Shiranee Sriskandan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4892106/publications.pdf

Version: 2024-02-01

164 papers 6,005 citations

45 h-index 95266 68 g-index

179 all docs

179 docs citations

179 times ranked

6788 citing authors

#	Article	IF	CITATIONS
1	Co-infections, secondary infections, and antimicrobial use in patients hospitalised with COVID-19 during the first pandemic wave from the ISARIC WHO CCP-UK study: a multicentre, prospective cohort study. Lancet Microbe, The, 2021, 2, e354-e365.	7.3	216
2	The immunology of sepsis. Journal of Pathology, 2008, 214, 211-223.	4. 5	214
3	Mammalian Toll-like receptors: to immunity and beyond. Clinical and Experimental Immunology, 2005, 140, 395-407.	2.6	198
4	Specific Câ€Terminal Cleavage and Inactivation of Interleukinâ€8 by Invasive Disease Isolates of <i>Streptococcus pyogenes </i> Journal of Infectious Diseases, 2005, 192, 783-790.	4.0	175
5	Development and validation of the ISARIC 4C Deterioration model for adults hospitalised with COVID-19: a prospective cohort study. Lancet Respiratory Medicine, the, 2021, 9, 349-359.	10.7	161
6	The IL-8 Protease SpyCEP/ScpC of Group A Streptococcus Promotes Resistance to Neutrophil Killing. Cell Host and Microbe, 2008, 4, 170-178.	11.0	158
7	GRAM-POSITIVE SEPSIS. Infectious Disease Clinics of North America, 1999, 13, 397-412.	5.1	142
8	Emergence of a New Highly Successful Acapsular Group A <i>Streptococcus</i> Clade of Genotype <i>emm</i> 89 in the United Kingdom. MBio, 2015, 6, e00622.	4.1	126
9	A prenylated dsRNA sensor protects against severe COVID-19. Science, 2021, 374, eabj3624.	12.6	124
10	Risk of adverse outcomes in patients with underlying respiratory conditions admitted to hospital with COVID-19: a national, multicentre prospective cohort study using the ISARIC WHO Clinical Characterisation Protocol UK. Lancet Respiratory Medicine,the, 2021, 9, 699-711.	10.7	122
11	Characterisation of in-hospital complications associated with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol UK: a prospective, multicentre cohort study. Lancet, The, 2021, 398, 223-237.	13.7	110
12	The Mechanism of Superantigen-Mediated Toxic Shock: Not a Simple Th1 Cytokine Storm. Journal of Immunology, 2005, 175, 6870-6877.	0.8	106
13	Emergence of dominant toxigenic M1T1 Streptococcus pyogenes clone during increased scarlet fever activity in England: a population-based molecular epidemiological study. Lancet Infectious Diseases, The, 2019, 19, 1209-1218.	9.1	106
14	Polyspecific Intravenous Immunoglobulin in Clindamycin-treated Patients With Streptococcal Toxic Shock Syndrome: A Systematic Review and Meta-analysis. Clinical Infectious Diseases, 2018, 67, 1434-1436.	5.8	104
15	Dissociation of neutrophil emigration and metabolic activity in lobar pneumonia and bronchiectasis. European Respiratory Journal, 1997, 10, 795-803.	6.7	101
16	HLA Class II Polymorphisms Determine Responses to Bacterial Superantigens. Journal of Immunology, 2004, 172, 1719-1726.	0.8	93
17	The Bacterial Superantigen Streptococcal Mitogenic Exotoxin Z Is the Major Immunoactive Agent of <i>Streptococcus pyogenes </i> . Journal of Immunology, 2002, 169, 2561-2569.	0.8	84
18	Superantigens and Streptococcal Toxic Shock Syndrome. Emerging Infectious Diseases, 2003, 9, 1211-1218.	4.3	82

#	Article	IF	Citations
19	Detection of circulating bacterial superantigen and lymphotoxin-a in patients with streptococcal toxic-shock syndrome. Lancet, The, 1996, 348, 1315-1316.	13.7	78
20	Changes in in-hospital mortality in the first wave of COVID-19: a multicentre prospective observational cohort study using the WHO Clinical Characterisation Protocol UK. Lancet Respiratory Medicine, the, 2021, 9, 773-785.	10.7	78
21	Human intravenous immunoglobulin for experimental streptococcal toxic shock: bacterial clearance and modulation of inflammation. Journal of Antimicrobial Chemotherapy, 2006, 58, 117-124.	3.0	76
22	Emerging Role of the Interleukinâ€8 Cleaving Enzyme SpyCEP in Clinical <i>Streptococcus pyogenes</i> Infection. Journal of Infectious Diseases, 2009, 200, 555-563.	4.0	76
23	Enhanced Susceptibility to Superantigenâ€Associated Streptococcal Sepsis in Human Leukocyte Antigen–DQ Transgenic Mice. Journal of Infectious Diseases, 2001, 184, 166-173.	4.0	73
24	Invasive Disease and Toxic Shock due to Zoonotic Streptococcus suis: An Emerging Infection in the East?. PLoS Medicine, 2006, 3, e187.	8.4	71
25	Comparative effects of clindamycin and ampicillin on superantigenic activity of Streptococcus pyogenes. Journal of Antimicrobial Chemotherapy, 1997, 40, 275-277.	3.0	70
26	Chemokine-cleaving Streptococcus pyogenes protease SpyCEP is necessary and sufficient for bacterial dissemination within soft tissues and the respiratory tract. Molecular Microbiology, 2010, 76, 1387-1397.	2.5	69
27	Guidelines for prevention and control of group A streptococcal infection in acute healthcare and maternity settings in the UK. Journal of Infection, 2012, 64, 1-18.	3.3	69
28	Streptococcal Pyrogenic Exotoxin A Release, Distribution, and Role in a Murine Model of Fasciitis and Multiorgan Failure Due to Streptococcus pyogenes. Journal of Infectious Diseases, 1996, 173, 1399-1407.	4.0	66
29	Impact of immunization against SpyCEP during invasive disease with two streptococcal species: Streptococcus pyogenes and Streptococcus equi. Vaccine, 2009, 27, 4923-4929.	3.8	62
30	In vivo quantification of human pulmonary beta-adrenoceptors: effect of beta-agonist therapy American Journal of Respiratory and Critical Care Medicine, 1996, 154, 1277-1283.	5.6	59
31	Inactivation of the CovR/S Virulence Regulator Impairs Infection in an Improved Murine Model of Streptococcus pyogenes Naso-Pharyngeal Infection. PLoS ONE, 2013, 8, e61655.	2.5	59
32	High prevalence of 16S rRNA methyltransferases among carbapenemase-producing Enterobacteriaceae in the UK and Ireland. International Journal of Antimicrobial Agents, 2018, 52, 278-282.	2.5	58
33	Non-steroidal anti-inflammatory drug use and outcomes of COVID-19 in the ISARIC Clinical Characterisation Protocol UK cohort: a matched, prospective cohort study. Lancet Rheumatology, The, 2021, 3, e498-e506.	3.9	58
34	RocA Truncation Underpins Hyper-Encapsulation, Carriage Longevity and Transmissibility of Serotype M18 Group A Streptococci. PLoS Pathogens, 2013, 9, e1003842.	4.7	57
35	Role of Toll-like receptors 2 and 4 in the induction of cyclooxygenase-2 in vascular smooth muscle. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4637-4642.	7.1	56
36	Toll-like Receptor 2 Is Essential for the Sensing of Oxidants during Inflammation. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 299-306.	5.6	56

#	Article	IF	CITATIONS
37	Pro-Inflammatory Mechanisms in Sepsis. Contributions To Microbiology, 2011, 17, 86-107.	2.1	55
38	Growth-Phase-Dependent Expression of Virulence Factors in an M1T1 Clinical Isolate of Streptococcus pyogenes. Infection and Immunity, 1999, 67, 5495-5499.	2.2	55
39	Multi-functional mechanisms of immune evasion by the streptococcal complement inhibitor C5a peptidase. PLoS Pathogens, 2017, 13, e1006493.	4.7	55
40	Streptococcus pyogenes: Insight into the function of the streptococcal superantigens. International Journal of Biochemistry and Cell Biology, 2007, 39, 12-19.	2.8	53
41	Severe peripartum sepsis. Journal of the Royal College of Physicians of Edinburgh, The, 2011, 41, 339-346.	0.6	52
42	Superantigen recognition by HLA class II on monocytes up-regulates toll-like receptor 4 and enhances proinflammatory responses to endotoxin. Blood, 2005, 105, 3655-3662.	1.4	51
43	New understandings in Streptococcus pyogenes. Current Opinion in Infectious Diseases, 2011, 24, 196-202.	3.1	51
44	Mitogenic factor (MF) is the major DNase of serotype M89 Streptococcus pyogenes. Microbiology (United Kingdom), 2000, 146, 2785-2792.	1.8	50
45	The pathogenesis of septic shock. Journal of Infection, 1995, 30, 201-206.	3.3	48
46	Differential effects of Gramâ€positive <i>versus</i> Gramâ€negative bacteria on NOSII and TNF <i>α</i> in macrophages: role of TLRs in synergy between the two. British Journal of Pharmacology, 2006, 148, 1067-1075.	5.4	47
47	Molecular analysis of the role of streptococcal pyrogenic exotoxin A (SPEA) in invasive soft-tissue infection resulting from Streptococcus pyogenes. Molecular Microbiology, 1999, 33, 778-790.	2.5	46
48	Corynebacterium ulcerans cutaneous diphtheria. Lancet Infectious Diseases, The, 2015, 15, 1100-1107.	9.1	46
49	Natural Exposure to Cutaneous Anthrax Gives Long-Lasting T Cell Immunity Encompassing Infection-Specific Epitopes. Journal of Immunology, 2010, 184, 3814-3821.	0.8	45
50	The contribution of group A streptococcal virulence determinants to the pathogenesis of sepsis. Virulence, 2014, 5, 127-136.	4.4	45
51	Scarlet Fever Upsurge in England and Molecular-Genetic Analysis in North-West London, 2014. Emerging Infectious Diseases, 2016, 22, 1075-1078.	4.3	45
52	Molecular Analysis of an Outbreak of Lethal Postpartum Sepsis Caused by Streptococcus pyogenes. Journal of Clinical Microbiology, 2013, 51, 2089-2095.	3.9	44
53	Working towards a Group A Streptococcal vaccine: Report of a collaborative Trans-Tasman workshop. Vaccine, 2014, 32, 3713-3720.	3.8	44
54	Household transmission of invasive group A Streptococcus infections in England: a population-based study, 2009, 2011 to 2013. Eurosurveillance, 2017, 22, .	7.0	44

#	Article	IF	CITATIONS
55	Roles of the Alternative Complement Pathway and C1q during Innate Immunity to <i>Streptococcus pyogenes</i> . Journal of Immunology, 2006, 176, 6112-6120.	0.8	38
56	Bacterial superantigen-induced human lymphocyte responses are nitric oxide dependent and mediated by IL-12 and IFN-gamma. Journal of Immunology, 1996, 156, 2430-5.	0.8	38
57	Contact activation in shock caused by invasive group A Streptococcus pyogenes. Critical Care Medicine, 2000, 28, 3684-3691.	0.9	37
58	Clinical and Molecular Epidemiology of Staphylococcal Toxic Shock Syndrome in the United Kingdom. Emerging Infectious Diseases, 2018, 24, .	4.3	37
59	Cigarette smoke inhibits macrophage sensing of Gramâ€negative bacteria and lipopolysaccharide: relative roles of nicotine and oxidant stress. British Journal of Pharmacology, 2008, 153, 536-543.	5.4	36
60	Rapid Lymphatic Dissemination of Encapsulated Group A Streptococci via Lymphatic Vessel Endothelial Receptor-1 Interaction. PLoS Pathogens, 2015, 11, e1005137.	4.7	36
61	ELUCIDATION OF TOLL-LIKE RECEPTOR AND ADAPTER PROTEIN SIGNALING IN VASCULAR DYSFUNCTION INDUCED BY GRAM-POSITIVE STAPHYLOCOCCUS AUREUS OR GRAM-NEGATIVE ESCHERICHIA COLI. Shock, 2007, 27, 40-47.	2.1	34
62	The TCR VÂ signature of bacterial superantigens spreads with stimulus strength. International Immunology, 2006, 18, 1433-1441.	4.0	32
63	Development of a multicomponent vaccine for Streptococcus pyogenes based on the antigenic targets of IVIG. Journal of Infection, 2016, 72, 450-459.	3.3	32
64	Current views of haemolytic streptococcal pathogenesis. Current Opinion in Infectious Diseases, 2014, 27, 155-164.	3.1	30
65	A Truncation in the Regulator RocA Underlies Heightened Capsule Expression in Serotype M3 Group A Streptococci. Infection and Immunity, 2015, 83, 1732-1733.	2.2	29
66	Factors that impact on the burden of Escherichia coli bacteraemia: multivariable regression analysis of 2011â€"2015 data from West London. Journal of Hospital Infection, 2019, 101, 120-128.	2.9	29
67	A Multispecies Cluster of GES-5 Carbapenemase–Producing Enterobacterales Linked by a Geographically Disseminated Plasmid. Clinical Infectious Diseases, 2020, 71, 2553-2560.	5.8	29
68	Emergence of a novel lineage containing a prophage in emm/M3 group A Streptococcus associated with upsurge in invasive disease in the UK. Microbial Genomics, 2016, 2, e000059.	2.0	29
69	Frequency of transmission, asymptomatic shedding, and airborne spread of Streptococcus pyogenes in schoolchildren exposed to scarlet fever: a prospective, longitudinal, multicohort, molecular epidemiological, contact-tracing study in England, UK. Lancet Microbe, The, 2022, 3, e366-e375.	7. 3	29
70	Differential regulation of CCL-11/eotaxin-1 and CXCL-8/IL-8 by Gram-positive and Gram-negative bacteria in human airway smooth muscle cells. Respiratory Research, 2008, 9, 30.	3.6	28
71	Identification of the Streptococcus pyogenes surface antigens recognised by pooled human immunoglobulin. Scientific Reports, 2015, 5, 15825.	3.3	27
72	Extracellular bacterial lymphatic metastasis drives Streptococcus pyogenes systemic infection. Nature Communications, 2020, 11, 4697.	12.8	27

#	Article	lF	Citations
73	The role of nitric oxide in experimental murine sepsis due to pyrogenic exotoxin A-producing Streptococcus pyogenes. Infection and Immunity, 1997, 65, 1767-1772.	2.2	26
74	Severe group A streptococcal infections in mothers and their newborns in London and the South East, 2010–2016: assessment of risk and audit of public health management. BJOG: an International Journal of Obstetrics and Gynaecology, 2019, 126, 44-53.	2.3	25
75	Pulmonary and cardiac beta-adrenoceptor density in vivo in asthmatic subjects American Journal of Respiratory and Critical Care Medicine, 1997, 155, 1130-1134.	5.6	24
76	Serial Clustering of Late-Onset Group B Streptococcal Infections in the Neonatal Unit: A Genomic Re-evaluation of Causality. Clinical Infectious Diseases, 2018, 67, 854-860.	5 . 8	24
77	Kallikrein-Kinin System Activation in Streptococcal Toxic Shock Syndrome. Clinical Infectious Diseases, 2000, 30, 961-962.	5.8	23
78	Sexual Dimorphism in Superantigen Shock Involves Elevated TNF-α and TNF-α–induced Hepatic Apoptosis. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 473-482.	5. 6	23
79	Development of an opsonophagocytic killing assay for group a streptococcus. Vaccine, 2018, 36, 3756-3763.	3.8	23
80	Isolation of vancomycin-resistant lactobacilli from three neutropenic patients with pneumonia. European Journal of Clinical Microbiology and Infectious Diseases, 1993, 12, 649-650.	2.9	22
81	The Emergence of Successful Streptococcus pyogenes Lineages through Convergent Pathways of Capsule Loss and Recombination Directing High Toxin Expression. MBio, 2019, 10, .	4.1	22
82	Diffuse Pneumonia Associated with Infectious Mononucleosis: Detection of Epstein-Barr Virus in Lung Tissue by In Situ Hybridization. Clinical Infectious Diseases, 1996, 22, 578-579.	5.8	20
83	Invasive group A streptococcal infection in injecting drug users and non-drug users in a single UK city. Journal of Infection, 2007, 54, 422-426.	3.3	20
84	Streptococcal superantigen-induced expansion of human tonsil T cells leads to altered T follicular helper cell phenotype, B cell death and reduced immunoglobulin release. Clinical and Experimental Immunology, 2019, 197, 83-94.	2.6	19
85	Structure, dynamics and immunogenicity of a catalytically inactive CXC chemokine-degrading protease SpyCEP from Streptococcus pyogenes. Computational and Structural Biotechnology Journal, 2020, 18, 650-660.	4.1	19
86	Increased surface toll-like receptor 2 expression in superantigen shock. Critical Care Medicine, 2008, 36, 1267-1276.	0.9	18
87	Anthrax Lethal Factor as an Immune Target in Humans and Transgenic Mice and the Impact of HLA Polymorphism on CD4+ T Cell Immunity. PLoS Pathogens, 2014, 10, e1004085.	4.7	18
88	Hospital clusters of invasive Group B Streptococcal disease: A systematic review. Journal of Infection, 2019, 79, 521-527.	3.3	18
89	Delineating the impact of COVID-19 on antimicrobial resistance: An Indian perspective. Science of the Total Environment, 2022, 818, 151702.	8.0	18
90	Gram-Positive and Gram-Negative Bacteria Synergize with Oxidants to Release CXCL8 from Innate Immune Cells. Molecular Medicine, 2008, 14, 238-246.	4.4	17

#	Article	IF	CITATIONS
91	Repertoire of HLA-DR1-Restricted CD4 T-Cell Responses to Capsular Caf1 Antigen of (i) Yersinia pestis (i) in Human Leukocyte Antigen Transgenic Mice. Infection and Immunity, 2010, 78, 4356-4362.	2.2	17
92	Enhanced nasopharyngeal infection and shedding associated with an epidemic lineage of <i>emm</i> group A <i>Streptococcus</i> . Virulence, 2017, 8, 1390-1400.	4.4	17
93	Discovery and validation of a three-gene signature to distinguish COVID-19 and other viral infections in emergency infectious disease presentations: a case-control and observational cohort study. Lancet Microbe, The, 2021, 2, e594-e603.	7.3	17
94	Complementation of a speA negative Streptococcus pyogenes with speA: effects on virulence and production of streptococcal pyrogenic exotoxin A. Microbial Pathogenesis, 2001, 31, 109-114.	2.9	16
95	Application of a rat model of streptococcal shock to evaluate on-line hemoperfusion and removal of circulating superantigens*. Critical Care Medicine, 2003, 31, 171-178.	0.9	16
96	Pattern recognition receptors and interleukinâ€8 mediate effects of Gramâ€positive and Gramâ€negative bacteria on lung epithelial cell function. British Journal of Pharmacology, 2008, 154, 864-871.	5.4	15
97	Bromine, bear-claw scratch fasciotomies, and the Eagle effect: management of group A streptococcal necrotising fasciitis and its association with trauma. Lancet Infectious Diseases, The, 2015, 15, 109-121.	9.1	15
98	Identification of two new core chromosome-encoded superantigens in Streptococcus pyogenes; speQ and speR. Journal of Infection, 2019, 78, 358-363.	3.3	15
99	Non-Invasive Monitoring of Streptococcus pyogenes Vaccine Efficacy Using Biophotonic Imaging. PLoS ONE, 2013, 8, e82123.	2.5	15
100	Humoral and Cellular Immunity to Primary H 1 N1 Infection in Patients with Hematologic Malignancies following Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2011, 17, 632-639.	2.0	14
101	Nosocomial Outbreak of Drug-Resistant Streptococcus pneumoniae Serotype 9V in an Adult Respiratory Medicine Ward. Journal of Clinical Microbiology, 2017, 55, 776-782.	3.9	14
102	Sepsis: Precision-Based Medicine for Pregnancy and the Puerperium. International Journal of Molecular Sciences, 2019, 20, 5388.	4.1	14
103	A Requirement for Neutrophil Glycosaminoglycans in Chemokine:Receptor Interactions Is Revealed by the Streptococcal Protease SpyCEP. Journal of Immunology, 2019, 202, 3246-3255.	0.8	14
104	LYMPHOTOXIN-α (TNF-β) DURING SEPSIS. Cytokine, 1996, 8, 933-937.	3.2	13
105	Panton–Valentine leucocidin expression by Staphylococcus aureus exposed to common antibiotics. Journal of Infection, 2015, 71, 338-346.	3.3	13
106	Staphylococcus aureus colonization and acquisition of skin and soft tissue infection among Royal Marines recruits: a prospective cohort study. Clinical Microbiology and Infection, 2020, 26, 381.e1-381.e6.	6.0	13
107	Respiratory Syncytial Virus Infection in an Adult with AIDS. Clinical Infectious Diseases, 1993, 17, 1065-1065.	5.8	12
108	The cost of hospital care for management of invasive group A streptococcal infections in England. Epidemiology and Infection, 2015, 143, 1719-1730.	2.1	12

#	Article	IF	Citations
109	Toxic Shock Syndrome Toxin 1 Evaluation and Antibiotic Impact in a Transgenic Model of Staphylococcal Soft Tissue Infection. MSphere, 2019, 4, .	2.9	12
110	A prospective surveillance study to determine the prevalence of 16S rRNA methyltransferase-producing Gram-negative bacteria in the UK. Journal of Antimicrobial Chemotherapy, 2021, 76, 2428-2436.	3.0	12
111	Antiviral metabolite 3′-deoxy-3′,4′-didehydro-cytidine is detectable in serum and identifies acute viral infections including COVID-19. Med, 2022, 3, 204-215.e6.	4.4	12
112	An Epitope of Bacillus anthracis Protective Antigen That Is Cryptic in Rabbits May Be Immunodominant in Humans. Infection and Immunity, 2010, 78, 2353-2354.	2.2	11
113	Superantigenic Activity of emm3 Streptococcus pyogenes Is Abrogated by a Conserved, Naturally Occurring smeZ Mutation. PLoS ONE, 2012, 7, e46376.	2.5	11
114	Asymptomatic group A Streptococcal throat carriage in Royal Marines recruits and Young Officers. Journal of Infection, 2017, 74, 585-589.	3.3	10
115	Proteomic analysis at the sites of clinical infection with invasive Streptococcus pyogenes. Scientific Reports, 2018, 8, 5950.	3.3	10
116	C-Terminal antibodies (CTAbs): A simple and broadly applicable approach for the rapid generation of protein-specific antibodies with predefined specificity. Proteomics, 2007, 7, 1364-1372.	2.2	9
117	Exposure to anthrax toxin alters human leucocyte expression of anthrax toxin receptor 1. Clinical and Experimental Immunology, 2013, 173, 84-91.	2.6	9
118	Uncovering Infant Group B Streptococcal (GBS) Disease Clusters in the United Kingdom and Ireland Through Genomic Analysis: A Population-based Epidemiological Study. Clinical Infectious Diseases, 2021, 72, e296-e302.	5.8	9
119	Alterations in chromosomal genes nfsA, nfsB, and ribE are associated with nitrofurantoin resistance in Escherichia coli from the United Kingdom. Microbial Genomics, 2021, 7, .	2.0	9
120	Clinical management and impact of scarlet fever in the modern era: findings from a cross-sectional study of cases in London, 2018–2019. BMJ Open, 2021, 11, e057772.	1.9	9
121	The nature of innate and adaptive interleukinâ€17A responses in sham or bacterial inoculation. Immunology, 2012, 136, 325-333.	4.4	8
122	Streptococcus pyogenes. , 2015, , 675-716.		8
123	Modification of the classical Lancefield assay of group A streptococcal killing to reduce inter-donor variation. Journal of Microbiological Methods, 2016, 124, 69-71.	1.6	8
124	Commensal bacteria augment Staphylococcus aureus infection by inactivation of phagocyte-derived reactive oxygen species. PLoS Pathogens, 2021, 17, e1009880.	4.7	8
125	Detection and characterisation of 16S rRNA methyltransferase-producing Pseudomonas aeruginosa from the UK and Republic of Ireland from 2003–2015. International Journal of Antimicrobial Agents, 2022, 59, 106550.	2.5	8
126	Bacterial Lymphatic Metastasis in Infection and Immunity. Cells, 2022, 11, 33.	4.1	8

#	Article	IF	Citations
127	Aquagenic wrinkling of palms on exposure to alcohol gel. Pediatric Pulmonology, 2011, 46, 98-99.	2.0	7
128	Vaccine-induced, but not natural immunity, against the Streptococcal inhibitor of complement protects against invasive disease. Npj Vaccines, 2021, 6, 62.	6.0	7
129	Musculoskeletal side-effects of varicella. Lancet, The, 1997, 349, 1623-1624.	13.7	6
130	Identification of commonly expressed exoproteins and proteolytic cleavage events by proteomic mining of clinically relevant UK isolates of Staphylococcus aureus. Microbial Genomics, 2016, 2, e000049.	2.0	6
131	Cohort study protocol: Bioresource in Adult Infectious Diseases (BioAID). Wellcome Open Research, 2018, 3, 97.	1.8	6
132	The Role of Streptococcal Cell-Envelope Proteases in Bacterial Evasion of the Innate Immune System. Journal of Innate Immunity, 2022, 14, 69-88.	3.8	6
133	Editorial Commentary: Step on the GAS: Are We Almost There for Clindamycin and Intravenous Immunoglobulin?. Clinical Infectious Diseases, 2014, 59, 366-368.	5.8	5
134	Impact of contusion injury on intramuscular emm1 group a streptococcus infection and lymphatic spread. Virulence, 2018, 9, 1074-1084.	4.4	5
135	Elevated risk of invasive group A streptococcal disease and host genetic variation in the human leucocyte antigen locus. Genes and Immunity, 2020, 21, 63-70.	4.1	5
136	Bacterial genotypic and patient risk factors for adverse outcomes in <i>Escherichia coli</i> bloodstream infections: a prospective molecular epidemiological study. Journal of Antimicrobial Chemotherapy, 2022, 77, 1753-1761.	3.0	5
137	Novel 16S rRNA methyltransferase RmtE3 in Acinetobacter baumannii ST79. Journal of Medical Microbiology, 2022, 71, .	1.8	5
138	Ebola and other viral haemorrhagic fevers: a local operational approach. British Journal of Hospital Medicine (London, England: 2005), 2014, 75, 515-522.	0.5	4
139	Sampling and diversity of Escherichia coli from the enteric microbiota in patients with Escherichia coli bacteraemia. BMC Research Notes, 2019, 12, 335.	1.4	4
140	Treatment potential of pathogen-reactive antibodies sequentially purified from pooled human immunoglobulin. BMC Research Notes, 2019, 12, 228.	1.4	4
141	Viridans streptococcal bacteraemia: a clinical survey. QJM - Monthly Journal of the Association of Physicians, 1995, 88, 415-20.	0.5	4
142	Viridans streptococcal bacteraemia: a clinical survey. QJM - Monthly Journal of the Association of Physicians, 0 , , .	0.5	3
143	Cystic fibrosis presenting with haematological abnormalities. International Journal of Laboratory Hematology, 2006, 28, 423-426.	0.2	3
144	Streptococcus pyogenes under pressure. Nature Medicine, 2007, 13, 909-910.	30.7	3

#	Article	IF	CITATIONS
145	Impaired opsonization with complement and phagocytosis of Streptococcus pyogenes in sera from subjects with inherited C2 deficiency. Microbes and Infection, 2010, 12, 626-634.	1.9	3
146	Turner et al. Reply to "Emergence of the Same Successful Clade among Distinct Populations of emm 89 Streptococcus pyogenes in Multiple Geographic Regions― MBio, 2015, 6, e01883-15.	4.1	3
147	Staphylococcus argenteus transmission among healthy Royal Marines: A molecular epidemiology case-study. Journal of Infection, 2021, 83, 550-553.	3.3	3
148	Cell Envelope Proteinase A (Streptococcus). , 2013, , 3195-3202.		3
149	β-Haemolytic Streptococci. , 2006, , 1-20.		2
150	Superantigens SPEA and SMEZ do not affect secretome expression in Streptococcus pyogenes. Microbial Pathogenesis, 2008, 44, 537-543.	2.9	2
151	Modelling invasive group A streptococcal disease using bioluminescence. BMC Microbiology, 2018, 18, 60.	3.3	2
152	Gram-positive bacterial infection in severe sepsis. Clinical Intensive Care: International Journal of Critical & Coronary Care Medicine, 2002, 13, 147-160.	0.1	1
153	Comment on "Frequency of Epitope-Specific Naive CD4+ T Cells Correlates with Immunodominance in the Human Memory Repertoireâ€₊ Journal of Immunology, 2012, 188, 5205-5206.	0.8	1
154	Lymphatic Metastasis of Virulent Extracellular Bacteria Drives Systemic Infection. SSRN Electronic Journal, $0, , .$	0.4	1
155	Gram-positive bacterial infection in severe sepsis. Clinical Intensive Care: International Journal of Critical & Coronary Care Medicine, 2002, 13, 147-160.	0.1	1
156	Assay for Superantigens. , 2000, 36, 67-80.		0
157	A Role for HLA Class II in Determining Susceptibility to Streptococcal Toxic Shock. Clinical Science, 2003, 104, 54P-55P.	0.0	0
158	Human intravenous immunoglobulin for experimental streptococcal toxic shock: bacterial clearance and modulation of inflammation-author's response. Journal of Antimicrobial Chemotherapy, 2006, 59, 159-160.	3.0	0
159	Non-menstrual toxic shock and the in vivo roles of seb and ivig. Journal of Infection, 2008, 57, 426.	3.3	0
160	Rapid screen for epithelial internalization of Tn917-mutagenized Streptococcus pyogenes. Journal of Microbiological Methods, 2009, 78, 34-39.	1.6	0
161	Familial Transmission of emm12 Group A Streptococcus. Emerging Infectious Diseases, 2018, 24, 2133-2134.	4.3	0
162	Management of candiduria in the ICU., 2010, , 759-760.		0

#	Article	IF	CITATIONS
163	Mouse Model of Streptococcal Fasciitis. , 1999, , 605-610.		O
164	Nitrofurantoin-resistant Escherichia coli in the UK: genetic determinants, diversity, and undetected occurrences. Access Microbiology, 2022, 4, .	0.5	0