6	107
22	Electronic Structure and Biologically Relevant Reactivity of Low-Spin {FeNO} ⁸ Porphyrin Model Complexes: New Insight from a Bis-Picket Fence Porphyrin. Inorganic Chemistry, 2013, 52, 7766-7780.	4.0	105
23	Quantum Chemistry-Based Analysis of the Vibrational Spectra of Five-Coordinate Metalloporphyrins [M(TPP)Cl]. Inorganic Chemistry, 2006, 45, 2835-2856.	4.0	99
24	1958 – 2014: After 56â€Years of Research, Cytochromeâ€P450 Reactivity Is Finally Explained. Angewandte Chemie - International Edition, 2014, 53, 4750-4752.	13.8	98
25	Synthesis and Spectroscopic Characterization of Copper(II)â^ Nitrito Complexes with Hydrotris(pyrazolyl)borate and Related Coligands. Inorganic Chemistry, 2007, 46, 3916-3933.	4.0	94
26	Structural and Spectroscopic Characterization of Mononuclear Copper(I) Nitrosyl Complexes:  End-on versus Side-on Coordination of NO to Copper(I). Journal of the American Chemical Society, 2008, 130, 1205-1213.	13.7	93
27	Spin Density Distribution in Five- and Six-Coordinate Iron(II)â^Porphyrin NO Complexes Evidenced by Magnetic Circular Dichroism Spectroscopy. Inorganic Chemistry, 2005, 44, 2570-2572.	4.0	90
28	Structural and Electronic Characterization of Non-Heme Fe(II)–Nitrosyls as Biomimetic Models of the Fe _B Center of Bacterial Nitric Oxide Reductase. Journal of the American Chemical Society, 2011, 133, 16714-16717.	13.7	88
29	Solvothermal Syntheses, Crystal Structures, and Thermal Properties of New Manganese Thioantimonates(III):Â The First Example of the Thermal Transformation of an Amine-Rich Thioantimonate into an Amine-Poorer Thioantimonate. Inorganic Chemistry, 2004, 43, 2914-2921.	4.0	84
30	The Functional Model Complex [Fe ₂ (BPMP)(OPr)(NO) ₂](BPh ₄) ₂ Provides Insight into the Mechanism of Flavodiiron NO Reductases. Journal of the American Chemical Society, 2013, 135, 4902-4905.	13.7	75
31	The Reduction Pathway of End-on Coordinated Dinitrogen. I. Vibrational Spectra of Mo/Wâ^'N2, â^'NNH, and â^'NNH2Complexes and Quantum Chemistry Assisted Normal Coordinate Analysis. Inorganic Chemistry, 1999, 38, 1659-1670.	4.0	73
32	Spectroscopic Properties and Electronic Structure of Pentammineruthenium(II) Dinitrogen Oxide and Corresponding Nitrosyl Complexes:Â Binding Mode of N2O and Reactivity. Inorganic Chemistry, 2004, 43, 6979-6994.	4.0	72
33	Detailed Assignment of the Magnetic Circular Dichroism and UVâ^'vis Spectra of Five-Coordinate High-Spin Ferric [Fe(TPP)(Cl)]. Inorganic Chemistry, 2008, 47, 4963-4976.	4.0	72
34	Heme versus Non-Heme Iron-Nitroxyl {FeN(H)O} ⁸ Complexes: Electronic Structure and Biologically Relevant Reactivity. Accounts of Chemical Research, 2014, 47, 1106-1116.	15.6	71
35	Electronic Structure of Ferric Heme Nitrosyl Complexes with Thiolate Coordination. Inorganic Chemistry, 2007, 46, 1547-1549.	4.0	68
36	Iron-Porphyrin NO Complexes with Covalently Attached N-Donor Ligands: Formation of a Stable Six-Coordinate Species in Solution. Journal of the American Chemical Society, 2009, 131, 17116-17126.	13.7	68

#	Article	IF	CITATIONS
37	Oriented Single-Crystal Nuclear Resonance Vibrational Spectroscopy of [Fe(TPP)(MI)(NO)]: Quantitative Assessment of the <i>trans</i> Effect of NO. Inorganic Chemistry, 2010, 49, 7197-7215.	4.0	66
38	The Reduction Pathway of End-on Coordinated Dinitrogen. II. Electronic Structure and Reactivity of Mo/Wâ^'N2, â^'NNH, and â^'NNH2Complexes. Inorganic Chemistry, 1999, 38, 1671-1682.	4.0	64
39	Grand challenges in the nitrogen cycle. Chemical Society Reviews, 2021, 50, 3640-3646.	38.1	64
40	New Developments in Nitrogen Fixation. Angewandte Chemie - International Edition, 1998, 37, 2636-2638.	13.8	61
41	Elucidating the Role of the Proximal Cysteine Hydrogen-Bonding Network in Ferric Cytochrome P450cam and Corresponding Mutants Using Magnetic Circular Dichroism Spectroscopy. Biochemistry, 2011, 50, 1053-1069.	2.5	58
42	Engineering of RuMb: Toward a Green Catalyst for Carbene Insertion Reactions. Inorganic Chemistry, 2017, 56, 5623-5635.	4.0	57
43	The Semireduced Mechanism for Nitric Oxide Reduction by Non-Heme Diiron Complexes: Modeling Flavodiiron Nitric Oxide Reductases. Journal of the American Chemical Society, 2018, 140, 2562-2574.	13.7	57
44	Hydrotris(triazolyl)borate Complexes as Functional Models for Cu Nitrite Reductase: The Electronic Influence of Distal Nitrogens. Inorganic Chemistry, 2012, 51, 7004-7006.	4.0	56
45	Characterization of a High‣pin Nonâ€Heme {FeNO} ⁸ Complex: Implications for the Reactivity of Iron Nitroxyl Species in Biology. Angewandte Chemie - International Edition, 2013, 52, 12283-12287.	13.8	56
46	Unusual Synthetic Pathway for an {Fe(NO) ₂ } ⁹ Dinitrosyl Iron Complex (DNIC) and Insight into DNIC Electronic Structure via Nuclear Resonance Vibrational Spectroscopy. Inorganic Chemistry, 2016, 55, 5485-5501.	4.0	55
47	Electrochemically Modulated Nitric Oxide (NO) Releasing Biomedical Devices via Copper(II)-Tri(2-pyridylmethyl)amine Mediated Reduction of Nitrite. ACS Applied Materials & Interfaces, 2014, 6, 3779-3783.	8.0	54
48	Activation of Diazene and the Nitrogenase Problem:Â An Investigation of Diazene-Bridged Fe(II) Centers with Sulfur Ligand Sphere. 1. Electronic Structure. Journal of the American Chemical Society, 1997, 119, 8869-8878.	13.7	53
49	Reduction Pathway of End-On Terminally Coordinated Dinitrogen. V. Nâ^'N Bond Cleavage in Mo/W Hydrazidium Complexes with Diphosphine Coligands. Comparison with Triamidoamine Systems. Inorganic Chemistry, 2005, 44, 3031-3045.	4.0	53
50	Vibrational Assignments of Six-Coordinate Ferrous Heme Nitrosyls: New Insight from Nuclear Resonance Vibrational Spectroscopy. Inorganic Chemistry, 2008, 47, 11449-11451.	4.0	53
51	A distal ligand mutes the interaction of hydrogen sulfide with human neuroglobin. Journal of Biological Chemistry, 2017, 292, 6512-6528.	3.4	52
52	Catalysis by the Non-Heme Iron(II) Histone Demethylase PHF8 Involves Iron Center Rearrangement and Conformational Modulation of Substrate Orientation. ACS Catalysis, 2020, 10, 1195-1209.	11.2	52
53	Mechanism of N–N Bond Formation by Transition Metal–Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases. Inorganic Chemistry, 2018, 57, 4252-4269.	4.0	51
54	Reduction Pathway of End-On Terminally Coordinated Dinitrogen. IV. Geometric, Electronic, and Vibrational Structure of a W(IV) Dialkylhydrazido Complex and Its Two-Electron-Reduced Derivative Undergoing Nâ^'N Cleavage upon Protonation. Inorganic Chemistry, 2005, 44, 3016-3030.	4.0	50

NICOLAI LEHNERT

#	Article	IF	CITATIONS
55	Synthesis, spectroscopic analysis and photolabilization of water-soluble ruthenium(iii)–nitrosyl complexes. Dalton Transactions, 2012, 41, 8047.	3.3	50
56	Vibrational spectroscopic properties of molybdenum and tungsten N2 and N2Hx complexes with depe coligands: comparison to dppe systems and influence of H-bridges. Coordination Chemistry Reviews, 2003, 245, 107-120.	18.8	48
57	Hidden Non-Innocence in an Expanded Porphyrin: Electronic Structure of the Siamese-Twin Porphyrin's Dicopper Complex in Different Oxidation States. Journal of the American Chemical Society, 2013, 135, 13892-13899.	13.7	48
58	Structure and Bonding in Heme–Nitrosyl Complexes and Implications for Biology. Structure and Bonding, 2013, , 155-223.	1.0	48
59	Just a Proton: Distinguishing the Two Electronic States of Five-Coordinate High-Spin Iron(II) Porphyrinates with Imidazole/ate Coordination. Journal of the American Chemical Society, 2010, 132, 3737-3750.	13.7	45
60	Nuclear Resonance Vibrational Spectroscopy Applied to [Fe(OEP)(NO)]: The Vibrational Assignments of Five-Coordinate Ferrous Hemeâ^'Nitrosyls and Implications for Electronic Structure. Inorganic Chemistry, 2010, 49, 4133-4148.	4.0	45
61	Recent advances in bioinorganic spectroscopy. Current Opinion in Chemical Biology, 2001, 5, 176-187.	6.1	44
62	Thiolate coordination to Fe(II)–porphyrin NO centers. Journal of Inorganic Biochemistry, 2005, 99, 940-948.	3.5	44
63	Reduction Pathway of End-On Coordinated Dinitrogen. 3. Electronic Structure and Spectroscopic Properties of Molybdenum/Tungsten Hydrazidium Complexes. Inorganic Chemistry, 2003, 42, 1076-1086.	4.0	43
64	The Side-On Copper(I) Nitrosyl Geometry in Copper Nitrite Reductase Is Due to Steric Interactions with Isoleucine-257. Inorganic Chemistry, 2009, 48, 11504-11506.	4.0	43
65	Characterization of the Bridged Hyponitrite Complex {[Fe(OEP)] ₂ (1¼-N ₂ 2)}: Reactivity of Hyponitrite Complexes and Biological Relevance. Inorganic Chemistry, 2014, 53, 6398-6414.	4.0	42
66	Temperature Dependence of the Catalytic Two- versus Four-Electron Reduction of Dioxygen by a Hexanuclear Cobalt Complex. Journal of the American Chemical Society, 2017, 139, 15033-15042.	13.7	42
67	Functional Mononitrosyl Diiron(II) Complex Mediates the Reduction of NO to N2O with Relevance for Flavodiiron NO Reductases. Journal of the American Chemical Society, 2017, 139, 14380-14383.	13.7	41
68	Facile heterogenization of a cobalt catalyst via graphene adsorption: robust and versatile dihydrogen production systems. Chemical Communications, 2014, 50, 8065-8068.	4.1	40
69	Ferric Heme-Nitrosyl Complexes: Kinetically Robust or Unstable Intermediates?. Inorganic Chemistry, 2017, 56, 10513-10528.	4.0	40
70	Role of Structural Dynamics in Selectivity and Mechanism of Non-heme Fe(II) and 2-Oxoglutarate-Dependent Oxygenases Involved in DNA Repair. ACS Central Science, 2020, 6, 795-814.	11.3	40
71	Vibrational Analysis of the Model Complex (μ-edt)[Fe(CO) ₃] ₂ and Comparison to Iron-Only Hydrogenase: The Activation Scale of Hydrogenase Model Systems. Inorganic Chemistry, 2010, 49, 3201-3215.	4.0	38
72	Model complexes of key intermediates in fungal cytochrome P450 nitric oxide reductase (P450nor). Current Opinion in Chemical Biology, 2014, 19, 82-89.	6.1	38

#	Article	IF	CITATIONS
73	Structural and Spectroscopic Characterization of a High‣pin {FeNO} 6 Complex with an Iron(IV)â^'NO â^' Electronic Structure. Angewandte Chemie - International Edition, 2016, 55, 6685-6688.	13.8	38
74	Non-Heme Diiron Model Complexes Can Mediate Direct NO Reduction: Mechanistic Insight into Flavodiiron NO Reductases. Journal of the American Chemical Society, 2018, 140, 13429-13440.	13.7	38
75	Bonding, activation, and protonation of dinitrogen on a molybdenum pentaphosphine complex — Comparison to trans-bis(dinitrogen) and -nitrile – dinitrogen complexes with tetraphosphine coordination. Canadian Journal of Chemistry, 2005, 83, 385-402.	1.1	36
76	Mechanism of NO Photodissociation in Photolabile Manganese–NO Complexes with Pentadentate N5 Ligands. Inorganic Chemistry, 2011, 50, 12192-12203.	4.0	36
77	Mononuclear and Binuclear Copper(I) Complexes Ligated by Bis(3,5-diisopropyl-1-pyrazolyl)methane: Insight into the Fundamental Coordination Chemistry of Three-Coordinate Copper(I) Complexes with a Neutral Coligand. Inorganic Chemistry, 2007, 46, 10607-10623.	4.0	35
78	Five- and Six-Coordinate Adducts of Nitrosamines with Ferric Porphyrins: Structural Models for the Type II Interactions of Nitrosamines with Ferric Cytochrome P450. Inorganic Chemistry, 2010, 49, 4405-4419.	4.0	35
79	Electronic Structure and Reactivity of High-Spin Ironâ^'Alkyl- and â^'Pterinperoxo Complexes. Inorganic Chemistry, 2003, 42, 469-481.	4.0	34
80	Non-heme High-Spin {FeNO} ^{6–8} Complexes: One Ligand Platform Can Do It All. Journal of the American Chemical Society, 2018, 140, 11341-11359.	13.7	34
81	The trans effect of nitroxyl (HNO) in ferrous heme systems: Implications for soluble guanylate cyclase activation by HNO. Journal of Inorganic Biochemistry, 2013, 118, 179-186.	3.5	33
82	Reductive Transformations of a Pyrazolate-Based Bioinspired Diiron–Dinitrosyl Complex. Inorganic Chemistry, 2016, 55, 11538-11550.	4.0	33
83	Valence tautomerism in synthetic models of cytochrome P450. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6611-6616.	7.1	33
84	Preface for the Inorganic Chemistry Forum: The Coordination Chemistry of Nitric Oxide and Its Significance for Metabolism, Signaling, and Toxicity in Biology. Inorganic Chemistry, 2010, 49, 6223-6225.	4.0	31
85	Heme-protein vibrational couplings in cytochrome <i>c</i> provide a dynamic link that connects the heme-iron and the protein surface. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8896-8900.	7.1	31
86	Immobilized Cobalt Bis(benzenedithiolate) Complexes: Exceptionally Active Heterogeneous Electrocatalysts for Dihydrogen Production from Mildly Acidic Aqueous Solutions. Inorganic Chemistry, 2017, 56, 11654-11667.	4.0	31
87	Nitric Oxide Generation on Demand for Biomedical Applications via Electrocatalytic Nitrite Reduction by Copper BMPA- and BEPA-Carboxylate Complexes. ACS Catalysis, 2019, 9, 7746-7758.	11.2	30
88	Activation of Non-Heme Iron-Nitrosyl Complexes: Turning Up the Heat. ACS Catalysis, 2019, 9, 10499-10518.	11.2	30
89	Side-On Bridging Coordination of N2: Spectroscopic Characterization of the Planar Zr2N2 Core and Theoretical Investigation of Its Butterfly Distortion. Chemistry - A European Journal, 2003, 9, 520-530.	3.3	29
90	Electronic Structure, Spectroscopic Properties, and Reactivity of Molybdenum and Tungsten Nitrido and Imido Complexes with Diphosphine Coligands: Influence of the trans Ligandâ€. Inorganic Chemistry, 2006, 45, 5044-5056.	4.0	29

#	Article	IF	CITATIONS
91	Preparation of the Elusive [(por)Fe(NO)(Oâ€ligand)] Complex by Diffusion of Nitric Oxide into a Crystal of the Precursor. Angewandte Chemie - International Edition, 2013, 52, 3896-3900.	13.8	28
92	Portable Nitric Oxide (NO) Generator Based on Electrochemical Reduction of Nitrite for Potential Applications in Inhaled NO Therapy and Cardiopulmonary Bypass Surgery. Molecular Pharmaceutics, 2017, 14, 3762-3771.	4.6	26
93	The Thiolate Trans Effect in Heme {FeNO}6 Complexes and Beyond: Insight into the Nature of the Push Effect. Inorganic Chemistry, 2019, 58, 11317-11332.	4.0	26
94	Mo/Wî—,N2 and î—,N2H2 complexes with trans nitrile ligands: electronic structure, spectroscopic properties and relevance to nitrogen fixation. Inorganica Chimica Acta, 2002, 337, 11-31.	2.4	25
95	Mononuclear and binuclear copper(I)–diazene complexes: A new chapter of copper coordination chemistry. Inorganica Chimica Acta, 2008, 361, 901-915.	2.4	25
96	Distorted tetrahedral nickel-nitrosyl complexes: spectroscopic characterization and electronic structure. Journal of Biological Inorganic Chemistry, 2016, 21, 757-775.	2.6	25
97	Comparison of Copper(II)–Ligand Complexes as Mediators for Preparing Electrochemically Modulated Nitric Oxide-Releasing Catheters. ACS Applied Materials & Interfaces, 2018, 10, 25047-25055.	8.0	23
98	Catalysis by the JmjC histone demethylase KDM4A integrates substrate dynamics, correlated motions and molecular orbital control. Chemical Science, 2020, 11, 9950-9961.	7.4	23
99	Influence of thetrans Substituent on N2 Bonding in Iron(ii)-Phosphane Complexes: Structure, Synthesis, and Properties of the Monomeric Adductstrans-[FeXN2(depe)2]BPh4, X=Cl, Br. Angewandte Chemie - International Edition, 1998, 37, 815-817.	13.8	22
100	Spectroscopic Comparison of Dinuclear Ti+ and Ti2+ μ-η1:η1 Dinitrogen Complexes with Cp*/Pentafulvene and Amine/Amide Ligation: Moderate versus Strong Activation of N2. European Journal of Inorganic Chemistry, 2006, 2006, 291-297.	2.0	22
101	63 The Role of Heme-Nitrosyls in the Biosynthesis, Transport, Sensing, and Detoxification of Nitric Oxide in Biological Systems: Enzymes and Model Complexes. Handbook of Porphyrin Science, 2011, , 1-247.	0.8	22
102	Reduction of Graphene Oxide Thin Films by Cobaltocene and Decamethylcobaltocene. ACS Applied Materials & Interfaces, 2018, 10, 2004-2015.	8.0	22
103	Functional Models for the Mono- and Dinitrosyl Intermediates of FNORs: Semireduction versus Superreduction of NO. Journal of the American Chemical Society, 2020, 142, 6600-6616.	13.7	22
104	Mechanism and regulation of ferrous heme-nitric oxide (NO) oxidation in NO synthases. Journal of Biological Chemistry, 2019, 294, 7904-7916.	3.4	21
105	A Biochemical Nickel(I) State Supports Nucleophilic Alkyl Addition: A Roadmap for Methyl Reactivity in Acetyl Coenzyme A Synthase. Inorganic Chemistry, 2019, 58, 8969-8982.	4.0	21
106	Five-Coordinate Complexes [FeX(depe)2]BPh4, X = Cl, Br:Â Electronic Structure and Spin-Forbidden Reaction with N2â€. Inorganic Chemistry, 2002, 41, 3491-3499.	4.0	20
107	Preface for Small-Molecule Activation: From Biological Principles to Energy Applications. Part 2: Small Molecules Related to the Global Nitrogen Cycle. Inorganic Chemistry, 2015, 54, 9229-9233.	4.0	20
108	A Smorgasbord of Carbon: Electrochemical Analysis of Cobalt–Bis(benzenedithiolate) Complex Adsorption and Electrocatalytic Activity on Diverse Graphitic Supports. ACS Applied Materials & Interfaces, 2016, 8, 23624-23634.	8.0	20

#	Article	IF	CITATIONS
109	A cobalt–nitrosyl complex with a hindered hydrotris(pyrazolyl)borate coligand: detailed electronic structure, and reactivity towards dioxygen. Dalton Transactions, 2017, 46, 13273-13289.	3.3	20
110	Cytochrome c nitrite reductase from the bacterium Geobacter lovleyi represents a new NrfA subclass. Journal of Biological Chemistry, 2020, 295, 11455-11465.	3.4	20
111	Elucidating second coordination sphere effects in heme proteins using low-temperature magnetic circular dichroism spectroscopy. Journal of Inorganic Biochemistry, 2012, 110, 83-93.	3.5	19
112	Clarifying the Copper Coordination Environment in a <i>de Novo</i> Designed Red Copper Protein. Inorganic Chemistry, 2018, 57, 12291-12302.	4.0	19
113	Oxygen and Conformation Dependent Protein Oxidation and Aggregation by Porphyrins in Hepatocytes and Light-Exposed Cells. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 659-682.e1.	4.5	19
114	Stable Ferrous Mononitroxyl {FeNO}8 Complex with a Hindered Hydrotris(pyrazolyl)borate Coligand: Structure, Spectroscopic Characterization, and Reactivity Toward NO and O2. Inorganic Chemistry, 2019, 58, 4059-4062.	4.0	19
115	Electronic Structures of an [Fe(NNR2)]+/0/– Redox Series: Ligand Noninnocence and Implications for Catalytic Nitrogen Fixation. Inorganic Chemistry, 2019, 58, 3535-3549.	4.0	19
116	Ferric heme as a CO/NO sensor in the nuclear receptor Rev-Erbß by coupling gas binding to electron transfer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
117	Fischer–Tropsch Chemistry at Room Temperature?. Angewandte Chemie - International Edition, 2011, 50, 7984-7986.	13.8	18
118	Elucidating the Electronic Structure of High-Spin [Mn ^{III} (TPP)Cl] Using Magnetic Circular Dichroism Spectroscopy. Inorganic Chemistry, 2020, 59, 2144-2162.	4.0	18
119	Is there a pathway for N ₂ O production from hydroxylamine oxidoreductase in ammonia-oxidizing bacteria?. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14474-14476.	7.1	16
120	Development of a Rubredoxin-Type Center Embedded in a <i>de Dovo</i> -Designed Three-Helix Bundle. Biochemistry, 2018, 57, 2308-2316.	2.5	16
121	Favorable Protonation of the (μâ€edt)[Fe ₂ (PMe ₃) ₄ (CO) ₂ (Hâ€ŧerminal)] ⁺ Hydrogenase Model Complex Over Its Bridging μâ€H Counterpart: A Spectroscopic and DFT Study. European Journal of Inorganic Chemistry, 2011, 2011, 1147-1154.	2.0	15
122	Resonance Raman, Electron Paramagnetic Resonance, and Magnetic Circular Dichroism Spectroscopic Investigation of Diheme Cytochrome <i>c</i> Peroxidases from <i>Nitrosomonas europaea</i> and <i>Shewanella oneidensis</i> . Biochemistry, 2018, 57, 6416-6433.	2.5	15
123	Synthesis, Crystal Structure and Thermal Reactivity of [ZnX ₂ (2â€chloropyrazine)] (X = Cl,) Tj ETQq1	1_0_78431 2.0	I4 ₁ gBT /Ove
124	Synthesis, Electronic Structure, and Structural Characterization of the New, "Non-Innocent― 4,5-Dithio-Catecholate Ligand, Its Metal Complexes, and Their Oxidized 4,5-Dithio- <i>o</i> -quinone Derivatives. Inorganic Chemistry, 2009, 48, 8830-8844.	4.0	14
125	Disproportionation of Oâ€Benzylhydroxylamine Catalyzed by a Ferric Bisâ€Picket Fence Porphyrin Complex. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1520-1526.	1.2	14
126	Highly functionalizable penta-coordinate iron hydrogen production catalysts with low overpotentials. Dalton Transactions, 2016, 45, 1138-1151.	3.3	14

#	Article	IF	CITATIONS
127	Density Functional Theory Modeling of the Proposed Nitrite Anhydrase Function of Hemoglobin in Hypoxia Sensing. Inorganic Chemistry, 2011, 50, 7361-7363.	4.0	13
128	Ligand Recruitment and Spin Transitions in the Solid-State Photochemistry of Fe ^(III) TPPCI. Journal of Physical Chemistry A, 2012, 116, 8321-8333.	2.5	13
129	Isolation and Characterization of Single and Sulfide-Bridged Double [4Fe-4S] Cubane Clusters with 4-Pyridinethiolato Ligands. European Journal of Inorganic Chemistry, 2013, 2013, 5253-5264.	2.0	13
130	Mutation in the Flavin Mononucleotide Domain Modulates Magnetic Circular Dichroism Spectra of the iNOS Ferric Cyano Complex in a Substrate-Specific Manner. Inorganic Chemistry, 2011, 50, 6859-6861.	4.0	12
131	The Oxo-Wall Remains Intact: A Tetrahedrally Distorted Co(IV)–Oxo Complex. Journal of the American Chemical Society, 2021, 143, 16943-16959.	13.7	12
132	Electron Paramagnetic Resonance Spectroscopy as a Probe of Hydrogen Bonding in Heme-Thiolate Proteins. Inorganic Chemistry, 2019, 58, 16011-16027.	4.0	11
133	The Fe ₂ (NO) ₂ Diamond Core: A Unique Structural Motif In Nonâ€Heme Iron–NO Chemistry. Angewandte Chemie - International Edition, 2019, 58, 17695-17699.	13.8	11
134	Synthetic Model Complex of the Key Intermediate in Cytochrome P450 Nitric Oxide Reductase. Inorganic Chemistry, 2019, 58, 1398-1413.	4.0	11
135	A switch for blue copper proteins?. Nature Chemistry, 2016, 8, 639-641.	13.6	10
136	The Fe 2 (NO) 2 Diamond Core: A Unique Structural Motif In Nonâ€Heme Iron–NO Chemistry. Angewandte Chemie, 2019, 131, 17859-17863.	2.0	10
137	Exploring the Limits of Dative Boratrane Bonding: Iron as a Strong Lewis Base in Low-Valent Non-Heme Iron-Nitrosyl Complexes. Inorganic Chemistry, 2020, 59, 14967-14982.	4.0	10
138	Traversing the Red–Green–Blue Color Spectrum in Rationally Designed Cupredoxins. Journal of the American Chemical Society, 2020, 142, 15282-15294.	13.7	10
139	A Monohydrosulfidodinitrosyldiiron Complex That Generates N ₂ O as a Model for Flavodiiron Nitric Oxide Reductases: Reaction Mechanism and Electronic Structure. Inorganic Chemistry, 2021, 60, 15890-15900.	4.0	10
140	Distortion of the [FeNO] ₂ Core in Flavodiiron Nitric Oxide Reductase Models Inhibits N–N Bond Formation and Promotes Formation of Unusual Dinitrosyl Iron Complexes: Implications for Catalysis and Reactivity. Journal of the American Chemical Society, 2022, 144, 3804-3820.	13.7	10
141	EPR and Low-temperature MCD Spectroscopy of Ferrous Heme Nitrosyls. , 2008, , 147-171.		9
142	A detailed investigation into the electronic structures of macrocyclic iron(II)-nitrosyl compounds and their similarities to ferrous heme-nitrosyls. Inorganica Chimica Acta, 2012, 380, 148-160.	2.4	9
143	Model Complexes Elucidate the Role of the Proximal Hydrogen-Bonding Network in Cytochrome P450s. Inorganic Chemistry, 2020, 59, 8034-8043.	4.0	9
144	Nitric oxide and heme-NO stimulate superoxide production by NADPH oxidase 5. Free Radical Biology and Medicine, 2021, 172, 252-263.	2.9	9

#	Article	IF	CITATIONS
145	Structural and Spectroscopic Characterization of a High‧pin {FeNO} 6 Complex with an Iron(IV)â^'NO â^' Electronic Structure. Angewandte Chemie, 2016, 128, 6797-6800.	2.0	8
146	Charge-Transfer Band Splittings in Electronic Spectra of Mixed Ligand Halogeno Osmium(IV) Complexes. Inorganic Chemistry, 1998, 37, 6373-6381.	4.0	7
147	Bridging and axial carbene binding modes in cobalt corrole complexes: effect on carbene transfer. Chemical Communications, 2020, 56, 14881-14884.	4.1	7
148	Connecting [4Fe-4S] Clusters and Hemes - Towards Modeling the Active Site of Sulfite Reductase. European Journal of Inorganic Chemistry, 2013, 2013, 3883-3890.	2.0	6
149	A Structural Model for the Iron–Nitrosyl Adduct of Gentisate Dioxygenase. European Journal of Inorganic Chemistry, 2018, 2018, 4797-4804.	2.0	6
150	Formally Ferric Heme Carbon Monoxide Adduct. Journal of the American Chemical Society, 2019, 141, 5073-5077.	13.7	6
151	Elucidating Electron Storage and Distribution within the Pentaheme Scaffold of Cytochrome <i>c</i> Nitrite Reductase (NrfA). Biochemistry, 2021, 60, 1853-1867.	2.5	6
152	Calciumâ€ion Binding Mediates the Reversible Interconversion of <i>Cis</i> and <i>Trans</i> Peroxido Dicopper Cores. Angewandte Chemie - International Edition, 2021, 60, 19836-19842.	13.8	6
153	Exploring second coordination sphere effects in nitric oxide synthase. Journal of Biological Inorganic Chemistry, 2016, 21, 997-1008.	2.6	5
154	Reactivity and Structure of Complexes of Small Molecules: Nitric Oxide. , 2021, , 806-874.		5
155	Electrochemical generation of nitric oxide for medical applications. Electrochemical Science Advances, 2022, 2, e2100156.	2.8	5
156	The Biocoordination Chemistry of Nitric Oxide With Heme and Nonheme Iron Centers. , 2017, , .		3
157	Synthesis and characterization of a model complex for flavodiiron NO reductases that stabilizes a diiron mononitrosyl complex. Journal of Inorganic Biochemistry, 2022, 229, 111723.	3.5	3
158	Calciumâ€ion Binding Mediates the Reversible Interconversion of Cis and Trans Peroxido Dicopper Cores. Angewandte Chemie, 2021, 133, 19989-19995.	2.0	0