Jian-Yu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4891727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metallophilicity-Induced Clusterization: Single-Component White-Light Clusteroluminescence with Stimulus Response. CCS Chemistry, 2022, 4, 2570-2580.	7.8	17
2	Taming Reactive Oxygen Species: Mitochondria-Targeting Aggregation-Induced Emission Luminogen for Neuron Protection via Photosensitization-Triggered Autophagy. CCS Chemistry, 2022, 4, 2249-2257.	7.8	14
3	Mapping the Regioisomeric Space and Visible Color Range of Purely Organic Dual Emitters with Ultralong Phosphorescence Components: From Violet to Red Towards Pure White Light. Angewandte Chemie - International Edition, 2022, 61, .	13.8	28
4	Metalâ€Based Aggregationâ€Induced Emission Theranostic Systems. ChemMedChem, 2022, 17, .	3.2	12
5	Mitochondriaâ€Targeting Phototheranostics by Aggregationâ€Induced NIRâ€II Emission Luminogens: Modulating Intramolecular Motion by Electron Acceptor Engineering for Multiâ€Modal Synergistic Therapy. Advanced Functional Materials, 2022, 32, .	14.9	51
6	Organic Long-Persistent Luminescence from a Single-Component Aggregate. Journal of the American Chemical Society, 2022, 144, 3050-3062.	13.7	61
7	Novel Quinolizine AIE System: Visualization of Molecular Motion and Elaborate Tailoring for Biological Application**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	31
8	Aggregation-Induced Emission (AIE) in Super-resolution Imaging: Cationic AIE Luminogens (AIEgens) for Tunable Organelle-Specific Imaging and Dynamic Tracking in Nanometer Scale. ACS Nano, 2022, 16, 5932-5942.	14.6	26
9	A mitochondria-targeted AIE photosensitizer for enhancing specificity and efficacy of ferroptosis inducer. Science China Chemistry, 2022, 65, 870-876.	8.2	12
10	Intermolecular Hydrogen-Bond-Assisted Solid-State Dual-Emission Molecules with Mechanical Force-Induced Enhanced Emission. Journal of Organic Chemistry, 2022, 87, 8503-8514.	3.2	16
11	Secondary through-space interactions facilitated single-molecule white-light emission from clusteroluminogens. Nature Communications, 2022, 13, .	12.8	50
12	Yâ€Shaped Pyreneâ€Based Aggregationâ€Induced Emission Blue Emitters for Highâ€Performance OLED Devices. Advanced Optical Materials, 2022, 10, .	7.3	26
13	Highly Selective and Productive Synthesis of a Carbon Dioxide-Based Copolymer upon Zwitterionic Growth. Macromolecules, 2021, 54, 2178-2186.	4.8	38
14	Switching energy dissipation pathway: <i>in situ</i> proton-induced transformation of AIE-active self-assemblies to boost photodynamic therapy. Biomaterials Science, 2021, 9, 4301-4307.	5.4	6
15	Restriction of Intramolecular Motion(RIM): Investigating AIE Mechanism from Experimental and Theoretical Studies. Chemical Research in Chinese Universities, 2021, 37, 1-15.	2.6	81
16	Revisiting an ancient inorganic aggregationâ€induced emission system: An enlightenment to clusteroluminescence. Aggregate, 2021, 2, e36.	9.9	40
17	Clusteroluminescence from Cluster Excitons in Small Heterocyclics Free of Aromatic Rings. Advanced Science, 2021, 8, 2004299.	11.2	49
18	Functionalization of Silk by AIEgens through Facile Bioconjugation: Fullâ€Color Fluorescence and Longâ€Term Bioimaging. Angewandte Chemie, 2021, 133, 12532-12538.	2.0	6

JIAN-YU ZHANG

#	Article	IF	CITATIONS
19	Functionalization of Silk by AlEgens through Facile Bioconjugation: Fullâ€Color Fluorescence and Longâ€Term Bioimaging. Angewandte Chemie - International Edition, 2021, 60, 12424-12430.	13.8	46
20	Positive/Negative Phototropism: Controllable Molecular Actuators with Different Bending Behavior. CCS Chemistry, 2021, 3, 1491-1500.	7.8	27
21	"Simple―Aggregationâ€Induced Emission Luminogens for Nondoped Solutionâ€Processed Organic Lightâ€Emitting Diodes with Emission Close to Pure Red in the Standard Red, Green, and Blue Gamut. Advanced Photonics Research, 2021, 2, 2100004.	3.6	2
22	An Air-Stable Organic Radical from a Controllable Photoinduced Domino Reaction of a Hexa-aryl Substituted Anthracene. Journal of Organic Chemistry, 2021, 86, 7359-7369.	3.2	5
23	Visualization and Manipulation of Solid-State Molecular Motions in Cocrystallization Processes. Journal of the American Chemical Society, 2021, 143, 9468-9477.	13.7	52
24	How to Manipulate Through-Space Conjugation and Clusteroluminescence of Simple AlEgens with Isolated Phenyl Rings. Journal of the American Chemical Society, 2021, 143, 9565-9574.	13.7	97
25	How Do Molecular Motions Affect Structures and Properties at Molecule and Aggregate Levels?. Journal of the American Chemical Society, 2021, 143, 11820-11827.	13.7	26
26	Donor/Ï€â€Bridge Manipulation for Constructing a Stable NIRâ€I Aggregationâ€Induced Emission Luminogen with Balanced Phototheranostic Performance**. Angewandte Chemie, 2021, 133, 26973-26980.	2.0	17
27	Stimuliâ€Responsive Materials from Ferroceneâ€Based Organic Small Molecule for Wearable Sensors. Small, 2021, 17, e2103125.	10.0	14
28	A Facile Strategy of Boosting Photothermal Conversion Efficiency through State Transformation for Cancer Therapy. Advanced Materials, 2021, 33, e2105999.	21.0	61
29	Donor/Ï€â€Bridge Manipulation for Constructing a Stable NIRâ€II Aggregationâ€Induced Emission Luminogen with Balanced Phototheranostic Performance**. Angewandte Chemie - International Edition, 2021, 60, 26769-26776.	13.8	96
30	White-light emission from organic aggregates: a review. Advanced Photonics, 2021, 4, .	11.8	25
31	Three Years' Achievements and Expectations of Top Talent Training Program in Basic Sciences. University Chemistry, 2019, 34, 146-150.	0.0	0
32	Rational design of FLP catalysts for reversible H2 activation: A DFT study of the geometric and electronic effects. Chinese Chemical Letters, 2018, 29, 1226-1232.	9.0	6
33	Frustrated Lewis Pair Catalyzed C–H Activation of Heteroarenes: AÂStepwise Carbene Mechanism Due to Distance Effect. Organic Letters, 2018, 20, 1102-1105.	4.6	22
34	Spin-reorientation-induced magnetodielectric coupling effects in two layered perovskite magnets. Chemical Science, 2018, 9, 7413-7418.	7.4	50
35	A near-room-temperature organic–inorganic hybrid ferroelectric: [C ₆ H ₅ CH ₂ CH ₂ NH ₃] ₂ Chemical Communications, 2017, 53, 5764-5766.	4< /suu b>].	76
36	The effect of auxiliary ligand on the mechanism and reactivity: DFT study on H2 activation by Lewis acid–transition metal complex (tris(phosphino)borane)Fe(L). Catalysis Science and Technology, 2017, 7, 4866-4878.	4.1	9

JIAN-YU ZHANG

#	Article	IF	CITATIONS
37	Boron-Based Lewis Acid Transition Metal Complexes as Potential Bifunctional Catalysts. Chinese Journal of Organic Chemistry, 2017, 37, 2187.	1.3	21
38	Mapping the regioisomeric space and visible color range of purely organic dual emitters with ultralong phosphorescence components: From violet to red towards pure whiteâ€light. Angewandte Chemie, 0, , .	2.0	5
39	Novel Quinolizine AIE System: Visualization of Molecular Motion and Elaborate Tailoring for Biological Application**. Angewandte Chemie, 0, , .	2.0	5