
Richard A Lang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4891014/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Retinal patterns and the cellular repertoire of neuropsin (Opn5) retinal ganglion cells. Journal of Comparative Neurology, 2022, 530, 1247-1262.	1.6	9
2	Opsin 3–G _{αs} Promotes Airway Smooth Muscle Relaxation Modulated by G Protein Receptor Kinase 2. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 59-68.	2.9	15
3	Evolutionary Constraint on Visual and Nonvisual Mammalian Opsins. Journal of Biological Rhythms, 2021, 36, 109-126.	2.6	22
4	QPLOT Neurons—Converging on a Thermoregulatory Preoptic Neuronal Population. Frontiers in Neuroscience, 2021, 15, 665762.	2.8	12
5	Violet light suppresses lens-induced myopia via neuropsin (OPN5) in mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	57
6	Distinct Opsin 3 (<i>Opn3</i>) Expression in the Developing Nervous System during Mammalian Embryogenesis. ENeuro, 2021, 8, ENEURO.0141-21.2021.	1.9	9
7	Modulation of Both Intrinsic and Extrinsic Factors Additively Promotes Rewiring of Corticospinal Circuits after Spinal Cord Injury. Journal of Neuroscience, 2021, 41, 10247-10260.	3.6	11
8	Light-Mediated Inhibition of Colonic Smooth Muscle Constriction and Colonic Motility via Opsin 3. Frontiers in Physiology, 2021, 12, 744294.	2.8	5
9	Striatin Is Required for Hearing and Affects Inner Hair Cells and Ribbon Synapses. Frontiers in Cell and Developmental Biology, 2020, 8, 615.	3.7	3
10	Violet-light suppression of thermogenesis by opsin 5 hypothalamic neurons. Nature, 2020, 585, 420-425.	27.8	78
11	Retinal ganglion cell interactions shape the developing mammalian visual system. Development (Cambridge), 2020, 147, .	2.5	21
12	Wounding Induces Facultative <i>Opn5-</i> Dependent Circadian Photoreception in the Murine Cornea. , 2020, 61, 37.		8
13	Adaptive Thermogenesis in Mice Is Enhanced by Opsin 3-Dependent Adipocyte Light Sensing. Cell Reports, 2020, 30, 672-686.e8.	6.4	53
14	Neuropsin (OPN5) Mediates Local Light-Dependent Induction of Circadian Clock Genes and Circadian Photoentrainment in Exposed Murine Skin. Current Biology, 2019, 29, 3478-3487.e4.	3.9	76
15	An opsin 5–dopamine pathway mediates light-dependent vascular development in the eye. Nature Cell Biology, 2019, 21, 420-429.	10.3	63
16	Developmental vascular regression is regulated by a Wnt/β-catenin, MYC, P21 (CDKN1A) pathway that controls cell proliferation and cell death. Development (Cambridge), 2018, 145, .	2.5	26
17	Loss of Macrophage Wnt Secretion Improves Remodeling and Function After Myocardial Infarction in Mice. Journal of the American Heart Association, 2017, 6, .	3.7	55
18	YAP/TAZ-CDC42 signaling regulates vascular tip cell migration. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10918-10923.	7.1	147

#	Article	IF	CITATIONS
19	Myeloid Wnt ligands are required for normal development of dermal lymphatic vasculature. PLoS ONE, 2017, 12, e0181549.	2.5	18
20	CD133-positive dermal papilla-derived Wnt ligands regulate postnatal hair growth. Biochemical Journal, 2016, 473, 3291-3305.	3.7	16
21	The Eyes Absent Proteins in Developmental and Pathological Angiogenesis. American Journal of Pathology, 2016, 186, 568-578.	3.8	17
22	Monocyte-derived Wnt5a regulates inflammatory lymphangiogenesis. Cell Research, 2016, 26, 262-265.	12.0	17
23	Crim1 regulates integrin signaling in murine lens development. Journal of Cell Science, 2016, 129, e1.2-e1.2.	2.0	11
24	Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling. ELife, 2016, 5, e07727.	6.0	125
25	Deletion of Wntless in myeloid cells exacerbates liver fibrosis and the ductular reaction in chronic liver injury. Fibrogenesis and Tissue Repair, 2015, 8, 19.	3.4	36
26	Crim1 regulates integrin signaling in murine lens development. Development (Cambridge), 2015, 143, 356-66.	2.5	27
27	Wnt ligands from the embryonic surface ectoderm regulate â€~bimetallic strip' optic cup morphogenesis in mouse. Development (Cambridge), 2015, 142, 972-982.	2.5	54
28	Neuropsin (OPN5)-mediated photoentrainment of local circadian oscillators in mammalian retina and cornea. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13093-13098.	7.1	132
29	CRIM1 haploinsufficiency causes defects in eye development in human and mouse. Human Molecular Genetics, 2015, 24, 2267-2273.	2.9	26
30	Mesenchymal Wnt signaling promotes formation of sternum and thoracic body wall. Developmental Biology, 2015, 401, 264-275.	2.0	25
31	WNT5A Inhibits Hepatocyte Proliferation and Concludes Î ² -Catenin Signaling in Liver Regeneration. American Journal of Pathology, 2015, 185, 2194-2205.	3.8	29
32	Epithelial Morphogenesis. Current Topics in Developmental Biology, 2015, 111, 375-399.	2.2	22
33	FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis. Journal of Experimental Medicine, 2015, 212, 1433-1448.	8.5	186
34	Phenotypic and functional characterization of Bst+/- mouse retina. DMM Disease Models and Mechanisms, 2015, 8, 969-76.	2.4	8
35	Rap1 GTPase is required for mouse lens epithelial maintenance and morphogenesis. Developmental Biology, 2015, 406, 74-91.	2.0	22
36	FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis. Journal of Cell Biology, 2015, 210, 2104OIA168.	5.2	1

#	Article	IF	CITATIONS
37	Stem cell factor Sox2 and its close relative Sox3 have differentiation functions in oligodendrocytes. Development (Cambridge), 2014, 141, 39-50.	2.5	92
38	Crim1 maintains retinal vascular stability during development by regulating endothelial cell Vegfa autocrine signaling. Development (Cambridge), 2014, 141, 448-459.	2.5	44
39	HIPPO Pathway Members Restrict SOX2 to the Inner Cell Mass Where It Promotes ICM Fates in the Mouse Blastocyst. PLoS Genetics, 2014, 10, e1004618.	3.5	186
40	Distinct Requirements for Cranial Ectoderm and Mesenchyme-Derived Wnts in Specification and Differentiation of Osteoblast and Dermal Progenitors. PLoS Genetics, 2014, 10, e1004152.	3.5	39
41	Gene Targeting RhoA Reveals Its Essential Role in Coordinating Mitochondrial Function and Thymocyte Development. Journal of Immunology, 2014, 193, 5973-5982.	0.8	37
42	Myeloid WNT7b Mediates the Angiogenic Switch and Metastasis in Breast Cancer. Cancer Research, 2014, 74, 2962-2973.	0.9	162
43	p120-catenin-dependent junctional recruitment of Shroom3 is required for apical constriction during lens pit morphogenesis. Development (Cambridge), 2014, 141, 3177-3187.	2.5	51
44	Beta-catenin signaling in murine liver zonation and regeneration: A Wnt-Wnt situation!. Hepatology, 2014, 60, 964-976.	7.3	205
45	Length of Day during Early Gestation as a Predictor of Risk for Severe Retinopathy of Prematurity. Ophthalmology, 2013, 120, 2706-2713.	5.2	29
46	RhoA GTPase controls cytokinesis and programmed necrosis of hematopoietic progenitors. Journal of Experimental Medicine, 2013, 210, 2371-2385.	8.5	35
47	LRP-6 is a coreceptor for multiple fibrogenic signaling pathways in pericytes and myofibroblasts that are inhibited by DKK-1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1440-1445.	7.1	167
48	Distinct Functions for Wnt/β-Catenin in Hair Follicle Stem Cell Proliferation and Survival and Interfollicular Epidermal Homeostasis. Cell Stem Cell, 2013, 13, 720-733.	11.1	270
49	A direct and melanopsin-dependent fetal light response regulates mouse eye development. Nature, 2013, 494, 243-246.	27.8	183
50	Wntless is required for peripheral lung differentiation and pulmonary vascular development. Developmental Biology, 2013, 379, 38-52.	2.0	65
51	RhoA and Cdc42 are required in pre-migratory progenitors of the medial ganglionic eminence ventricular zone for proper cortical interneuron migration. Development (Cambridge), 2013, 140, 3139-3145.	2.5	23
52	Macrophage Wnt-Calcineurin-Flt1 signaling regulates mouse wound angiogenesis and repair. Blood, 2013, 121, 2574-2578.	1.4	52
53	RhoA GTPase controls cytokinesis and programmed necrosis of hematopoietic progenitors. Journal of Cell Biology, 2013, 203, 20310IA113.	5.2	0
54	Left-Right Locomotor Circuitry Depends on RhoA-Driven Organization of the Neuroepithelium in the Developing Spinal Cord. Journal of Neuroscience, 2012, 32, 10396-10407.	3.6	16

#	Article	IF	CITATIONS
55	Wntless functions in mature osteoblasts to regulate bone mass. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2197-204.	7.1	152
56	High calorie diet triggers hypothalamic angiopathy. Molecular Metabolism, 2012, 1, 95-100.	6.5	55
57	Dermal β-catenin activity in response to epidermal Wnt ligands is required for fibroblast proliferation and hair follicle initiation. Development (Cambridge), 2012, 139, 1522-1533.	2.5	221
58	CRIM1 Complexes with ß-catenin and Cadherins, Stabilizes Cell-Cell Junctions and Is Critical for Neural Morphogenesis. PLoS ONE, 2012, 7, e32635.	2.5	22
59	RhoA of the Rho Family Small GTPases Is Essential for B Lymphocyte Development. PLoS ONE, 2012, 7, e33773.	2.5	36
60	Generation of an Rx-tTA: TetOp-Cre Knock-In Mouse Line for Doxycycline Regulated Cre Activity in the Rx Expression Domain. PLoS ONE, 2012, 7, e50426.	2.5	5
61	RhoA is dispensable for axon guidance of sensory neurons in the mouse dorsal root ganglia. Frontiers in Molecular Neuroscience, 2012, 5, 67.	2.9	11
62	The EYA Tyrosine Phosphatase Activity Is Pro-Angiogenic and Is Inhibited by Benzbromarone. PLoS ONE, 2012, 7, e34806.	2.5	46
63	Metchnikoff's policemen: macrophages in development, homeostasis and regeneration. Trends in Molecular Medicine, 2011, 17, 743-752.	6.7	134
64	RhoA protects the mouse heart against ischemia/reperfusion injury. Journal of Clinical Investigation, 2011, 121, 3269-3276.	8.2	83
65	A Two-Way Communication between Microglial Cells and Angiogenic Sprouts Regulates Angiogenesis in Aortic Ring Cultures. PLoS ONE, 2011, 6, e15846.	2.5	200
66	Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation. Development (Cambridge), 2011, 138, 797-797.	2.5	1
67	Regulation of angiogenesis by a non-canonical Wnt–Flt1 pathway in myeloid cells. Nature, 2011, 474, 511-515.	27.8	244
68	Shroom3 and a Pitx2-N-cadherin pathway function cooperatively to generate asymmetric cell shape changes during gut morphogenesis. Developmental Biology, 2011, 357, 227-234.	2.0	51
69	Rac1 GTPase-deficient mouse lens exhibits defects in shape, suture formation, fiber cell migration and survival. Developmental Biology, 2011, 360, 30-43.	2.0	45
70	A Trio-RhoA-Shroom3 pathway is required for apical constriction and epithelial invagination. Development (Cambridge), 2011, 138, 5177-5188.	2.5	105
71	Loss of RhoA in neural progenitor cells causes the disruption of adherens junctions and hyperproliferation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7607-7612.	7.1	98
72	Balanced Rac1 and RhoA activities regulate cell shape and drive invagination morphogenesis in epithelia. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18289-18294.	7.1	136

#	Article	IF	CITATIONS
73	Mitogen-activated protein kinase kinase kinase 1 (MAP3K1) integrates developmental signals for eyelid closure. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17349-17354.	7.1	39
74	RhoA GTPase Is Dispensable for Actomyosin Regulation but Is Essential for Mitosis in Primary Mouse Embryonic Fibroblasts. Journal of Biological Chemistry, 2011, 286, 15132-15137.	3.4	61
75	RhoA Is An Essential Regulator of Mitosis and Survival During Hematopoietic Stem Cell Differentiation to Multipotent Progenitors. Blood, 2011, 118, 1273-1273.	1.4	0
76	Generation of mice with a conditional null allele for <i>Wntless</i> . Genesis, 2010, 48, 554-558.	1.6	146
77	The Eyes Absent phosphatase-transactivator proteins promote proliferation, transformation, migration, and invasion of tumor cells. Oncogene, 2010, 29, 3715-3722.	5.9	88
78	Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation. Development (Cambridge), 2010, 137, 3899-3910.	2.5	127
79	Macrophage Wnt7b is critical for kidney repair and regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4194-4199.	7.1	352
80	Pax6-dependent <i>Shroom3</i> expression regulates apical constriction during lens placode invagination. Development (Cambridge), 2010, 137, 405-415.	2.5	109
81	Wnt2 Regulates Progenitor Proliferation in the Developing Ventral Midbrain. Journal of Biological Chemistry, 2010, 285, 7246-7253.	3.4	72
82	Which FGF ligands are involved in lens induction?. Developmental Biology, 2010, 337, 195-198.	2.0	16
83	RhoA GTPase Is Dispensable for Hematopoietic Stem Cell Maintenance but Essential for Multipotent Progenitor and Lower Hierarchical Hematopoietic Differentiation Blood, 2010, 116, 2618-2618.	1.4	0
84	Gene Targeting of RhoA Reveals Its Essential Role In Lymphopoiesis. Blood, 2010, 116, 282-282.	1.4	0
85	Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation Journal of Cell Science, 2010, 123, e1-e1.	2.0	0
86	A Distinct Macrophage Population Mediates Metastatic Breast Cancer Cell Extravasation, Establishment and Growth. PLoS ONE, 2009, 4, e6562.	2.5	553
87	Stage-dependent modes of Pax6-Sox2 epistasis regulate lens development and eye morphogenesis. Development (Cambridge), 2009, 136, 2977-2985.	2.5	95
88	Differential Interactions of FGFs with Heparan Sulfate Control Gradient Formation and Branching Morphogenesis. Science Signaling, 2009, 2, ra55.	3.6	178
89	Stage-dependent modes of Pax6-Sox2 epistasis regulate lens development and eye morphogenesis. Development (Cambridge), 2009, 136, 3377-3377.	2.5	5
90	Cdc42- and IRSp53-dependent contractile filopodia tether presumptive lens and retina to coordinate epithelial invagination. Development (Cambridge), 2009, 136, 3657-3667.	2.5	82

#	Article	IF	CITATIONS
91	Nrarp Coordinates Endothelial Notch and Wnt Signaling to Control Vessel Density in Angiogenesis. Developmental Cell, 2009, 16, 70-82.	7.0	326
92	Co-operative roles for E-cadherin and N-cadherin during lens vesicle separation and lens epithelial cell survival. Developmental Biology, 2009, 326, 403-417.	2.0	119
93	Pax6 is essential for lens fiber cell differentiation. Development (Cambridge), 2009, 136, 2567-2578.	2.5	109
94	Discovery and Characterization of a Small Molecule Inhibitor of the PDZ Domain of Dishevelled. Journal of Biological Chemistry, 2009, 284, 16256-16263.	3.4	175
95	Sox2 Is Required for Maintenance and Differentiation of Bronchiolar Clara, Ciliated, and Goblet Cells. PLoS ONE, 2009, 4, e8248.	2.5	168
96	Eye formation in the absence of retina. Developmental Biology, 2008, 322, 56-64.	2.0	26
97	Eye Development Using Mouse Genetics. , 2008, , 120-133.		1
98	pygopus 2 has a crucial, Wnt pathway-independent function in lens induction. Development (Cambridge), 2007, 134, 1873-1885.	2.5	68
99	Obligatory participation of macrophages in an angiopoietin 2-mediated cell death switch. Development (Cambridge), 2007, 134, 4449-4458.	2.5	99
100	Monocyte/Macrophage Suppression in CD11b Diphtheria Toxin Receptor Transgenic Mice Differentially Affects Atherogenesis and Established Plaques. Circulation Research, 2007, 100, 884-893.	4.5	228
101	Monocyte/macrophage suppression differentially effects atherogenesis and established plaques. Atherosclerosis, 2007, 193, S4-S5.	0.8	0
102	Pygo1 and Pygo2 roles in Wnt signaling in mammalian kidney development. BMC Biology, 2007, 5, 15.	3.8	82
103	Optic cup and facial patterning defects in ocular ectoderm beta-catenin gain-of-function mice. BMC Developmental Biology, 2006, 6, 14.	2.1	37
104	Resident Pleural Macrophages Are Key Orchestrators of Neutrophil Recruitment in Pleural Inflammation. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 540-547.	5.6	64
105	WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature, 2005, 437, 417-421.	27.8	383
106	Conditional Macrophage Ablation Demonstrates That Resident Macrophages Initiate Acute Peritoneal Inflammation. Journal of Immunology, 2005, 174, 2336-2342.	0.8	220
107	Canonical Wnt Signaling in Differentiated Osteoblasts Controls Osteoclast Differentiation. Developmental Cell, 2005, 8, 751-764.	7.0	1,402
108	Conditional Ablation of Macrophages Halts Progression of Crescentic Glomerulonephritis. American Journal of Pathology, 2005, 167, 1207-1219.	3.8	223

#	Article	IF	CITATIONS
109	The duality of β-catenin function: A requirement in lens morphogenesis and signaling suppression of lens fate in periocular ectoderm. Developmental Biology, 2005, 285, 477-489.	2.0	134
110	Canonical Wnt signaling negatively regulates branching morphogenesis of the lung and lacrimal gland. Developmental Biology, 2005, 286, 270-286.	2.0	91
111	Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. Journal of Clinical Investigation, 2005, 115, 56-65.	8.2	1,237
112	Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. Journal of Clinical Investigation, 2005, 115, 56-65.	8.2	845
113	Growth Factors in Lens Development. , 2004, , 261-289.		10
114	Pathways regulating lens induction in the mouse. International Journal of Developmental Biology, 2004, 48, 783-791.	0.6	156
115	Bmp7 regulates branching morphogenesis of the lacrimal gland by promoting mesenchymal proliferation and condensation. Development (Cambridge), 2004, 131, 4155-4165.	2.5	74
116	Tyrosine phosphorylation sites on FRS2Â responsible for Shp2 recruitment are critical for induction of lens and retina. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17144-17149.	7.1	77
117	<i>Cbfa1</i> -independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. Journal of Cell Biology, 2002, 157, 303-314.	5.2	1,032
118	Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11205-11210.	7.1	585
119	In Vivo Depletion of CD11c+ Dendritic Cells Abrogates Priming of CD8+ T Cells by Exogenous Cell-Associated Antigens. Immunity, 2002, 17, 211-220.	14.3	1,579
120	Bmp signaling is required for development of primary lens fiber cells. Development (Cambridge), 2002, 129, 3727-3737.	2.5	133
121	Bmp signaling is required for development of primary lens fiber cells. Development (Cambridge), 2002, 129, 3727-37.	2.5	59
122	Early Eye Development in Vertebrates. Annual Review of Cell and Developmental Biology, 2001, 17, 255-296.	9.4	584
123	Misexpression of IGF-I in the mouse lens expands the transitional zone and perturbs lens polarization. Mechanisms of Development, 2001, 101, 167-174.	1.7	65
124	The upstream ectoderm enhancer in <i>Pax6</i> has an important role in lens induction. Development (Cambridge), 2001, 128, 4415-4424.	2.5	85
125	Fgf receptor signaling plays a role in lens induction. Development (Cambridge), 2001, 128, 4425-4438.	2.5	131
126	Endogenous and Ectopic Gland Induction by FGF-10. Developmental Biology, 2000, 225, 188-200.	2.0	79

#	Article	IF	CITATIONS
127	A highly conserved lens transcriptional control element from the Pax-6 gene. Mechanisms of Development, 1998, 73, 225-229.	1.7	136
128	Distinct Regulatory Elements GovernFgf4Gene Expression in the Mouse Blastocyst, Myotomes, and Developing Limb. Developmental Biology, 1998, 204, 197-209.	2.0	46
129	GRIFIN, a Novel Lens-specific Protein Related to the Galectin Family. Journal of Biological Chemistry, 1998, 273, 28889-28896.	3.4	84
130	Lens Induction by Pax-6 inXenopus laevis. Developmental Biology, 1997, 185, 119-123.	2.0	172
131	Apoptosis in mammalian eye development: lens morphogenesis, vascular regression and immune privilege. Cell Death and Differentiation, 1997, 4, 12-20.	11.2	71
132	Do macrophages kill through apoptosis?. Trends in Immunology, 1996, 17, 573-576.	7.5	68
133	Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell, 1993, 74, 453-462.	28.9	338
134	TNFα, IL-1α and bFGF are Implicated in the Complex Disease of GM-CSF Transgenic Mice. Growth Factors, 1992, 6, 131-138.	1.7	12
135	Autocrine growth factors and tumourigenic transformation. Trends in Immunology, 1990, 11, 244-249.	7.5	86
136	Macrophage products IL-1α, TNFα and bFGF may mediate multiple cytopathic effects in the developing eyes of GM-CSF transgenic mice. Experimental Eye Research, 1990, 51, 335-344.	2.6	23
137	Developmental ocular disease in GM-CSF transgenic mice is mediated by autostimulated macrophages. Developmental Biology, 1989, 134, 119-129.	2.0	21
138	Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage. Cell, 1987, 51, 675-686.	28.9	377
139	Expression of a hemopoietic growth factor cDNA in a factor-dependent cell line results in autonomous growth and tumorigenicity. Cell, 1985, 43, 531-542.	28.9	289
140	Neuropsin (OPN5) Mediates Local Light-Dependent Circadian Responses in Murine Skin. SSRN Electronic Journal, 0, , .	0.4	0