Yubin Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4891043/publications.pdf

Version: 2024-02-01

119 5,524 38 70
papers citations h-index g-index

119 119 119 7871 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Synergistic enhancement of immunological responses triggered by hyperthermia sensitive Pt NPs via NIR laser to inhibit cancer relapse and metastasis. Bioactive Materials, 2022, 7, 389-400.	15.6	33
2	Influence of nanoparticle size on blood–brain barrier penetration and the accumulation of anti-seizure medicines in the brain. Journal of Materials Chemistry B, 2022, 10, 271-281.	5.8	27
3	lodine Conjugated Pt(IV) Nanoparticles for Precise Chemotherapy with Iodine–Pt Guided Computed Tomography Imaging and Biotin-Mediated Tumor-Targeting. ACS Nano, 2022, 16, 6835-6846.	14.6	16
4	A red-light activatable and mitochondrion-targeting Pt ^{IV} complex to overcome drug resistance. Chemical Communications, 2022, 58, 8404-8407.	4.1	8
5	The associated killing of hepatoma cells using multilayer drug-loaded mats combined with fast neutron therapy. Nano Research, 2021, 14, 778-787.	10.4	3
6	Chain-shattering Pt(IV)-backboned polymeric nanoplatform for efficient CRISPR/Cas9 gene editing to enhance synergistic cancer therapy. Nano Research, 2021, 14, 601-610.	10.4	29
7	Combination of starvation therapy and Pt-NP based chemotherapy for synergistic cancer treatment. Journal of Materials Chemistry B, 2021, 9, 6406-6411.	5.8	9
8	Nearâ€Infrared Lightâ€Triggered Polyprodrug/siRNA Loaded Upconversion Nanoparticles for Multiâ€Modality Imaging and Synergistic Cancer Therapy. Advanced Healthcare Materials, 2021, 10, e2100938.	7.6	36
9	Application of Mannoseâ€Functionalized Microgel as a Novel Vaccine Delivery Platform for Subunit Vaccines. Advanced Functional Materials, 2021, 31, 2105742.	14.9	9
10	Engineering Endogenous Tumorâ€Associated Macrophageâ€Targeted Biomimetic Nanoâ€RBC to Reprogram Tumor Immunosuppressive Microenvironment for Enhanced Chemoâ€Immunotherapy. Advanced Materials, 2021, 33, e2103497.	21.0	73
11	Reductionâ€Sensitive Fluorinatedâ€Pt(IV) Universal Transfection Nanoplatform Facilitating CT45â€Targeted CRISPR/dCas9 Activation for Synergistic and Individualized Treatment of Ovarian Cancer. Small, 2021, 17, e2102494.	10.0	24
12	Correction: Combining PD-L1 inhibitors with immunogenic cell death triggered by chemo-photothermal therapy via a thermosensitive liposome system to stimulate tumor-specific immunological response. Nanoscale, 2021, 13, 13907-13907.	5.6	8
13	Combining PD-L1 inhibitors with immunogenic cell death triggered by chemo-photothermal therapy <i>via</i> a thermosensitive liposome system to stimulate tumor-specific immunological response. Nanoscale, 2021, 13, 12966-12978.	5.6	32
14	Dual-sensitive dual-prodrug nanoparticles with light-controlled endo/lysosomal escape for synergistic photoactivated chemotherapy. Biomaterials Science, 2021, 9, 7115-7123.	5.4	10
15	Engineering Endogenous Tumorâ€Associated Macrophageâ€Targeted Biomimetic Nanoâ€RBC to Reprogram Tumor Immunosuppressive Microenvironment for Enhanced Chemoâ€Immunotherapy (Adv. Mater.) Tj ETQq1 1	0.784614	rg B7 /Overloc
16	Self-healing supramolecular hydrogels through host–guest interaction between cyclodextrin and carborane. Journal of Materials Chemistry B, 2020, 8, 10309-10313.	5.8	26
17	Reduction-responsive disulfide linkage core-cross-linked polymeric micelles for site-specific drug delivery. Polymer Chemistry, 2020, 11, 7078-7086.	3.9	15
18	Dual Cross-linked HHA Hydrogel Supplies and Regulates MΦ2 for Synergistic Improvement of Immunocompromise and Impaired Angiogenesis to Enhance Diabetic Chronic Wound Healing. Biomacromolecules, 2020, 21, 3795-3806.	5.4	42

#	Article	IF	CITATIONS
19	A portable fast neutron irradiation system for tumor therapy. Applied Radiation and Isotopes, 2020, 160, 109138.	1.5	8
20	Morphology tunable and acid-sensitive dextran–doxorubicin conjugate assemblies for targeted cancer therapy. Journal of Materials Chemistry B, 2020, 8, 6898-6904.	5.8	18
21	Photoactivated polyprodrug nanoparticles for effective light-controlled Pt(<scp>iv</scp>) and siRNA codelivery to achieve synergistic cancer therapy. Journal of Materials Chemistry B, 2020, 8, 5903-5911.	5.8	20
22	Hybrid hydrogel based on stereocomplex <scp>PDLA</scp> / <scp>PLLA</scp> and gelatin for bone regeneration. Journal of Applied Polymer Science, 2020, 137, 49571.	2.6	8
23	Photoactivatable Prodrug-Backboned Polymeric Nanoparticles for Efficient Light-Controlled Gene Delivery and Synergistic Treatment of Platinum-Resistant Ovarian Cancer. Nano Letters, 2020, 20, 3039-3049.	9.1	92
24	Absorbable Thioether Grafted Hyaluronic Acid Nanofibrous Hydrogel for Synergistic Modulation of Inflammation Microenvironment to Accelerate Chronic Diabetic Wound Healing. Advanced Healthcare Materials, 2020, 9, e2000198.	7.6	114
25	Amino-Modified Polymer Nanoparticles as Adjuvants to Activate the Complement System and to Improve Vaccine Efficacy in Vivo. Biomacromolecules, 2019, 20, 3575-3583.	5.4	19
26	A Multiâ€Functional Silicon Nanoparticle Designed for Enhanced Osteoblast Calcification and Related Combination Therapy. Macromolecular Bioscience, 2019, 19, e1900255.	4.1	4
27	Antigen-enabled facile preparation of MOF nanovaccine to activate the complement system for enhanced antigen-mediated immune response. Biomaterials Science, 2019, 7, 4022-4026.	5.4	16
28	Light-activatable dual prodrug polymer nanoparticle for precise synergistic chemotherapy guided by drug-mediated computed tomography imaging. Acta Biomaterialia, 2019, 94, 459-468.	8.3	30
29	Photostability Highly Improved Nanoparticles Based on IR-780 and Negative Charged Copolymer for Enhanced Photothermal Therapy. ACS Biomaterials Science and Engineering, 2019, 5, 795-804.	5.2	17
30	Novel Engineered Microgels with Amphipathic Network Structures for Simultaneous Tumor and Inflammation Depression. ACS Applied Materials & Interfaces, 2018, 10, 10501-10512.	8.0	16
31	Composite PLA/PEG/nHA/Dexamethasone Scaffold Prepared by 3D Printing for Bone Regeneration. Macromolecular Bioscience, 2018, 18, e1800068.	4.1	62
32	Dual Drug Backboned Shattering Polymeric Theranostic Nanomedicine for Synergistic Eradication of Patientâ€Derived Lung Cancer. Advanced Materials, 2018, 30, 1706220.	21.0	142
33	A Versatile Method to Prepare Protein Nanoclusters for Drug Delivery. Macromolecular Bioscience, 2018, 18, 1700282.	4.1	15
34	Ion-assisted fabrication of neutral protein crosslinked sodium alginate nanogels. Carbohydrate Polymers, 2018, 186, 45-53.	10.2	21
35	Degradable Three Dimensional-Printed Polylactic Acid Scaffold with Long-Term Antibacterial Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 2047-2054.	6.7	32
36	Biphasic drug release from electrospun polyblend nanofibers for optimized local cancer treatment. Biomaterials Science, 2018, 6, 324-331.	5.4	50

#	Article	IF	CITATIONS
37	Bacterial adaptability of enzyme and pH dual-responsive surface for infection resistance. Journal of Materials Chemistry B, 2018, 6, 7710-7718.	5.8	33
38	Sandwichâ€Like Fibers/Sponge Composite Combining Chemotherapy and Hemostasis for Efficient Postoperative Prevention of Tumor Recurrence and Metastasis. Advanced Materials, 2018, 30, e1803217.	21.0	129
39	Light-stimulus Dual-drug Responsive Nanoparticles for Photoactivated Therapy Using Mesoporous Silica Nanospheres. Chemical Research in Chinese Universities, 2018, 34, 676-683.	2.6	6
40	Development of Organic/Inorganic Compatible and Sustainably Bioactive Composites for Effective Bone Regeneration. Biomacromolecules, 2018, 19, 3637-3648.	5 . 4	60
41	Recent progress in polymer-based platinum drug delivery systems. Progress in Polymer Science, 2018, 87, 70-106.	24.7	144
42	Tailoring Platinum(IV) Amphiphiles for Self-Targeting All-in-One Assemblies as Precise Multimodal Theranostic Nanomedicine. ACS Nano, 2018, 12, 7272-7281.	14.6	114
43	Stable amphiphilic supramolecular self-assembly based on cyclodextrin and carborane for the efficient photodynamic therapy. Chemical Communications, 2017, 53, 3422-3425.	4.1	32
44	Pt(<scp>iv</scp>) prodrug-backboned micelle and DCA loaded nanofibers for enhanced local cancer treatment. Journal of Materials Chemistry B, 2017, 5, 2115-2125.	5. 8	42
45	A facile way to prepare functionalized dextran nanogels for conjugation of hemoglobin. Colloids and Surfaces B: Biointerfaces, 2017, 155, 440-448.	5.0	19
46	Compact Vesicles Self-Assembled from Binary Graft Copolymers with High Hydrophilic Fraction for Potential Drug/Protein Delivery. ACS Macro Letters, 2017, 6, 1186-1190.	4.8	25
47	Synthesis and sequence-controlled self-assembly of amphiphilic triblock copolymers based on functional poly(ethylene glycol). Polymer Chemistry, 2017, 8, 6964-6971.	3.9	12
48	Mesoporous silica nanoparticles with lactose-mediated targeting effect to deliver platinum(<scp>iv</scp>) prodrug for liver cancer therapy. Journal of Materials Chemistry B, 2017, 5, 7591-7597.	5. 8	38
49	Temperature-Responsive Hierarchical Polymer Brushes Switching from Bactericidal to Cell Repellency. ACS Applied Materials & Damp; Interfaces, 2017, 9, 40930-40939.	8.0	86
50	Synthesis of the Hemoglobinâ€Conjugated Polymer Micelles by Thiol Michael Addition Reactions. Macromolecular Bioscience, 2016, 16, 906-913.	4.1	11
51	Nanoscale Metal–Organic Framework–Hemoglobin Conjugates. Chemistry - an Asian Journal, 2016, 11, 750-756.	3.3	32
52	Dual-Sensitive Charge-Conversional Polymeric Prodrug for Efficient Codelivery of Demethylcantharidin and Doxorubicin. Biomacromolecules, 2016, 17, 2650-2661.	5.4	24
53	Time-programmed DCA and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery. Journal of Controlled Release, 2016, 235, 125-133.	9.9	63
54	One-Step "Click Chemistry―Synthesized Cross-Linked Prodrug Nanogel for Highly Selective Intracellular Drug Delivery and Upregulated Antitumor Efficacy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 10673-10682.	8.0	70

#	Article	IF	Citations
55	Single-Stimulus Dual-Drug Sensitive Nanoplatform for Enhanced Photoactivated Therapy. Biomacromolecules, 2016, 17, 2120-2127.	5.4	42
56	Amphiphilic Polycarbonates from Carborane-Installed Cyclic Carbonates as Potential Agents for Boron Neutron Capture Therapy. Bioconjugate Chemistry, 2016, 27, 2214-2223.	3.6	43
57	Enhancing Therapeutic Efficacy of Cisplatin by Blocking DNA Damage Repair. ACS Medicinal Chemistry Letters, 2016, 7, 924-928.	2.8	22
58	Simultaneously Photoâ€Cleavable and Activatable Prodrugâ€Backboned Block Copolymer Micelles for Precise Anticancer Drug Delivery. Advanced Healthcare Materials, 2016, 5, 2493-2499.	7.6	50
59	Protein-Cross-Linked Hydrogels with Tailored Swelling and Bioactivity Performance: A Comparative Study. ACS Applied Materials & Study. ACS Applied Material	8.0	15
60	Multifunctional single-drug loaded nanoparticles for enhanced cancer treatment with low toxicity in vivo. RSC Advances, 2016, 6, 20366-20373.	3.6	10
61	Synthesis and AIE properties of PEG–PLA–PMPC based triblock amphiphilic biodegradable polymers. Polymer Chemistry, 2016, 7, 1121-1128.	3.9	31
62	Dextran-platinum(IV) conjugate as drug carrier for triggered drug release. Journal of Controlled Release, 2015, 213, e96.	9.9	4
63	Protein-Resistant Biodegradable Amphiphilic Graft Copolymer Vesicles as Protein Carriers. Macromolecular Bioscience, 2015, 15, 1304-1313.	4.1	13
64	Use of asymmetric multilayer polylactide nanofiber mats in controlled release of drugs and prevention of liver cancer recurrence after surgery in mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1047-1056.	3.3	59
65	Double pH-responsive supramolecular copolymer micelles based on the complementary multiple hydrogen bonds of nucleobases and acetalated dextran for drug delivery. Polymer Chemistry, 2015, 6, 3625-3633.	3.9	31
66	Borane-conjugated poly(ester-carbonate) amphiphilic block copolymers as potential agents for boron neutron capture therapy. Journal of Controlled Release, 2015, 213, e39-e40.	9.9	2
67	Local, combination chemotherapy in prevention of cervical cancer recurrence after surgery by using nanofibers co-loaded with cisplatin and curcumin. RSC Advances, 2015, 5, 106325-106332.	3.6	34
68	Doxorubicin-Loaded Carborane-Conjugated Polymeric Nanoparticles as Delivery System for Combination Cancer Therapy. Biomacromolecules, 2015, 16, 3980-3988.	5.4	81
69	Reduction-sensitive amphiphilic copolymers made via multi-component Passerini reaction for drug delivery. Colloids and Surfaces B: Biointerfaces, 2015, 126, 217-223.	5.0	36
70	Acetalated-dextran as valves of mesoporous silica particles for pH responsive intracellular drug delivery. RSC Advances, 2015, 5, 9546-9555.	3.6	32
71	A polymer–(multifunctional single-drug) conjugate for combination therapy. Journal of Materials Chemistry B, 2015, 3, 4913-4921.	5.8	20
72	The use of cisplatin-loaded mucoadhesive nanofibers for local chemotherapy of cervical cancers in mice. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93, 127-135.	4.3	91

#	Article	IF	CITATIONS
73	Novel multi-sensitive pseudo-poly(amino acid) for effective intracellular drug delivery. RSC Advances, 2015, 5, 31972-31983.	3.6	19
74	A dextran–platinum(<scp>iv</scp>) conjugate as a reduction-responsive carrier for triggered drug release. Journal of Materials Chemistry B, 2015, 3, 8203-8211.	5.8	36
75	Electrospun PLA/MWCNT composite nanofibers for combined chemo- and photothermal therapy with near-infrared radiation. Journal of Controlled Release, 2015, 213, e149-e150.	9.9	0
76	Overcoming tumor resistance to cisplatin through micelle-mediated combination chemotherapy. Biomaterials Science, 2015, 3, 182-191.	5.4	37
77	Cyclic RGD targeting nanoparticles with pH sensitive polymer–drug conjugates for effective treatment of melanoma. RSC Advances, 2014, 4, 55187-55194.	3. 6	19
78	Complex of cisplatin with biocompatible poly(ethylene glycol) with pendant carboxyl groups for the effective treatment of liver cancer. Journal of Applied Polymer Science, 2014, 131, n/a-n/a.	2.6	7
79	Insight into the fabrication of polymeric particle based oxygen carriers. International Journal of Pharmaceutics, 2014, 468, 75-82.	5.2	13
80	Ruthenium complex immobilized on mesoporous silica as recyclable heterogeneous catalyst for visible light photocatalysis. Chemical Research in Chinese Universities, 2014, 30, 310-314.	2.6	8
81	Green Photocatalysis with Oxygen Sensitive BODIPYs under Visible Light. Catalysis Letters, 2014, 144, 308-313.	2.6	21
82	Electrospinning of polymeric nanofibers for drug delivery applications. Journal of Controlled Release, 2014, 185, 12-21.	9.9	995
83	Injectable and biodegradable supramolecular hydrogels formed by nucleobase-terminated poly(ethylene oxide)s and α-cyclodextrin. Journal of Materials Chemistry B, 2014, 2, 659-667.	5.8	51
84	Emulsion click microspheres: morphology/shape control by surface cross-linking and a porogen. RSC Advances, 2014, 4, 23685-23689.	3.6	5
85	Paclitaxel prodrug nanoparticles combining chemical conjugation and physical entrapment for enhanced antitumor efficacy. RSC Advances, 2014, 4, 38405-38411.	3.6	24
86	Y-shaped block copolymer (methoxy-poly(ethylene glycol))2-b-poly(l-glutamic acid): preparation, self-assembly, and use as drug carriers. RSC Advances, 2014, 4, 41588-41596.	3.6	7
87	Preclinical pharmacology and toxicology study of Ad-hTERT-E1a-Apoptin, a novel dual cancer-specific oncolytic adenovirus. Toxicology and Applied Pharmacology, 2014, 280, 362-369.	2.8	24
88	Novel hydroxyl-containing reduction-responsive pseudo-poly(aminoacid) via click polymerization as an efficient drug carrier. Polymer Chemistry, 2014, 5, 4488.	3.9	25
89	Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer. Biomaterials, 2014, 35, 6118-6129.	11.4	304
90	Synthesis of cross-linked polymers via multi-component Passerini reaction and their application as efficient photocatalysts. RSC Advances, 2014, 4, 25114-25117.	3.6	15

#	Article	IF	Citations
91	Synthesis of mesoporous silica nanoparticle–oxaliplatin conjugates for improved anticancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 117, 75-81.	5.0	75
92	Cross-linked polymers based on 2,5-disubstituted tetrazoles for unsaturated hydrocarbon detection. RSC Advances, 2013, 3, 21302.	3.6	7
93	Inhibition of orthotopic secondary hepatic carcinoma in mice by doxorubicin-loaded electrospun polylactide nanofibers. Journal of Materials Chemistry B, 2013, 1, 101-109.	5.8	97
94	A Polymer–(Tandem Drugs) Conjugate for Enhanced Cancer Treatment. Advanced Healthcare Materials, 2013, 2, 822-827.	7.6	49
95	lodo-BODIPY: a visible-light-driven, highly efficient and photostable metal-free organic photocatalyst. RSC Advances, 2013, 3, 13417.	3.6	99
96	Synthesis and characterization of αâ€amino acidâ€containing polyester: poly[(εâ€caprolactone)â€ <i>co</i> â€serine lactone)]. Polymer International, 2013, 62, 454-462.	3.1	4
97	Regulation of Conjugated Hemoglobin on Micelles through Copolymer Chain Sequences and the Protein's Isoelectric Aggregation. Macromolecular Bioscience, 2013, 13, 893-902.	4.1	23
98	pHâ€Responsive Drug Delivery by Amphiphilic Copolymer through Boronate–Catechol Complexation. ChemPlusChem, 2013, 78, 175-184.	2.8	27
99	TATâ€modified mixed micelles as biodegradable targeting and delivering system for cancer therapeutics. Journal of Applied Polymer Science, 2013, 130, 4598-4607.	2.6	5
100	Reduction-sensitive core-cross-linked mPEG–poly(ester-carbonate) micelles for glutathione-triggered intracellular drug release. Polymer Chemistry, 2012, 3, 2403.	3.9	71
101	Co-delivery of all-trans-retinoic-acid and cisplatin(iv) prodrug based on polymer–drug conjugates for enhanced efficacy and safety. Journal of Materials Chemistry, 2012, 22, 25453.	6.7	15
102	Reduction-responsive shell-crosslinked micelles prepared from Y-shaped amphiphilic block copolymers as a drug carrier. Soft Matter, 2012, 8, 7426.	2.7	56
103	Biodegradable Amphiphilic Copolymer Containing Nucleobase: Synthesis, Self-Assembly in Aqueous Solutions, and Potential Use in Controlled Drug Delivery. Biomacromolecules, 2012, 13, 3004-3012.	5.4	70
104	Facile preparation of core cross-linked micelles from catechol-containing amphiphilic triblock copolymer. Journal of Materials Chemistry, 2012, 22, 15348.	6.7	27
105	Co-delivery of daunomycin and oxaliplatin by biodegradable polymers for safer and more efficacious combination therapy. Journal of Controlled Release, 2012, 163, 304-314.	9.9	110
106	The use of polymeric platinum(IV) prodrugs to deliver multinuclear platinum(II) drugs with reduced systemic toxicity and enhanced antitumor efficacy. Biomaterials, 2012, 33, 8657-8669.	11.4	77
107	Photo-cross-linked mPEG-poly(\hat{I}^3 -cinnamyl-l-glutamate) micelles as stable drug carriers. Polymer Chemistry, 2012, 3, 1300.	3.9	60
108	Core-crosslinked amphiphilic biodegradable copolymer based on the complementary multiple hydrogen bonds of nucleobases: synthesis, self-assembly and in vitro drug delivery. Journal of Materials Chemistry, 2012, 22, 24832.	6.7	49

#	Article	IF	CITATION
109	Guanidinated amphiphilic cationic copolymer with enhanced gene delivery efficiency. Journal of Materials Chemistry, 2012, 22, 18915.	6.7	19
110	PEGylated Click Polypeptides Synthesized by Copperâ€Free Microwaveâ€Assisted Thermal Click Polymerization for Selective Endotoxin Removal from Protein Solutions. Macromolecular Bioscience, 2012, 12, 533-546.	4.1	18
111	A novel amphiphilic copolymer poly(ethylene oxide-co-allyl glycidyl ether)-graft-poly(ε-caprolactone): synthesis, self-assembly, and protein encapsulation behavior. Polymer Chemistry, 2012, 3, 2421.	3.9	33
112	Necrosis of cervical carcinoma by dichloroacetate released from electrospun polylactide mats. Biomaterials, 2012, 33, 4362-4369.	11.4	52
113	Biodegradable copolymers with identical cationic segments and their performance in siRNA delivery. Journal of Controlled Release, 2012, 159, 251-260.	9.9	85
114	Preparation of GSH-functionalized porous dextran for the selective binding of GST by high internal phase emulsion (HIPE) polymerization. Journal of Materials Chemistry, 2011, 21, 16147.	6.7	16
115	Synthesis and characterization of amphiphilic block polymers with amino groups and their conjugates with folic acid and fluorescent probes. Polymer International, 2011, 60, 1269-1276.	3.1	4
116	Fusiform Micelles from Nonlinear Poly(ethylene glycol)/Polylactide Copolymers as Biodegradable Drug Carriers. Macromolecular Bioscience, 2011, 11, 1570-1578.	4.1	4
117	Zincâ€based catalyst for the ringâ€opening polymerization of cyclic esters. Journal of Applied Polymer Science, 2011, 121, 2378-2385.	2.6	10
118	Lactose mediated liver-targeting effect observed by ex vivo imaging technology. Biomaterials, 2010, 31, 2646-2654.	11.4	89
119	Polymerization of styrene oxide catalyzed by a diethylzinc/?-pinene oxide system. Journal of Polymer Science Part A, 1999, 37, 4640-4645.	2.3	6