
Michel Goedert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4892248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	α-Synuclein in Lewy bodies. Nature, 1997, 388, 839-840.	27.8	7,181
2	Neurodegenerative Tauopathies. Annual Review of Neuroscience, 2001, 24, 1121-1159.	10.7	2,416
3	A Century of Alzheimer's Disease. Science, 2006, 314, 777-781.	12.6	1,798
4	Transmission and spreading of tauopathy in transgenic mouse brain. Nature Cell Biology, 2009, 11, 909-913.	10.3	1,515
5	Cryo-EM structures of tau filaments from Alzheimer's disease. Nature, 2017, 547, 185-190.	27.8	1,502
6	Alpha-synuclein and neurodegenerative diseases. Nature Reviews Neuroscience, 2001, 2, 492-501.	10.2	1,249
7	Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson's disease and dementia with Lewy bodies. Neuroscience Letters, 1998, 251, 205-208.	2.1	941
8	100 years of Lewy pathology. Nature Reviews Neurology, 2013, 9, 13-24.	10.1	939
9	Identification of two distinct synucleins from human brain. FEBS Letters, 1994, 345, 27-32.	2.8	922
10	Tau pathology and neurodegeneration. Lancet Neurology, The, 2013, 12, 609-622.	10.2	893
11	Abnormal tau phosphorylation at Ser396 in alzheimer's disease recapitulates development and contributes to reduced microtubule binding. Neuron, 1993, 10, 1089-1099.	8.1	845
12	Alzheimer's and Parkinson's diseases: The prion concept in relation to assembled Al², tau, and α-synucleir Science, 2015, 349, 1255555.	^{1.} 12.6	753
13	Tau protein pathology in neurodegenerative diseases. Trends in Neurosciences, 1998, 21, 428-433.	8.6	652
14	Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9535-9540.	7.1	648
15	Tau protein and the neurofibrillary pathology of Alzheimer's disease. Trends in Neurosciences, 1993, 16, 460-465.	8.6	644
16	Abundant Tau Filaments and Nonapoptotic Neurodegeneration in Transgenic Mice Expressing Human P301S Tau Protein. Journal of Neuroscience, 2002, 22, 9340-9351.	3.6	643
17	Structures of filaments from Pick's disease reveal a novel tau protein fold. Nature, 2018, 561, 137-140.	27.8	625
18	Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature, 2019, 568, 420-423.	27.8	528

#	Article	IF	CITATIONS
19	Inhibition of Heparin-induced Tau Filament Formation by Phenothiazines, Polyphenols, and Porphyrins. Journal of Biological Chemistry, 2005, 280, 7614-7623.	3.4	479
20	Binding of α-Synuclein to Brain Vesicles Is Abolished by Familial Parkinson's Disease Mutation. Journal of Biological Chemistry, 1998, 273, 26292-26294.	3.4	464
21	Propagation of Tau Aggregates and Neurodegeneration. Annual Review of Neuroscience, 2017, 40, 189-210.	10.7	453
22	Structures of \hat{I}_{\pm} -synuclein filaments from multiple system atrophy. Nature, 2020, 585, 464-469.	27.8	446
23	Tau proteins with FTDPâ€17 mutations have a reduced ability to promote microtubule assembly. FEBS Letters, 1998, 437, 207-210.	2.8	440
24	The αâ€ 5 ynucleinopathies: Parkinson's Disease, Dementia with Lewy Bodies, and Multiple System Atrophy. Annals of the New York Academy of Sciences, 2000, 920, 16-27.	3.8	437
25	Biophysical Properties of the Synucleins and Their Propensities to Fibrillate. Journal of Biological Chemistry, 2002, 277, 11970-11978.	3.4	413
26	High Prevalence of Mutations in the Microtubule-Associated Protein Tau in a Population Study of Frontotemporal Dementia in the Netherlands. American Journal of Human Genetics, 1999, 64, 414-421.	6.2	410
27	Structure-based classification of tauopathies. Nature, 2021, 598, 359-363.	27.8	409
28	The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends in Neurosciences, 2010, 33, 317-325.	8.6	402
29	A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathologica, 2014, 127, 667-683.	7.7	390
30	Frontotemporal Dementia and Corticobasal Degeneration in a Family with a P301S Mutation in Tau. Journal of Neuropathology and Experimental Neurology, 1999, 58, 667-677.	1.7	381
31	Novel tau filament fold in corticobasal degeneration. Nature, 2020, 580, 283-287.	27.8	381
32	Synthetic filaments assembled from C-terminally truncated α-synuclein. FEBS Letters, 1998, 436, 309-312.	2.8	373
33	Invited review: Frontotemporal dementia caused by <i>microtubuleâ€associated protein tau</i> gene (<scp><i>MAPT</i></scp>) mutations: a chameleon for neuropathology and neuroimaging. Neuropathology and Applied Neurobiology, 2015, 41, 24-46.	3.2	360
34	The Synucleinopathies: Twenty Years On. Journal of Parkinson's Disease, 2017, 7, S51-S69.	2.8	350
35	Small Molecule Inhibitors of α-Synuclein Filament Assemblyâ€. Biochemistry, 2006, 45, 6085-6094.	2.5	348
36	Mutations causing neurodegenerative tauopathies. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1739, 240-250.	3.8	347

#	Article	IF	CITATIONS
37	Detection of Phosphorylated Ser262 in Fetal Tau, Adult Tau, and Paired Helical Filament Tau. Journal of Biological Chemistry, 1995, 270, 18917-18922.	3.4	319
38	Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer's and Pick's diseases. ELife, 2019, 8, .	6.0	309
39	Proteasomal degradation of tau protein. Journal of Neurochemistry, 2002, 83, 176-185.	3.9	302
40	Pathological Changes in Dopaminergic Nerve Cells of the Substantia Nigra and Olfactory Bulb in Mice Transgenic for Truncated Human α-Synuclein(1–120): Implications for Lewy Body Disorders. Journal of Neuroscience, 2006, 26, 3942-3950.	3.6	302
41	The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2BÉ› at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochemical Journal, 2001, 355, 609-615.	3.7	299
42	Repeat motifs of tau bind to the insides of microtubules in the absence of taxol. EMBO Journal, 2003, 22, 70-77.	7.8	299
43	Tau Mutations Cause Frontotemporal Dementias. Neuron, 1998, 21, 955-958.	8.1	294
44	Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain, 2012, 135, 2169-2177.	7.6	291
45	Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-Â structure. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9034-9038.	7.1	281
46	Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. FEBS Letters, 1997, 409, 57-62.	2.8	272
47	What is the evidence that tau pathology spreads through prion-like propagation?. Acta Neuropathologica Communications, 2017, 5, 99.	5.2	272
48	p42 map kinase phosphorylation sites in microtubule-associated protein tau are dephosphorylated by protein phosphatase 2A1Implications for Alzheimer's disease. FEBS Letters, 1992, 312, 95-99.	2.8	269
49	PART is part of Alzheimer disease. Acta Neuropathologica, 2015, 129, 749-756.	7.7	256
50	Tau filaments from multiple cases of sporadic and inherited Alzheimer's disease adopt a common fold. Acta Neuropathologica, 2018, 136, 699-708.	7.7	252
51	Like prions: the propagation of aggregated tau and α-synuclein in neurodegeneration. Brain, 2017, 140, 266-278.	7.6	248
52	Filamentous nerve cell inclusions in neurodegenerative diseases. Current Opinion in Neurobiology, 1998, 8, 619-632.	4.2	247
53	Mutation E46K increases phospholipid binding and assembly into filaments of human α-synuclein. FEBS Letters, 2004, 576, 363-368.	2.8	241
54	Rodent models for Alzheimer disease. Nature Reviews Neuroscience, 2018, 19, 583-598.	10.2	240

#	Article	IF	CITATIONS
55	SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson's disease. Brain, 2010, 133, 2032-2044.	7.6	236
56	Effects of frontotemporal dementia FTDPâ€17 mutations on heparinâ€induced assembly of tau filaments. FEBS Letters, 1999, 450, 306-311.	2.8	231
57	Cryo-EM structures of amyloid- \hat{l}^2 42 filaments from human brains. Science, 2022, 375, 167-172.	12.6	228
58	Conformation Determines the Seeding Potencies of Native and Recombinant Tau Aggregates. Journal of Biological Chemistry, 2015, 290, 1049-1065.	3.4	225
59	A Raman optical activity study of rheomorphism in caseins, synucleins and tau. FEBS Journal, 2002, 269, 148-156.	0.2	214
60	A GSK3â€binding peptide from FRAT1 selectively inhibits the GSK3â€catalysed phosphorylation of Axin and βâ€catenin. FEBS Letters, 1999, 458, 247-251.	2.8	212
61	<i>Tau</i> Gene Mutation G389R Causes a Tauopathy with Abundant Pick Body-like Inclusions and Axonal Deposits. Journal of Neuropathology and Experimental Neurology, 1999, 58, 1207-1226.	1.7	206
62	Glycogen synthase kinase-3β phosphorylates tau protein at multiple sites in intact cells. Neuroscience Letters, 1995, 197, 149-153.	2.1	205
63	A panel of epitope-specific antibodies detects protein domains distributed throughout human ?-synuclein in lewy bodies of Parkinson's disease. , 2000, 59, 528-533.		197
64	Rapamycin Attenuates the Progression of Tau Pathology in P301S Tau Transgenic Mice. PLoS ONE, 2013, 8, e62459.	2.5	196
65	Why has therapy development for dementia failed in the last two decades?. Alzheimer's and Dementia, 2016, 12, 60-64.	0.8	194
66	FTDPâ€17 mutations N279K and S305N in tau produce increased splicing of exon 10. FEBS Letters, 1999, 443, 93-96.	2.8	188
67	Alzheimer-like Changes in Microtubule-associated Protein Tau Induced by Sulfated Glycosaminoglycans. Journal of Biological Chemistry, 1997, 272, 33118-33124.	3.4	184
68	Tau protein, the paired helical filament and Alzheimer's disease. Journal of Alzheimer's Disease, 2006, 9, 195-207.	2.6	181
69	Induction of Inflammatory Mediators and Microglial Activation in Mice Transgenic for Mutant Human P301S Tau Protein. American Journal of Pathology, 2004, 165, 1643-1652.	3.8	180
70	Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/JNK) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7. Biochemical Journal, 2000, 352, 145-154.	3.7	171
71	Tau Pathology in a Family with Dementia and a P301L Mutation in Tau. Journal of Neuropathology and Experimental Neurology, 1999, 58, 335-345.	1.7	170
72	Filamentous nerve cell inclusions in neurodegenerative diseases: tauopathies and alpha-synucleinopathies. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 1101-1118.	4.0	165

#	Article	IF	CITATIONS
73	Cryo-EM structures of tau filaments. Current Opinion in Structural Biology, 2020, 64, 17-25.	5.7	165
74	Characterisation of isolated α-synuclein filaments from substantia nigra of Parkinson's disease brain. Neuroscience Letters, 2000, 292, 128-130.	2.1	157
75	Propagation of Tau aggregates. Molecular Brain, 2017, 10, 18.	2.6	154
76	Long-Term In Vivo Imaging of Fibrillar Tau in the Retina of P301S Transgenic Mice. PLoS ONE, 2012, 7, e53547.	2.5	148
77	SAP kinase-3, a new member of the family of mammalian stress-activated protein kinases. FEBS Letters, 1996, 383, 273-276.	2.8	146
78	<i>Tau</i> Gene Mutation K257T Causes a Tauopathy Similar to Pick's Disease. Journal of Neuropathology and Experimental Neurology, 2000, 59, 990-1001.	1.7	145
79	Effect of SB 203580 on the activity of c-Raf in vitro and in vivo. Oncogene, 1999, 18, 2047-2054.	5.9	143
80	Cytosolic Fc receptor TRIM21 inhibits seeded tau aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 574-579.	7.1	143
81	Tau protein and neurodegeneration. Seminars in Cell and Developmental Biology, 2004, 15, 45-49.	5.0	140
82	Tau protein is phosphorylated by cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase II within its microtubule-binding domains at Ser-262 and Ser-356. Biochemical Journal, 1996, 316, 655-660.	3.7	136
83	A noveltau mutation (N296N) in familial dementia with swollen achromatic neurons and corticobasal inclusion bodies. Annals of Neurology, 2000, 48, 939-943.	5.3	136
84	Invited review: Prionâ€like transmission and spreading of tau pathology. Neuropathology and Applied Neurobiology, 2015, 41, 47-58.	3.2	130
85	Short Fibrils Constitute the Major Species of Seed-Competent Tau in the Brains of Mice Transgenic for Human P301S Tau. Journal of Neuroscience, 2016, 36, 762-772.	3.6	129
86	Pick's disease associated with the novel <i>Tau</i> gene mutation K369I. Annals of Neurology, 2001, 50, 503-513.	5.3	128
87	Tau mutations in frontotemporal dementia FTDP-17 and their relevance for Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2000, 1502, 110-121.	3.8	127
88	Frontotemporal Dementia: Implications for Understanding Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006254-a006254.	6.2	127
89	Assembly of recombinant tau into filaments identical to those of Alzheimer's disease and chronic traumatic encephalopathy. ELife, 2022, 11, .	6.0	121
90	Evidence that phosphorylation of the microtubule-associated protein Tau by SAPK4/p38δ at Thr50 promotes microtubule assembly. Journal of Cell Science, 2005, 118, 397-408.	2.0	120

#	Article	IF	CITATIONS
91	Peripheral administration of tau aggregates triggers intracerebral tauopathy in transgenic mice. Acta Neuropathologica, 2014, 127, 299-301.	7.7	116
92	Tau gene mutations and their effects. Movement Disorders, 2005, 20, S45-S52.	3.9	115
93	"Prion‣ike―Templated Misfolding in Tauopathies. Brain Pathology, 2013, 23, 342-349.	4.1	114
94	Analysis of Tau Phosphorylation and Truncation in a Mouse Model of Human Tauopathy. American Journal of Pathology, 2008, 172, 123-131.	3.8	113
95	White Matter Tauopathy With Globular Glial Inclusions: A Distinct Sporadic Frontotemporal Lobar Degeneration. Journal of Neuropathology and Experimental Neurology, 2008, 67, 963-975.	1.7	111
96	Prion-like Mechanisms in the Pathogenesis of Tauopathies and Synucleinopathies. Current Neurology and Neuroscience Reports, 2014, 14, 495.	4.2	111
97	A novel mutation at position +12 in the intron following Exon 10 of the tau gene in familial frontotemporal dementia (FTD-Kumamoto). Annals of Neurology, 2000, 47, 422-429.	5.3	109
98	Tau inclusions in retinal ganglion cells of human P301S tau transgenic mice: Effects on axonal viability. Neurobiology of Aging, 2011, 32, 419-433.	3.1	108
99	Pathogenesis of the Tauopathies. Journal of Molecular Neuroscience, 2011, 45, 425-431.	2.3	107
100	Use of a drug-resistant mutant of stress-activated protein kinase 2a/p38 to validate the in vivo specificity of SB 203580. FEBS Letters, 1999, 451, 191-196.	2.8	106
101	Cell-Mediated Neuroprotection in a Mouse Model of Human Tauopathy. Journal of Neuroscience, 2010, 30, 9973-9983.	3.6	106
102	Regulation of Alternative Splicing of Human Tau Exon 10 by Phosphorylation of Splicing Factors. Molecular and Cellular Neurosciences, 2001, 18, 80-90.	2.2	101
103	A simple algorithm locates β-strands in the amyloid fibril core of α-synuclein, Aβ, and tau using the amino acid sequence alone. Protein Science, 2007, 16, 906-918.	7.6	101
104	Tau filaments in neurodegenerative diseases. FEBS Letters, 2018, 592, 2383-2391.	2.8	100
105	Cryo-EM structures of tau filaments from Alzheimer's disease with PET ligand APN-1607. Acta Neuropathologica, 2021, 141, 697-708.	7.7	99
106	The Repeat Region of Microtubule-Associated Protein Tau Forms Part of the Core of the Paired Helical Filament of Alzheimer's Disease. Annals of Medicine, 1989, 21, 127-132.	3.8	98
107	The tauopathy associated with mutation +3 in intron 10 of Tau: characterization of the MSTD family. Brain, 2008, 131, 72-89.	7.6	98
108	Epitope mapping of LB509, a monoclonal antibody directed against human α-synuclein. Neuroscience Letters, 1999, 269, 13-16.	2.1	96

#	Article	IF	CITATIONS
109	The Structural Basis for Optimal Performance of Oligothiopheneâ€Based Fluorescent Amyloid Ligands: Conformational Flexibility is Essential for Spectral Assignment of a Diversity of Protein Aggregates. Chemistry - A European Journal, 2013, 19, 10179-10192.	3.3	95
110	Seeded assembly <i>inÂvitro</i> does not replicate the structures of αâ€synuclein filaments from multiple system atrophy. FEBS Open Bio, 2021, 11, 999-1013.	2.3	95
111	The awakening of α-synuclein. Nature, 1997, 388, 232-233.	27.8	94
112	Circadian clocks and neurodegenerative diseases: time to aggregate?. Current Opinion in Neurobiology, 2013, 23, 880-887.	4.2	93
113	Stress- and mitogen-induced phosphorylation of the synapse-associated protein SAP90/PSD-95 by activation of SAPK3/p38gamma and ERK1/ERK2. Biochemical Journal, 2004, 380, 19-30.	3.7	92
114	A novel <i>tau</i> mutation, S320F, causes a tauopathy with inclusions similar to those in Pick's disease. Annals of Neurology, 2002, 51, 373-376.	5.3	91
115	Oskar Fischer and the study of dementia. Brain, 2008, 132, 1102-1111.	7.6	90
116	The significance of tau and α-synuclein inclusions in neurodegenerative diseases. Current Opinion in Genetics and Development, 2001, 11, 343-351.	3.3	89
117	Parkinsons Disease and other α-Synucleinopathies. Clinical Chemistry and Laboratory Medicine, 2001, 39, 308-12.	2.3	89
118	Age-dependent formation of TMEM106B amyloid filaments in human brains. Nature, 2022, 605, 310-314.	27.8	88
119	Reduced Binding of Protein Phosphatase 2A to Tau Protein with Frontotemporal Dementia and Parkinsonism Linked to Chromosome 17 Mutations. Journal of Neurochemistry, 2002, 75, 2155-2162.	3.9	87
120	<i>In vitro</i> high affinity αâ€synuclein binding sites for the amyloid imaging agent PIB are not matched by binding to Lewy bodies in postmortem human brain ¹ . Journal of Neurochemistry, 2008, 105, 1428-1437.	3.9	84
121	Galectin-8–mediated selective autophagy protects against seeded tau aggregation. Journal of Biological Chemistry, 2018, 293, 2438-2451.	3.4	84
122	Stimulation of autophagy is neuroprotective in a mouse model of human tauopathy. Autophagy, 2012, 8, 1686-1687.	9.1	83
123	Anti-amyloid Compounds Inhibit α-Synuclein Aggregation Induced by Protein Misfolding Cyclic Amplification (PMCA). Journal of Biological Chemistry, 2014, 289, 11897-11905.	3.4	83
124	Variable phenotypic expression and extensive tau pathology in two families with the novel <i>tau</i> mutation L315R. Annals of Neurology, 2003, 54, 573-581.	5.3	82
125	The value of incomplete mouse models of Alzheimer's disease. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35, 70-74.	6.4	79
126	Parkinson's Disease – the Debate on the Clinical Phenomenology, Aetiology, Pathology and Pathogenesis. Journal of Parkinson's Disease, 2013, 3, 1-11.	2.8	79

#	Article	IF	CITATIONS
127	Neurodegeneration and the ordered assembly of $\hat{I}\pm$ -synuclein. Cell and Tissue Research, 2018, 373, 137-148.	2.9	79
128	Cysteine misincorporation in bacterially expressed human α-synuclein. FEBS Letters, 2006, 580, 1775-1779.	2.8	74
129	Sequential phosphorylation of tau protein by cAMPâ€dependent protein kinase and SAPK4/p38δ or JNK2 in the presence of heparin generates the AT100 epitope. Journal of Neurochemistry, 2006, 99, 154-164.	3.9	68
130	Measurement of Tau Filament Fragmentation Provides Insights into Prion-like Spreading. ACS Chemical Neuroscience, 2018, 9, 1276-1282.	3.5	68
131	Synaptotagmin V: a novel synaptotagmin isoform expressed in rat brain. FEBS Letters, 1995, 361, 196-200.	2.8	66
132	Sequence Determinants for Amyloid Fibrillogenesis of Human α-Synuclein. Journal of Molecular Biology, 2007, 374, 454-464.	4.2	66
133	Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases in intact cells. FEBS Letters, 2002, 515, 151-154.	2.8	65
134	Modeling familial Danish dementia in mice supports the concept of the amyloid hypothesis of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7969-7974.	7.1	65
135	Chapter 21 Neurofibrillary pathology of Alzheimer's disease and other tauopathies. Progress in Brain Research, 1998, 117, 287-306.	1.4	64
136	Phosphorylation of cytosolic phospholipase A2 in platelets is mediated by multiple stress-activated protein kinase pathways. FEBS Journal, 1999, 265, 195-203.	0.2	63
137	Risky apolipoprotein in brain. Nature, 1994, 372, 45-46.	27.8	62
138	Abundant neuritic inclusions and microvacuolar changes in a case of diffuse Lewy body disease with the A53T mutation in the α-synuclein gene. Acta Neuropathologica, 2005, 110, 298-305.	7.7	59
139	Phosphorylation of microtubuleâ€associated protein tau by AMPKâ€related kinases. Journal of Neurochemistry, 2012, 120, 165-176.	3.9	59
140	From genetics to pathology: tau and a–synuclein assemblies in neurodegenerative diseases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 213-227.	4.0	58
141	Functional effects of <i>tau</i> gene mutations ΔN296 and N296H. Journal of Neurochemistry, 2002, 80, 548-551.	3.9	57
142	ApoE3 binding to tau tandem repeat I is abolished by tau serine262 phosphorylation. Neuroscience Letters, 1995, 192, 209-212.	2.1	56
143	Reduced Axonal Transport and Increased Excitotoxic Retinal Ganglion Cell Degeneration in Mice Transgenic for Human Mutant P301S Tau. PLoS ONE, 2012, 7, e34724.	2.5	56
144	The Tauopathies. American Journal of Pathology, 1999, 154, 1-6.	3.8	54

#	Article	IF	CITATIONS
145	<i>Tau</i> Gene Mutations in Frontotemporal Dementia and Parkinsonism Linked to Chromosome 17 (FTDPâ€17): Their Relevance for Understanding the Neurogenerative Process. Annals of the New York Academy of Sciences, 2000, 920, 74-83.	3.8	54
146	The ordered assembly of tau is the gainâ€ofâ€toxic function that causes human tauopathies. Alzheimer's and Dementia, 2016, 12, 1040-1050.	0.8	54
147	Inhibition of synucleinopathic seeding by rationally designed inhibitors. ELife, 2020, 9, .	6.0	54
148	Distinct Conformers of Assembled Tau in Alzheimer's and Pick's Diseases. Cold Spring Harbor Symposia on Quantitative Biology, 2018, 83, 163-171.	1.1	53
149	SKK4, a novel activator of stress-activated protein kinase-1 (SAPK1/JNK). FEBS Letters, 1997, 414, 153-158.	2.8	50
150	Molecular Cloning and Functional Characterization of Chicken Brain Tau:  Isoforms with up to Five Tandem Repeats. Biochemistry, 2002, 41, 15203-15211.	2.5	49
151	The Structure of Crossâ€Î² Tapes and Tubes Formed by an Octapeptide, αSβ1. Angewandte Chemie - International Edition, 2013, 52, 2279-2283.	13.8	46
152	Functional Characterization of FTDP-17 tau Gene Mutations through Their Effects on Xenopus Oocyte Maturation. Journal of Biological Chemistry, 2002, 277, 9199-9205.	3.4	44
153	Alois Alzheimer: His Life and Times. Brain Pathology, 2007, 17, 57-62.	4.1	44
154	Distinct Spacing Between Anionic Groups: An Essential Chemical Determinant for Achieving Thiopheneâ€Based Ligands to Distinguish βâ€Amyloid or Tau Polymorphic Aggregates. Chemistry - A European Journal, 2015, 21, 9072-9082.	3.3	44
155	Tau Silencing by siRNA in the P301S Mouse Model of Tauopathy. Current Gene Therapy, 2014, 14, 343-351.	2.0	44
156	Impaired plasticity of cortical dendritic spines in P301S tau transgenic mice. Acta Neuropathologica Communications, 2013, 1, 82.	5.2	43
157	The natural osmolyte trimethylamineN-oxide (TMAO) restores the ability of mutant tau to promote microtubule assembly. FEBS Letters, 2000, 484, 265-270.	2.8	42
158	Ordered Assembly of Tau Protein and Neurodegeneration. Advances in Experimental Medicine and Biology, 2019, 1184, 3-21.	1.6	42
159	A novel tau mutation (N296N) in familial dementia with swollen achromatic neurons and corticobasal inclusion bodies. Annals of Neurology, 2000, 48, 939-943.	5.3	40
160	Inhibition of αâ€synuclein fibril assembly by small molecules: Analysis using epitopeâ€specific antibodies. FEBS Letters, 2009, 583, 787-791.	2.8	39
161	Detection of filamentous tau inclusions by the fluorescent Congo red derivative FSB [(<i>trans</i> , <i>trans</i>)â€lâ€fluoroâ€2,5â€bis(3â€hydroxycarbonylâ€4â€hydroxy)styrylbenzene]. FEBS Lette 2008, 582, 901-906.	2r 2 ,8	38
162	Axotrophin/MARCH7 acts as an E3 ubiquitin ligase and ubiquitinates tau protein in vitro impairing microtubule binding. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1527-1538.	3.8	38

#	Article	IF	CITATIONS
163	Examination of the role of endopeptidase 3.4.24.15 in Aβ secretion by human transfected cells. British Journal of Pharmacology, 1997, 121, 556-562.	5.4	37
164	Alternative splicing of synaptotagmins involving transmembrane exon skipping. FEBS Letters, 1999, 460, 417-422.	2.8	37
165	Cell-Cycle Markers in a Transgenic Mouse Model of Human Tauopathy. American Journal of Pathology, 2006, 168, 878-887.	3.8	35
166	Parkinson's disease â \in " the story of an eponym. Nature Reviews Neurology, 2018, 14, 57-62.	10.1	35
167	Luminescent conjugated oligothiophenes distinguish between α-synuclein assemblies of Parkinson's disease and multiple system atrophy. Acta Neuropathologica Communications, 2019, 7, 193.	5.2	35
168	The novel Tau mutation G335S: clinical, neuropathological and molecular characterization. Acta Neuropathologica, 2007, 113, 461-470.	7.7	34
169	The fluorescent pentameric oligothiophene pFTAA identifies filamentous tau in live neurons cultured from adult P301S tau mice. Frontiers in Neuroscience, 2015, 9, 184.	2.8	34
170	Classification of diseases with accumulation of Tau protein. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	32
171	Progress in Hereditary Tauopathies: A Mutation in the <i>Tau</i> Gene (G389R) Causes a Pick Diseaseâ€like Syndrome. Annals of the New York Academy of Sciences, 2000, 920, 52-62.	3.8	30
172	The Transcellular Propagation and Intracellular Trafficking of α-Synuclein. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a024380.	6.2	28
173	The Prion-Like Behavior of Assembled Tau in Transgenic Mice. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a024372.	6.2	28
174	Silver staining (Campbell-Switzer) of neuronal α-synuclein assemblies induced by multiple system atrophy and Parkinson's disease brain extracts in transgenic mice. Acta Neuropathologica Communications, 2019, 7, 148.	5.2	28
175	Ubiquitination of alpha-synuclein filaments by Nedd4 ligases. PLoS ONE, 2018, 13, e0200763.	2.5	27
176	Tau Filaments and the Development of Positron Emission Tomography Tracers. Frontiers in Neurology, 2018, 9, 70.	2.4	27
177	Earlyâ€onset Dementia with Lewy Bodies. Brain Pathology, 2004, 14, 137-147.	4.1	26
178	Phosphorylation of human microtubule-associated protein tau by protein kinases of the AGC subfamily. FEBS Letters, 2007, 581, 2657-2662.	2.8	24
179	Beta-sheet assembly of Tau and neurodegeneration in Drosophila melanogaster. Neurobiology of Aging, 2018, 72, 98-105.	3.1	24
180	Assembly of transgenic human P301S Tau is necessary for neurodegeneration in murine spinal cord. Acta Neuropathologica Communications, 2019, 7, 44.	5.2	23

#	Article	IF	CITATIONS
181	α-Synuclein filaments from transgenic mouse and human synucleinopathy-containing brains are major seed-competent species. Journal of Biological Chemistry, 2020, 295, 6652-6664.	3.4	23
182	Frontotemporal lobar degeneration through loss of progranulin function. Brain, 2006, 129, 2808-2810.	7.6	22
183	Synuclein Proteins of the Pufferfish Fugu rubripes:  Sequences and Functional Characterization. Biochemistry, 2006, 45, 2599-2607.	2.5	21
184	Tau protein and the paired helical filament of Alzheimer's disease. Brain Research Bulletin, 1999, 50, 469-470.	3.0	20
185	Tau proteinopathies and the prion concept. Progress in Molecular Biology and Translational Science, 2020, 175, 239-259.	1.7	20
186	Parkinson's Disease, Dementia with Lewy Bodies, and Multiple System Atrophy as α-Synucleinopathies. , 2001, 62, 33-59.		19
187	Effect of heparin on phosphorylation site specificity of neuronal Cdc2-like kinase. FEBS Letters, 1998, 423, 227-230.	2.8	17
188	Cerebrospinal fluid from Alzheimer's disease patients promotes tau aggregation in transgenic mice. Acta Neuropathologica Communications, 2019, 7, 72.	5.2	16
189	Human β-Synuclein Rendered Fibrillogenic by Designed Mutations. Journal of Biological Chemistry, 2010, 285, 38555-38567.	3.4	15
190	Piericidin A Aggravates Tau Pathology in P301S Transgenic Mice. PLoS ONE, 2014, 9, e113557.	2.5	15
191	Cryo-EM structures of Ï,, filaments from human brain. Essays in Biochemistry, 2021, 65, 949-959.	4.7	15
192	Tau Gene Mutations and Tau Pathology in Frontotemporal Dementia and Parkinsonism Linked to Chromosome 17. Advances in Experimental Medicine and Biology, 2001, 487, 21-37.	1.6	14
193	Pinning down phosphorylated tau. Nature, 1999, 399, 739-740.	27.8	13
194	Assembly of α-synuclein and neurodegeneration in the central nervous system of heterozygousÂM83 mice following the peripheral administration of α-synuclein seeds. Acta Neuropathologica Communications, 2021, 9, 189.	5.2	10
195	13 Activation of the novel MAP kinase homologue SAPK4 by cytokines and cellular stresses is mediated by SKK3 (MKK6). Biochemical Society Transactions, 1997, 25, S569-S569.	3.4	8
196	Synthesis and Assessment of Novel Probes for Imaging Tau Pathology in Transgenic Mouse and Rat Models. ACS Chemical Neuroscience, 2021, 12, 1885-1893.	3.5	8
197	Tau Protein and Frontotemporal Dementias. Advances in Experimental Medicine and Biology, 2021, 1281, 177-199.	1.6	8
198	Neurodegenerative tauopathy in the worm. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9653-9655.	7.1	7

#	Article	IF	CITATIONS
199	Crystals of a toxic core. Nature, 2015, 525, 458-459.	27.8	6
200	A novel mutation at position +12 in the intron following Exon 10 of the tau gene in familial frontotemporal dementia (FTDâ€Kumamoto). Annals of Neurology, 2000, 47, 422-429.	5.3	6
201	Dextran sulphate-induced tau assemblies cause endogenous tau aggregation and propagation in wild-type mice. Brain Communications, 2020, 2, fcaa091.	3.3	6
202	Synucleinopathies and Tauopathies. , 2012, , 829-843.		5
203	The Alzheimer tangle — 100 years on , 2006, , 297-304.		4
204	[ECâ€03–02]: CRYOâ€EM STRUCTURES OF TAU FILAMENTS FROM ALZHEIMER'S DISEASE BRAIN. Alzheimer's a Dementia, 2017, 13, P892.	ind 0.8	3
205	Prion-Like Properties of Assembled Tau Protein. Research and Perspectives in Alzheimer's Disease, 2013, , 87-95.	0.1	1
206	A tribute to John Q. Trojanowski (1946–2022), neuropathologist extraordinaire. Brain Pathology, 2022, 32, e13066.	4.1	1
207	The neurobiology of the tauopathies. , 2003, , 245-261.		0
208	Chapter 4 Tau Protein and the Dementias. Blue Books of Neurology, 2007, , 88-111.	0.1	0
209	S1-02-01: Prion-like properties of tau. , 2011, 7, S86-S86.		0
210	O1-07-04: Rapid and progressive neurofibrillary tangle pathology in a novel in vivo model of tau propagation: Pattern of spread is determined by structural connectivity not spatial proximity. , 2013, 9, P141-P142.		0
211	P3-049: CHARACTERISATION OF A CO-CULTURE CELL-BASED MODEL OF TAU AGGREGATION AND PROPAGATION. , 2014, 10, P646-P646.		0
212	Frontispiece: Distinct Spacing Between Anionic Groups: An Essential Chemical Determinant for Achieving Thiopheneâ€Based Ligands to Distinguish βâ€Amyloid or Tau Polymorphic Aggregates. Chemistry - A European Journal, 2015, 21, .	3.3	0
213	P3-065: Transection of Targeted Axonal Pathways Inhibits Network Spread of Tau Pathology in a P301S Model of TAU Propagation. , 2016, 12, P842-P842.		0
214	O4â€04â€02: Characterisation of Tau Species Involved in Tau Seeding and Spread in Cellular and Animal Models. Alzheimer's and Dementia, 2016, 12, P340.	0.8	0
215	Aaron Klug and the study of Alzheimer's disease. Alzheimer's and Dementia, 2019, 15, 859-861.	0.8	0
216	Editorial overview: Neurobiology of disease. Current Opinion in Neurobiology, 2020, 61, iii-iv.	4.2	0

#	Article	IF	CITATIONS
217	Tau mutations altering splicing of tau exon 10 in japanese frontotemporal dementia. , 2001, , 81-84.		Ο
218	α-Synuclein and Neurodegeneration. , 2004, , 204-IX.		0
219	Neurodegeneration and the Ordered Assembly of Tau. , 2018, , 81-98.		0