Yuan-Hua Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4891779/publications.pdf

Version: 2024-02-01

122	10 644	38742	31849
132	10,644	50	101
papers	citations	h-index	g-index
135	135	135	9236
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Interface effect on thermal conductivity of carbon nanotube composites. Applied Physics Letters, 2004, 85, 3549-3551.	3.3	743
2	Synergistic Coupling between Li _{6.75} 6.759.259.25129.39.39.39.39.39.39.39.39.39.39.39.39.39.39.3 <td>13.7</td> <td>698</td>	13.7	698
3	BiCuSeO oxyselenides: new promising thermoelectric materials. Energy and Environmental Science, 2014, 7, 2900-2924.	30.8	544
4	Giant Energy Density and Improved Discharge Efficiency of Solutionâ€Processed Polymer Nanocomposites for Dielectric Energy Storage. Advanced Materials, 2016, 28, 2055-2061.	21.0	534
5	Topologicalâ€Structure Modulated Polymer Nanocomposites Exhibiting Highly Enhanced Dielectric Strength and Energy Density. Advanced Functional Materials, 2014, 24, 3172-3178.	14.9	371
6	Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. Journal of Materials Chemistry, 2012, 22, 16491.	6.7	341
7	Selfâ€Suppression of Lithium Dendrite in Allâ€Solidâ€State Lithium Metal Batteries with Poly(vinylidene) Tj ETQq1	1 0.7843 21.0	14 rgBT /0v 293
8	Enhanced dielectric and ferroelectric properties induced by dopamine-modified BaTiO3 nanofibers in flexible poly(vinylidene fluoride-trifluoroethylene) nanocomposites. Journal of Materials Chemistry, 2012, 22, 8063.	6.7	282
9	Remarkable Enhancement in Thermoelectric Performance of BiCuSeO by Cu Deficiencies. Journal of the American Chemical Society, 2011, 133, 20112-20115.	13.7	268
10	Highâ€Throughput Phaseâ€Field Design of Highâ€Energyâ€Density Polymer Nanocomposites. Advanced Materials, 2018, 30, 1704380.	21.0	254
11	Polycrystalline BiCuSeO oxide as a potential thermoelectric material. Energy and Environmental Science, 2012, 5, 7188.	30.8	240
12	Enhanced Thermoelectric Properties of Pbâ€doped BiCuSeO Ceramics. Advanced Materials, 2013, 25, 5086-5090.	21.0	228
13	Polymer Nanocomposites with Ultrahigh Energy Density and High Discharge Efficiency by Modulating their Nanostructures in Three Dimensions. Advanced Materials, 2018, 30, e1707269.	21.0	226
14	Nanocomposite Membranes Enhance Bone Regeneration Through Restoring Physiological Electric Microenvironment. ACS Nano, 2016, 10, 7279-7286.	14.6	208
15	Preparation of Ca3Co4O9 and Improvement of its Thermoelectric Properties by Spark Plasma Sintering. Journal of the American Ceramic Society, 2005, 88, 1337-1340.	3.8	171
16	Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors. Applied Physics Letters, 2002, 81, 996-998.	3.3	168
17	Influence of interfacial bonding on giant magnetoelectric response of multiferroic laminated composites of Tb1â^xDyxFe2 and PbZrxTi1â^xxO3. Applied Physics Letters, 2003, 83, 4366-4368.	3.3	155
18	Largely enhanced energy density in flexible P(VDF-TrFE) nanocomposites by surface-modified electrospun BaSrTiO ₃ fibers. Journal of Materials Chemistry A, 2013, 1, 1688-1693.	10.3	151

#	Article	IF	Citations
19	Significant enhancement in the visible light photocatalytic properties of BiFeO ₃ –graphene nanohybrids. Journal of Materials Chemistry A, 2013, 1, 823-829.	10.3	140
20	Significant enhancement in energy density of polymer composites induced by dopamine-modified Ba0.6Sr0.4TiO3 nanofibers. Applied Physics Letters, 2012, 101, .	3.3	139
21	High energy density of polymer nanocomposites at a low electric field induced by modulation of their topological-structure. Journal of Materials Chemistry A, 2016, 4, 8359-8365.	10.3	137
22	Polymer Nanocomposites with Interpenetrating Gradient Structure Exhibiting Ultrahigh Discharge Efficiency and Energy Density. Advanced Energy Materials, 2019, 9, 1803411.	19.5	132
23	Coupled magnetodielectric properties of laminated PbZr0.53Ti0.47O3/NiFe2O4 ceramics. Journal of Applied Physics, 2004, 95, 5685-5690.	2.5	131
24	Large high-frequency magnetoelectric response in laminated composites of piezoelectric ceramics, rare-earth iron alloys and polymer. Applied Physics Letters, 2004, 84, 3516-3518.	3.3	122
25	Enhancement in magnetoelectric response in CoFe2O4–BaTiO3 heterostructure. Applied Physics Letters, 2008, 92, .	3.3	116
26	Highly enhanced energy density induced by hetero-interface in sandwich-structured polymer nanocomposites. Journal of Materials Chemistry A, 2013, 1, 12321.	10.3	116
27	Enhancing thermoelectric performance in hierarchically structured BiCuSeO by increasing bond covalency and weakening carrier–phonon coupling. Energy and Environmental Science, 2017, 10, 1590-1599.	30.8	115
28	Enhanced thermoelectric performance of a BiCuSeO system via band gap tuning. Chemical Communications, 2013, 49, 8075.	4.1	111
29	Electrical and thermal transport behaviours of high-entropy perovskite thermoelectric oxides. Journal of Advanced Ceramics, 2021, 10, 377-384.	17.4	110
30	Significant Improvement of Mechanical Properties Observed in Highly Aligned Carbon-Nanotube-Reinforced Nanofibers. Journal of Physical Chemistry C, 2009, 113, 4779-4785.	3.1	109
31	Polymer nanocomposites with high energy storage densities. MRS Bulletin, 2015, 40, 753-759.	3. 5	99
32	Dielectric and energy storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures. Journal of Applied Physics, 2017, 121, .	2.5	98
33	Effect of Mn doping on electric and magnetic properties of BiFeO3 thin films by chemical solution deposition. Journal of Applied Physics, 2009, 106, .	2.5	93
34	Exclusive enhancement of catalytic activity in Bi _{0.5} Na _{0.5} TiO ₃ nanostructures: new insights into the design of efficient piezocatalysts and piezo-photocatalysts. Journal of Materials Chemistry A, 2020, 8, 16238-16245.	10.3	93
35	Bandgap engineering and enhanced interface coupling of graphene–BiFeO ₃ nanocomposites as efficient photocatalysts under visible light. Journal of Materials Chemistry A, 2014, 2, 1967-1973.	10.3	87
36	Composition Modulation and Structure Design of Inorganicâ€inâ€Polymer Composite Solid Electrolytes for Advanced Lithium Batteries. Small, 2020, 16, e1902813.	10.0	87

3

#	Article	IF	CITATIONS
37	Enhanced thermoelectric performance of La-doped BiCuSeO by tuning band structure. Applied Physics Letters, 2015, 106, .	3.3	86
38	Ultra-sensitive NEMS magnetoelectric sensor for picotesla DC magnetic field detection. Applied Physics Letters, 2017, 110, .	3.3	83
39	Tuning Phase Composition of Polymer Nanocomposites toward High Energy Density and High Discharge Efficiency by Nonequilibrium Processing. ACS Applied Materials & Discharge Efficiency by Nonequilibrium Processing. ACS Applied Materials & Discharge Efficiency by Nonequilibrium Processing. ACS Applied Materials & Discharge Efficiency by Nonequilibrium Processing. ACS Applied Materials & Discharge Efficiency by Nonequilibrium Processing. ACS Applied Materials & Discharge Efficiency by Nonequilibrium Processing. ACS Applied Materials & Discharge Efficiency by Nonequilibrium Processing. ACS Applied Materials & Discharge Efficiency by Nonequilibrium Processing. ACS Applied Materials & Discharge Efficiency by Nonequilibrium Processing. ACS Applied Materials & Discharge Efficiency by Nonequilibrium Processing. ACS Applied Materials & Discharge Efficiency by Nonequilibrium Processing. ACS Applied Materials & Discharge Efficiency by Nonequilibrium Processing. ACS Applied Materials & Discharge Efficiency by Nonequilibrium Processing. ACS Applied Materials & Discharge Efficiency British Processing Processin	8.0	81
40	Doping for higher thermoelectric properties in p-type BiCuSeO oxyselenide. Applied Physics Letters, 2013, 102, 123905.	3.3	77
41	Demonstration of magnetoelectric read head of multiferroic heterostructures. Applied Physics Letters, 2008, 92, .	3.3	74
42	Enhancement of thermoelectric performance in Cd-doped Ca ₃ Co ₄ O ₉ via spin entropy, defect chemistry and phonon scattering. Journal of Materials Chemistry A, 2014, 2, 19479-19487.	10.3	71
43	Magnetic-electric properties of epitaxial multiferroic NiFe2O4–BaTiO3 heterostructure. Journal of Applied Physics, 2007, 102, .	2.5	70
44	Enhanced thermoelectric properties in Pb-doped BiCuSeO oxyselenides prepared by ultrafast synthesis. RSC Advances, 2015, 5, 69878-69885.	3.6	67
45	Thickness-dependent voltage-modulated magnetism in multiferroic heterostructures. Applied Physics Letters, 2012, 100, .	3.3	61
46	Thickness dependent size effect of BiFeO3 films grown on LaNiO3-buffered Si substrates. Journal of Applied Physics, 2008, 104, .	2.5	58
47	Controlled functionalization of poly(4-methyl-1-pentene) films for high energy storage applications. Journal of Materials Chemistry A, 2016, 4, 4797-4807.	10.3	58
48	Super Longâ€Cycling Allâ€Solidâ€State Battery with Thin Li ₆ PS ₅ Clâ€Based Electrolyte. Advanced Energy Materials, 2022, 12, .	19.5	58
49	Magnetoelectric resonance behavior of simple bilayered Pb(Zr,Ti)O3–(Tb,Dy)Fe2∕epoxy composites. Journal of Applied Physics, 2007, 101, 043902.	2.5	55
50	Lattice vibration modes of the layered material BiCuSeO and first principles study of its thermoelectric properties. New Journal of Physics, 2015, 17, 083012.	2.9	51
51	Dependence of giant magnetoelectric effect on interfacial bonding for multiferroic laminated composites of rare-earth-iron alloys and lead–zirconate–titanate. Journal of Applied Physics, 2004, 95, 2660-2664.	2.5	50
52	A magnetoelectric memory cell with coercivity state as writing data bit. Applied Physics Letters, 2010, 96, .	3.3	50
53	Garnet-type oxide electrolyte with novel porous-dense bilayer configuration for rechargeable all-solid-state lithium batteries. Ionics, 2017, 23, 2521-2527.	2.4	50
54	Highly Sensitive DC Magnetic Field Sensor Based on Nonlinear ME Effect., 2017, 1, 1-4.		50

#	Article	IF	CITATIONS
55	High Capacity, Superior Cyclic Performances in All-Solid-State Lithium-Ion Batteries Based on 78Li ₂ S-22P ₂ S ₅ Glass-Ceramic Electrolytes Prepared via Simple Heat Treatment. ACS Applied Materials & Samp; Interfaces, 2017, 9, 28542-28548.	8.0	49
56	Microstructure Manipulation for Enhancing the Resistance of Garnet-Type Solid Electrolytes to "Short Circuit―by Li Metal Anodes. ACS Applied Materials & Diterfaces, 2019, 11, 5928-5937.	8.0	49
57	Thermoelectric properties of Bi3+ substituted Co-based misfit-layered oxides. Journal of Electroceramics, 2008, 21, 748-751.	2.0	46
58	Influence of relative thickness on multiferroic properties of bilayered Pb(Zr0.52Ti0.48)O3–CoFe2O4 thin films. Journal of Applied Physics, 2008, 104, .	2.5	44
59	Dielectric behavior of graphene/BaTiO3/polyvinylidene fluoride nanocomposite under high electric field. Applied Physics Letters, 2013, 103, .	3.3	44
60	Enhanced Thermoelectricity in High-Temperature β-Phase Copper(I) Selenides Embedded with Cu ₂ Te Nanoclusters. ACS Applied Materials & Samp; Interfaces, 2016, 8, 15196-15204.	8.0	44
61	Influence of Stress and Orientation on Magnetoelectric Coupling of Pb(Zr,Ti)O3-CoFe2O4 Bilayer Films. Journal of the American Ceramic Society, 2011, 94, 1060-1066.	3.8	40
62	Response to Comment on "Selfâ€Suppression of Lithium Dendrite in Allâ€Solidâ€State Lithium Metal Batteries with Poly(vinylidene difluoride)â€Based Solid Electrolytes― Advanced Materials, 2020, 32, e2000026.	21.0	40
63	Enhancement of Thermoelectric Performance in Hierarchical Mesoscopic Oxide Composites of Ca ₃ Co ₄ O ₉ and La _{0.8} Sr _{O.2} CoO ₃ . Journal of the American Ceramic Society, 2015, 98. 1230-1235.	3.8	37
64	Electrical and Thermal Transport Behavior in Zn-Doped BiCuSeO Oxyselenides. Journal of Electronic Materials, 2015, 44, 1627-1631.	2.2	37
65	High Capacity and Superior Cyclic Performances of All-Solid-State Lithium Batteries Enabled by a Glass–Ceramics Solo. ACS Applied Materials & Solo. References, 2018, 10, 10029-10035.	8.0	37
66	Tunable magnetic and electrical behaviors in perovskite oxides by oxygen octahedral tilting. Science China Materials, 2015, 58, 302-312.	6.3	36
67	Magnetoelectric behavior of BaTiO3 films directly grown on CoFe2O4 ceramics. Journal of Applied Physics, 2008, 104, .	2.5	35
68	Polarization of High-Permittivity Dielectric NiO-Based Ceramics. Journal of the American Ceramic Society, 2005, 88, 1808-1811.	3.8	34
69	Thickness-dependent converse magnetoelectric coupling in bi-layered Ni/PZT thin films. Journal of Applied Physics, 2012, 111, .	2.5	34
70	Large d ₃₃ and enhanced ferroelectric/dielectric properties of poly(vinylidene) Tj ETQq0 0 0 rgBT /Ovenanofibers. RSC Advances, 2015, 5, 51302-51307.	rlock 10 T 3.6	f 50 147 To 33
71	Phase-separation induced hollow/porous carbon nanofibers containing in situ generated ultrafine SnO _x as anode materials for lithium-ion batteries. Materials Chemistry Frontiers, 2017, 1, 1331-1337.	5.9	32
72	Substrate Effect on the Magnetoelectric Behavior of Pb(Zr _{0.52} Ti _{0.48} O ₃ Filmâ€Onâ€CoFe ₂ O ₄ Bulk Ceramic Composites Prepared by Direct Solution Spin Coating. Journal of the American Ceramic Society, 2009, 92, 2654-2660.	3.8	31

#	Article	IF	CITATIONS
73	Photoelectrochemical Performance Observed in Mn-Doped BiFeO3 Heterostructured Thin Films. Nanomaterials, 2016, 6, 215.	4.1	31
74	Space charge effects on the dielectric response of polymer nanocomposites. Applied Physics Letters, 2017, 111, .	3.3	31
75	Switchable voltage control of the magnetic coercive field via magnetoelectric effect. Journal of Applied Physics, $2011,110,\ldots$	2.5	30
76	Strong phonon localization in PbTe with dislocations and large deviation to Matthiessen's rule. Npj Computational Materials, 2019, 5, .	8.7	29
77	Magnetoelectricity of Multiferroic Composites. Ferroelectrics, 2002, 280, 153-163.	0.6	28
78	Dielectric Behavior of Na _{0.5} Bi _{0.5} TiO ₃ â€Based Composites Incorporating Silver Particles. Journal of the American Ceramic Society, 2004, 87, 742-745.	3.8	27
79	Self-Reconstructed Formation of a One-Dimensional Hierarchical Porous Nanostructure Assembled by Ultrathin TiO ₂ Nanobelts for Fast and Stable Lithium Storage. ACS Applied Materials & Lithium Storage. ACS Applied & Lithium Storage.	8.0	27
80	BiCuSeO as state-of-the-art thermoelectric materials for energy conversion: from thin films to bulks. Rare Metals, 2018, 37, 259-273.	7.1	26
81	High capacity and rate performance of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ composite cathode for bulk-type all-solid-state lithium battery. Journal of Materials Chemistry A, 2014, 2, 13332.	10.3	25
82	Application of 3D-Printed, PLGA-Based Scaffolds in Bone Tissue Engineering. International Journal of Molecular Sciences, 2022, 23, 5831.	4.1	25
83	Mechanical properties of polymer-infiltrated-ceramic (sodium aluminum silicate) composites for dental restoration. Journal of Dentistry, 2017, 62, 91-97.	4.1	24
84	Voltage-Driven Nonlinearity in Magnetoelectric Heterostructures. Physical Review Applied, 2019, 12, .	3.8	24
85	Magnetoelectric coupling in BaTiO3/(NiFe2O4/BaTiO3)n (n=1,2,3,4) multilayered thin films. Journal of Applied Physics, 2009, 105, 083915.	2.5	23
86	Origin of enhanced magnetoelectric coupling in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>NiFe</mml:mtext><mml:mn>2 xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>O</mml:mtext><mml:mn>4<!-- xmlns:mml="http://www.w3.org/1998/Math/MathML"--><mml:msub><mml:mtext>BaTiO</mml:mtext><mml:mn></mml:mn></mml:msub></mml:mn></mml:msub></mml:mn></mml:msub></mml:math>	mn 3l2 mn><	:/manal:msub>
87	studied by x-ray magnetic circular dichroism. Physical Review B, 2014, 89, . Tunable pseudocapacitive contribution in nanosheet-constructed titania hierarchical tubes to achieve superior lithium-storage properties by phase control. Journal of Materials Chemistry A, 2018, 6, 24298-24310.	10.3	23
88	Electric-field modulation of magnetic properties of Fe films directly grown on BiScO3–PbTiO3 ceramics. Journal of Applied Physics, 2010, 107, .	2.5	22
89	Ultra-fast synthesis and high thermoelectric properties of heavy sodium doped BiCuSeO. Journal of Alloys and Compounds, 2017, 708, 955-960.	5.5	22
90	A simple method for direct observation of the converse magnetoelectric effect in magnetic/ferroelectric composite thin films. Journal of Applied Physics, 2011, 110, 096106.	2.5	20

#	Article	IF	Citations
91	Influence of La Doping on Magnetic and Optical Properties of Bismuth Ferrite Nanofibers. Journal of Nanomaterials, 2012, 2012, 1-5.	2.7	20
92	Preparation of Nanometer Zinc Oxide Powders by Plasma Pyrolysis Technology and Their Applications. Journal of the American Ceramic Society, 2000, 83, 2869-2871.	3.8	19
93	An alternating multilayer architecture boosts ultrahigh energy density and high discharge efficiency in polymer composites. RSC Advances, 2020, 10, 5886-5893.	3.6	19
94	Cu segregation and its effects on the electrical properties of calcium copper titanate. Science China Technological Sciences, 2011, 54, 2506-2510.	4.0	18
95	Enhanced magnetoelectric coupling in Pb(Zr0.52Ti0.48)O3 film-on-CoFe2O4 bulk ceramic composite with LaNiO3 bottom electrode. Journal of Materials Science, 2013, 48, 1021-1026.	3.7	17
96	Reduced Thermal Conductivity of Mg ₂ (Si, Sn) Solid Solutions by a Gradient Composition Layered Microstructure. ACS Applied Materials & Samp; Interfaces, 2020, 12, 19547-19552.	8.0	17
97	Ferroelectric and Ferromagnetic Properties of Hot-Pressed Bi0.95?xLa0.05TbxFeO3Ceramics. Journal of the American Ceramic Society, 2007, 90, 1444-1447.	3.8	16
98	Surface-reconstructed formation of hierarchical TiO ₂ mesoporous nanosheets with fast lithium-storage capability. Materials Chemistry Frontiers, 2021, 5, 3216-3225.	5.9	16
99	Enhanced CO ₂ Reduction Performance of BiCuSeOâ€Based Hybrid Catalysts by Synergetic Photoâ€Thermoelectric Effect. Advanced Functional Materials, 2021, 31, 2105001.	14.9	16
100	Mechanical properties and biocompatibility of polymer infiltrated sodium aluminum silicate restorative composites. Journal of Advanced Ceramics, 2017, 6, 73-79.	17.4	15
101	High Thermoelectric Performance of AgSb _{1–<i>x</i>} Pb _{<i>x</i>} Se ₂ Prepared by Fast Nonequilibrium Synthesis. ACS Applied Materials & Samp; Interfaces, 2020, 12, 41333-41341.	8.0	15
102	Carbon Quantum Dots Modified (002) Oriented Bi2O2CO3 Composites with Enhanced Photocatalytic Removal of Toluene in Air. Nanomaterials, 2020, 10, 1795.	4.1	14
103	(002) Oriented Bi2O2CO3 Nanosheets with Enhanced Photocatalytic Performance for Toluene Removal in Air. Catalysts, 2020, 10, 389.	3.5	14
104	Enhanced Thermoelectric Properties of BiCuSeO/Polyaniline Composites. Journal of Electronic Materials, 2014, 43, 3695-3700.	2.2	13
105	Thermoelectric Properties of Cl-Doped BiCuSeO Oxyselenides. Journal of Electronic Materials, 2017, 46, 2593-2598.	2.2	13
106	Modulating interfacial charge distribution and compatibility boosts high energy density and discharge efficiency of polymer nanocomposites. RSC Advances, 2019, 9, 35990-35997.	3.6	12
107	Mechanical and biocompatible properties of polymer-infiltrated-ceramic-network materials for dental restoration. Journal of Advanced Ceramics, 2020, 9, 123-128.	17.4	12
108	Enhancement of the thermoelectric properties of MnSb ₂ Se ₄ through Cu resonant doping. RSC Advances, 2015, 5, 99065-99073.	3.6	11

7

#	Article	IF	Citations
109	Magnetic-electric behaviors in BiFeO3 films grown on LaNiO3-buffered Si substrate. Journal of Applied Physics, 2009, 106, .	2.5	10
110	Highâ€temperature electrical and thermal transport behaviors in layered structure WSe ₂ . Journal of the American Ceramic Society, 2017, 100, 5528-5535.	3.8	10
111	Interfacial-hybridization-modified Ir ferromagnetism and electronic structure in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>LaMnO</mml:mi><n .<="" 2,="" 2020,="" physical="" research,="" review="" superlattices.="" td=""><td>าm&រชก>3</td><td><!--<b-->nionl:mn><</td></n></mml:msub></mml:mrow></mml:math>	าm &រ ชก>3	<b nionl:mn><
112	In Vitro Cell Proliferation and Mechanical Behaviors Observed in Porous Zirconia Ceramics. Materials, 2016, 9, 218.	2.9	9
113	Thermoelectric transport properties of BiCuSeO with embedded La0.8Sr0.2CoO3 nanoinclusions. Science China Technological Sciences, 2016, 59, 1036-1041.	4.0	9
114	Highly (001)-Textured Tetragonal BiFeO ₃ Film and Its Photoelectrochemical Behaviors Tuned by Magnetic Field. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30127-30132.	8.0	9
115	Ensemble-machine-learning-based correlation analysis of internal and band characteristics of thermoelectric materials. Journal of Materials Chemistry C, 2020, 8, 13079-13089.	5.5	9
116	High thermoelectric performance of Bi1 \hat{a} 'x K x CuSeO prepared by combustion synthesis. Journal of Materials Science, 2017, 52, 11569-11579.	3.7	8
117	Characterization of individual grain boundaries and grains of CaCu3Ti4O12 ceramic. Science China Technological Sciences, 2012, 55, 879-882.	4.0	7
118	The Effects of Spark-Plasma Sintering (SPS) on the Microstructure and Mechanical Properties of BaTiO3/3Y-TZP Composites. Materials, 2016, 9, 320.	2.9	7
119	Spatially resolving heterogeneous thermal conductivity of BiCuSeO based thermoelectric nanostructures via scanning thermal microscopy. Applied Physics Letters, 2020, 117, .	3.3	7
120	Evaluating the electro-optical effect in alternating current-voltage-modulated Kerr response for multiferroic heterostructures. Journal of Applied Physics, 2013, 114, .	2.5	6
121	Selective tuning of order parameters of multiferroic BiFeO3 in picoseconds using midinfrared terahertz laser pulses. Physical Review B, 2022, 105, .	3.2	6
122	Synthesis and Characterization of (Ce _{0.67} Tb _{0.33})Mn _{<i>x</i>} Mg _{1â^'<i>x</i>} Al ₁₁ Phosphors Derived by Solâ€"Gel Processing. Journal of the American Ceramic Society, 2002, 85, 998-1000.	O&&Bb>1	9< # sub>
123	Synthesis and Broadband Spectra Photocatalytic Properties of Bi2O2(CO3)1â~xSx. Materials, 2018, 11, 791.	2.9	5
124	One-Pot Synthesis of BiCuSO Nanosheets under Ambient Atmosphere as Broadband Spectrum Photocatalyst. Nanomaterials, 2019, 9, 540.	4.1	5
125	Magnetoelectricity of Multiferroic Composites. Ferroelectrics, 2002, 280, 153-163.	0.6	5
126	Physical and chemical strains co-tuned magnetic properties of double perovskite PrBaMn2O5.5+ \hat{l} epitaxial films. Applied Physics Letters, 2019, 115, .	3.3	4

Yuan-Hua Lin

#	ARTICLE	IF	CITATION
127	Polymer Nanocomposites: Polymer Nanocomposites with Interpenetrating Gradient Structure Exhibiting Ultrahigh Discharge Efficiency and Energy Density (Adv. Energy Mater. 15/2019). Advanced Energy Materials, 2019, 9, 1970047.	19.5	4
128	Preparation of CePO4-coated zirconia ceramics and their mechanical behavior. Rare Metals, 2011, 30, 282-286.	7.1	3
129	Tunable photoelectric response in NiO-based heterostructures by various orientations. Applied Physics Letters, 2018, 112, .	3.3	3
130	Bismuth Oxysulfide and Its Polymer Nanocomposites for Efficient Purification. Materials, 2018, 11, 447.	2.9	2
131	Study of lattice vibration and thermal conductivity of BiCuSeO from first-principles calculations. Materials Research Society Symposia Proceedings, 2015, 1735, 110.	0.1	0
132	Well-Dispersed Co/CoO/C Nanospheres with Tunable Morphology as High-Performance Anodes for Lithium Ion Batteries. Materials, 2016, 9, 955.	2.9	0