Jost Enninga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4893925/publications.pdf

Version: 2024-02-01

58 papers	3,006 citations	304743 22 h-index	214800 47 g-index
62	62	62	3901 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	A Role for Taok2 in <i>Listeria monocytogenes</i> Vacuolar Escape. Journal of Infectious Diseases, 2022, 225, 1005-1010.	4.0	8
2	Intracellular niche switching as host subversion strategy of bacterial pathogens. Current Opinion in Cell Biology, 2022, 76, 102081.	5.4	7
3	Time-Resolved Fluorescence Microscopy Screens on Host Protein Subversion During Bacterial Cell Invasion. Methods in Molecular Biology, 2022, , 113-131.	0.9	3
4	The histone demethylase KDM6B fine-tunes the host response to Streptococcus pneumoniae. Nature Microbiology, 2021, 6, 257-269.	13.3	16
5	SopB―and SifAâ€dependent shaping of the <i>Salmonella</i> à€containing vacuole proteome in the social amoeba <i>Dictyostelium discoideum</i> . Cellular Microbiology, 2021, 23, e13263.	2.1	3
6	Micropatterning of cells on EM grids for efficient cryo-correlative light electron microscopy. Methods in Microbiology, 2021, 48, 95-110.	0.8	2
7	Salmonella enters a dormant state within human epithelial cells for persistent infection. PLoS Pathogens, 2021, 17, e1009550.	4.7	25
8	New methods to decrypt emerging macropinosome functions during the host–pathogen crosstalk. Cellular Microbiology, 2021, 23, e13342.	2.1	8
9	Purification of infection-associated macropinosomes by magnetic isolation for proteomic characterization. Nature Protocols, 2021, 16, 5220-5249.	12.0	5
10	The phosphoinositide coincidence detector Phafin2 promotes macropinocytosis by coordinating actin organisation at forming macropinosomes. Nature Communications, 2021, 12, 6577.	12.8	17
11	Shigella hijacks the exocyst to cluster macropinosomes for efficient vacuolar escape. PLoS Pathogens, 2020, 16, e1008822.	4.7	23
12	Actin Assembly around the Shigella-Containing Vacuole Promotes Successful Infection. Cell Reports, 2020, 31, 107638.	6.4	28
13	The actin comet guides the way: How <scp><i>Listeria</i></scp> actin subversion has impacted cell biology, infection biology and structural biology. Cellular Microbiology, 2020, 22, e13190.	2.1	15
14	Transcytosis subversion by M cell-to-enterocyte spread promotes Shigella flexneri and Listeria monocytogenes intracellular bacterial dissemination. PLoS Pathogens, 2020, 16, e1008446.	4.7	25
15	Shigella hijacks the exocyst to cluster macropinosomes for efficient vacuolar escape. , 2020, 16, e1008822.		O
16	Shigella hijacks the exocyst to cluster macropinosomes for efficient vacuolar escape., 2020, 16, e1008822.		0
17	Shigella hijacks the exocyst to cluster macropinosomes for efficient vacuolar escape. , 2020, 16, e1008822.		0
18	Shigella hijacks the exocyst to cluster macropinosomes for efficient vacuolar escape. , 2020, 16, e1008822.		0

#	Article	IF	Citations
19	Title is missing!. , 2020, 16, e1008446.		O
20	Title is missing!. , 2020, 16, e1008446.		0
21	Title is missing!. , 2020, 16, e1008446.		0
22	Title is missing!. , 2020, 16, e1008446.		0
23	The best of both worlds- bringing together cell biology and infection at the Institut Pasteur. Microbes and Infection, 2019, 21, 254-262.	1.9	0
24	The best of both worldsâ€"bringing together cell biology and infection at the Institut Pasteur. Genes and Immunity, 2019, 20, 426-435.	4.1	0
25	Dynamic Growth and Shrinkage of the Salmonella-Containing Vacuole Determines the Intracellular Pathogen Niche. Cell Reports, 2019, 29, 3958-3973.e7.	6.4	51
26	The Pathogen–Host Interface in Three Dimensions: Correlative FIB/SEM Applications. Trends in Microbiology, 2019, 27, 426-439.	7.7	22
27	The entry of <i>Salmonella</i> in a distinct tight compartment revealed at high temporal and ultrastructural resolution. Cellular Microbiology, 2018, 20, e12816.	2.1	34
28	Diverted recyclingâ€" <i>Shigella subversion</i> of Rabs. Small GTPases, 2018, 9, 365-374.	1.6	7
29	Identification of Parameters of Host Cell Vulnerability during Salmonella Infection by Quantitative Image Analysis and Modeling. Infection and Immunity, 2018, 86, .	2.2	11
30	High-throughput Microscopic Analysis of Salmonella Invasion of Host Cells. Bio-protocol, 2018, 8, .	0.4	4
31	Tracing a fat or sweet lifestyle - New insights on catabolic paths of intracellular Salmonella. Virulence, 2017, 8, 655-657.	4.4	0
32	Assessing Vacuolar Escape of Listeria Monocytogenes. Methods in Molecular Biology, 2017, 1535, 173-195.	0.9	3
33	Imaging macropinosomes during Shigella infections. Methods, 2017, 127, 12-22.	3.8	17
34	Shigella Stays on the Move. Cell Host and Microbe, 2017, 22, 432-433.	11.0	1
35	The <i>Shigella</i> type <scp>III</scp> effector IpgD recodes Ca ²⁺ signals during invasion of epithelial cells. EMBO Journal, 2017, 36, 2567-2580.	7.8	21
36	Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm. Frontiers in Cellular and Infection Microbiology, 2016, 6, 35.	3.9	34

#	Article	IF	Citations
37	Macropinosomes are Key Players in Early Shigella Invasion and Vacuolar Escape in Epithelial Cells. PLoS Pathogens, 2016, 12, e1005602.	4.7	85
38	Perspectives on mycobacterial vacuole-to-cytosol translocation: the importance of cytosolic access. Cellular Microbiology, 2016, 18, 1070-1077.	2.1	26
39	Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia. Seminars in Cell and Developmental Biology, 2016, 60, 155-167.	5.0	37
40	At the crossroads: communication of bacteriaâ€containing vacuoles with host organelles. Cellular Microbiology, 2016, 18, 330-339.	2.1	35
41	A Dual Microscopy-Based Assay To Assess Listeria monocytogenes Cellular Entry and Vacuolar Escape. Applied and Environmental Microbiology, 2016, 82, 211-217.	3.1	11
42	Lipid Droplet Formation, Their Localization and Dynamics during Leishmania major Macrophage Infection. PLoS ONE, 2016, 11, e0148640.	2.5	62
43	The COPII complex and lysosomal VAMP7 determine intracellular <i>Salmonella</i> localization and growth. Cellular Microbiology, 2015, 17, 1699-1720.	2.1	46
44	Insights on the Emergence of Mycobacterium tuberculosis from the Analysis of Mycobacterium kansasii. Genome Biology and Evolution, 2015, 7, 856-870.	2.5	79
45	Bacterial Internalization, Localization, and Effectors Shape the Epithelial Immune Response during Shigella flexneri Infection. Infection and Immunity, 2015, 83, 3624-3637.	2.2	12
46	Autophagy Proteins Promote Repair of Endosomal Membranes Damaged by the Salmonella Type Three Secretion System 1. Cell Host and Microbe, 2015, 18, 527-537.	11.0	116
47	Cytoplasmic access by intracellular bacterial pathogens. Trends in Microbiology, 2014, 22, 128-137.	7.7	58
48	Shigella Subverts the Host Recycling Compartment to Rupture Its Vacuole. Cell Host and Microbe, 2014, 16, 517-530.	11.0	101
49	Single Cell Measurements of Vacuolar Rupture Caused by Intracellular Pathogens. Journal of Visualized Experiments, 2013, , e50116.	0.3	21
50	Phagosomal Rupture by Mycobacterium tuberculosis Results in Toxicity and Host Cell Death. PLoS Pathogens, 2012, 8, e1002507.	4.7	479
51	Hierarchies of Host Factor Dynamics at the Entry Site of Shigella flexneri during Host Cell Invasion. Infection and Immunity, 2012, 80, 2548-2557.	2.2	34
52	MonitoringShigella flexnerivacuolar escape by flow cytometry. Virulence, 2011, 2, 54-57.	4.4	20
53	Galectin-3, a marker for vacuole lysis by invasive pathogens. Cellular Microbiology, 2010, 12, 530-544.	2.1	307
54	Tracking the dynamic interplay between bacterial and host factors during pathogen-induced vacuole rupture in real time. Cellular Microbiology, 2010, 12, 545-556.	2.1	90

#	Article	IF	CITATIONS
55	The IpaC Carboxyterminal Effector Domain Mediates Src-Dependent Actin Polymerization during Shigella Invasion of Epithelial Cells. PLoS Pathogens, 2009, 5, e1000271.	4.7	89
56	Prions hijack tunnelling nanotubes for intercellular spread. Nature Cell Biology, 2009, 11, 328-336.	10.3	539
57	Invasive and Adherent Bacterial Pathogens Co-Opt Host Clathrin for Infection. Cell Host and Microbe, 2007, 2, 340-351.	11.0	198
58	Secretion of type III effectors into host cells in real time. Nature Methods, 2005, 2, 959-965.	19.0	171