Louise A Rollins-Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4889607/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lymphocyte Inhibition by the Salamander-Killing Chytrid Fungus, Batrachochytrium salamandrivorans. Infection and Immunity, 2022, 90, iai0002022.	2.2	6
2	Once a reservoir, always a reservoir? Seasonality affects the pathogen maintenance potential of amphibian hosts. Ecology, 2022, , e3759.	3.2	7
3	Effects of captivity and rewilding on amphibian skin microbiomes. Biological Conservation, 2022, 271, 109576.	4.1	25
4	Preparatory immunity: Seasonality of mucosal skin defences and <i>Batrachochytrium</i> infections in Southern leopard frogs. Journal of Animal Ecology, 2021, 90, 542-554.	2.8	18
5	Winter is coming–Temperature affects immune defenses and susceptibility to Batrachochytrium salamandrivorans. PLoS Pathogens, 2021, 17, e1009234.	4.7	25
6	Batrachochytrium fungi: stealth invaders in amphibian skin. Current Opinion in Microbiology, 2021, 61, 124-132.	5.1	8
7	Probiotics Modulate a Novel Amphibian Skin Defense Peptide That Is Antifungal and Facilitates Growth of Antifungal Bacteria. Microbial Ecology, 2020, 79, 192-202.	2.8	44
8	Conservation risk of <i>Batrachochytrium salamandrivorans</i> to endemic lungless salamanders. Conservation Letters, 2020, 13, e12675.	5.7	34
9	Antimicrobial Secretions of Toads (Anura, Bufonidae): Bioactive Extracts and Isolated Compounds against Human Pathogens. Antibiotics, 2020, 9, 843.	3.7	13
10	Caerin 1 Antimicrobial Peptides that Inhibit HIV and Neisseria May Spare Protective Lactobacilli. Antibiotics, 2020, 9, 661.	3.7	8
11	Comment on "Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity― Science, 2020, 367, .	12.6	40
12	Global Amphibian Declines, Disease, and the Ongoing Battle between Batrachochytrium Fungi and the Immune System. Herpetologica, 2020, 76, 178.	0.4	39
13	Out in the cold and sick: Low temperatures and fungal infections impair a frog's skin defenses. Journal of Experimental Biology, 2019, 222, .	1.7	16
14	Metabolites Involved in Immune Evasion by <i>Batrachochytrium dendrobatidis</i> Include the Polyamine Spermidine. Infection and Immunity, 2019, 87, .	2.2	15
15	Disease and the Drying Pond: Examining Possible Links among Drought, Immune Function, and Disease Development in Amphibians. Physiological and Biochemical Zoology, 2019, 92, 339-348.	1.5	24
16	Viscosin-like lipopeptides from frog skin bacteria inhibit Aspergillus fumigatus and Batrachochytrium dendrobatidis detected by imaging mass spectrometry and molecular networking. Scientific Reports, 2019, 9, 3019.	3.3	23
17	Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nature Ecology and Evolution, 2019, 3, 381-389.	7.8	68
18	Lymphocyte Deficiency Induced by Sublethal Irradiation in Xenopus. Cold Spring Harbor Protocols, 2019, 2019, pdb.prot097626.	0.3	3

LOUISE A ROLLINS-SMITH

#	Article	IF	CITATIONS
19	Microbiota and skin defense peptides may facilitate coexistence of two sympatric Andean frog species with a lethal pathogen. ISME Journal, 2019, 13, 361-373.	9.8	26
20	Shifts in disease dynamics in a tropical amphibian assemblage are not due to pathogen attenuation. Science, 2018, 359, 1517-1519.	12.6	127
21	Frogs adapt to physiologically costly anthropogenic noise. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20182194.	2.6	21
22	Amphibian immunity–stress, disease, and climate change. Developmental and Comparative Immunology, 2017, 66, 111-119.	2.3	149
23	Toxins and pharmacologically active compounds from species of the family Bufonidae (Amphibia,) Tj ETQq1 1 0.78	34314 rgE 4.1	BT_/Overlock
24	Natural history and conservation of the rediscovered Hula painted frog, Latonia nigriventer. Contributions To Zoology, 2017, 86, 11-37.	0.5	16
25	Using "Omics―and Integrated Multi-Omics Approaches to Guide Probiotic Selection to Mitigate Chytridiomycosis and Other Emerging Infectious Diseases. Frontiers in Microbiology, 2016, 7, 68.	3.5	135
26	Life history linked to immune investment in developing amphibians. , 2016, 4, cow025.		28
27	Skin bacteria provide early protection for newly metamorphosed southern leopard frogs (Rana) Tj ETQq1 1 0.7843 Conservation, 2015, 187, 91-102.	314 rgBT / 4.1	Overlock 10 54
28	Inhibition of HIV infection by caerin 1 antimicrobial peptides. Peptides, 2015, 71, 296-303.	2.4	26
29	Effect of glucocorticoids on expression of cutaneous antimicrobial peptides in northern leopard frogs (Lithobates pipiens). BMC Veterinary Research, 2015, 11, 191.	1.9	10
30	Antifungal isolates database of amphibian skinâ€associated bacteria and function against emerging fungal pathogens. Ecology, 2015, 96, 595-595.	3.2	192
31	Phylogenetic distribution of symbiotic bacteria from Panamanian amphibians that inhibit growth of the lethal fungal pathogen <i>Batrachochytrium dendrobatidis</i> . Molecular Ecology, 2015, 24, 1628-1641.	3.9	118
32	Immunomodulatory Metabolites Released by the Frog-Killing Fungus Batrachochytrium dendrobatidis. Infection and Immunity, 2015, 83, 4565-4570.	2.2	39
33	Correlates of virulence in a frog-killing fungal pathogen: evidence from a California amphibian decline. ISME Journal, 2015, 9, 1570-1578.	9.8	47
34	Development of antimicrobial peptide defenses of southern leopard frogs, Rana sphenocephala, against the pathogenic chytrid fungus, Batrachochytrium dendrobatidis. Developmental and Comparative Immunology, 2015, 48, 65-75.	2.3	52
35	Coqui frogs persist with the deadly chytrid fungus despite a lack of defensive antimicrobial peptides. Diseases of Aquatic Organisms, 2015, 113, 81-83.	1.0	13
36	Interactive effects of competition and predator cues on immune responses of leopard frogs at metamorphosis. Journal of Experimental Biology, 2014, 217, 351-8.	1.7	17

LOUISE A ROLLINS-SMITH

#	Article	IF	CITATIONS
37	Nikkomycin Z is an effective inhibitor of the chytrid fungus linked to global amphibian declines. Fungal Biology, 2014, 118, 48-60.	2.5	21
38	Evaluation of Amphotericin B and Chloramphenicol as Alternative Drugs for Treatment of Chytridiomycosis and Their Impacts on Innate Skin Defenses. Applied and Environmental Microbiology, 2014, 80, 4034-4041.	3.1	22
39	Inhibition of Local Immune Responses by the Frog-Killing Fungus Batrachochytrium dendrobatidis. Infection and Immunity, 2014, 82, 4698-4706.	2.2	54
40	Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature, 2014, 511, 224-227.	27.8	190
41	Evaluation of the Skin Peptide Defenses of the Oregon Spotted Frog Rana pretiosa Against Infection by the Chytrid Fungus Batrachochytrium dendrobatidis. Journal of Chemical Ecology, 2013, 39, 797-805.	1.8	11
42	Larval exposure to predator cues alters immune function and response to a fungal pathogen in postâ€metamorphic wood frogs. Ecological Applications, 2013, 23, 1443-1454.	3.8	26
43	Skin peptides protect juvenile leopard frogs (<i>Rana pipiens</i>) against chytridiomycosis. Journal of Experimental Biology, 2013, 216, 2908-16.	1.7	31
44	The Invasive Chytrid Fungus of Amphibians Paralyzes Lymphocyte Responses. Science, 2013, 342, 366-369.	12.6	154
45	Host Stress Response Is Important for the Pathogenesis of the Deadly Amphibian Disease, Chytridiomycosis, in Litoria caerulea. PLoS ONE, 2013, 8, e62146.	2.5	54
46	Treatment of amphibians infected with chytrid fungus: learning from failed trials with itraconazole, antimicrobial peptides, bacteria, and heat therapy. Diseases of Aquatic Organisms, 2012, 98, 11-25.	1.0	87
47	Norepinephrine depletion of antimicrobial peptides from the skin glands of Xenopus laevis. Developmental and Comparative Immunology, 2012, 37, 19-27.	2.3	25
48	The ebb and flow of antimicrobial skin peptides defends northern leopard frogs (<i><scp>R</scp>ana) Tj ETQq0</i>	0 Q rgBT /	Overlock 10 T
49	Immune evasion or avoidance: Fungal skin infection linked to reduced defence peptides in Australian green-eyed treefrogs, Litoria serrata. Fungal Biology, 2012, 116, 1203-1211.	2.5	22
50	Dietary protein restriction impairs growth, immunity, and disease resistance in southern leopard frog tadpoles. Oecologia, 2012, 169, 23-31.	2.0	91
51	Amphibian Immune Defenses against Chytridiomycosis: Impacts of Changing Environments. Integrative and Comparative Biology, 2011, 51, 552-562.	2.0	193
52	Social Immunity in Amphibians: Evidence for Vertical Transmission of Innate Defenses. Biotropica, 2011, 43, 396-400.	1.6	120
53	Adaptations of skin peptide defences and possible response to the amphibian chytrid fungus in populations of Australian greenâ€eyed treefrogs, <i>Litoria genimaculata</i> . Diversity and Distributions, 2010, 16, 703-712.	4.1	27
54	Immune Defenses against <i>Batrachochytrium dendrobatidis</i> , a Fungus Linked to Global Amphibian Declines, in the South African Clawed Frog, <i>Xenopus laevis</i> . Infection and Immunity, 2010, 78, 3981-3992.	2.2	199

#	Article	IF	CITATIONS
55	Immune defenses of Xenopus laevis against Batrachochytrium dendrobatidis. Frontiers in Bioscience - Elite, 2009, 1, 68.	1.8	17
56	Immune defenses of Xenopus laevis against Batrachochytrium dendrobatidis. Frontiers in Bioscience - Scholar, 2009, S1, 68-91.	2.1	58
57	Variations in the expressed antimicrobial peptide repertoire of northern leopard frog (Rana pipiens) populations suggest intraspecies differences in resistance to pathogens. Developmental and Comparative Immunology, 2009, 33, 1247-1257.	2.3	86
58	The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1593-1599.	2.6	185
59	Chytridiomycosis and Amphibian Population Declines Continue to Spread Eastward in Panama. EcoHealth, 2008, 5, 268-274.	2.0	59
60	LIFE-HISTORY TRADE-OFFS INFLUENCE DISEASE IN CHANGING CLIMATES: STRATEGIES OF AN AMPHIBIAN PATHOGEN. Ecology, 2008, 89, 1627-1639.	3.2	206
61	A peptide of the phylloseptin family from the skin of the frog Hylomantis lemur (Phyllomedusinae) with potent in vitro and in vivo insulin-releasing activity. Peptides, 2008, 29, 2136-2143.	2.4	37
62	Development of an assay for testing the antimicrobial activity of skin peptides against the amphibian chytrid fungus (Batrachochytrium dendrobatidis) using Xenopus laevis. Ecotoxicology and Environmental Safety, 2008, 71, 506-513.	6.0	9
63	ANTIMICROBIAL PEPTIDE DEFENSES IN THE SALAMANDER, AMBYSTOMA TIGRINUM, AGAINST EMERGING AMPHIBIAN PATHOGENS. Journal of Wildlife Diseases, 2008, 44, 226-236.	0.8	39
64	Peptides with differential cytolytic activity from skin secretions of the lemur leaf frog Hylomantis lemur (Hylidae: Phyllomedusinae). Toxicon, 2007, 50, 498-506.	1.6	60
65	Symbiotic bacteria contribute to innate immune defenses of the threatened mountain yellow-legged frog, Rana muscosa. Biological Conservation, 2007, 138, 390-398.	4.1	241
66	Effects of Chytrid and Carbaryl Exposure on Survival, Growth and Skin Peptide Defenses in Foothill Yellow-legged Frogs. Environmental Science & Technology, 2007, 41, 1771-1776.	10.0	144
67	Antimicrobial peptide defenses of the mountain yellow-legged frog (Rana muscosa). Developmental and Comparative Immunology, 2006, 30, 831-842.	2.3	99
68	UVB Dose-toxicity Thresholds and Steady-state DNA-photoproduct Levels During Chronic Irradiation of Inbred Xenopus laevis Tadpoles. Photochemistry and Photobiology, 2006, 82, 1080.	2.5	16
69	Population trends associated with skin peptide defenses against chytridiomycosis in Australian frogs. Oecologia, 2006, 146, 531-540.	2.0	120
70	PREDICTED DISEASE SUSCEPTIBILITY IN A PANAMANIAN AMPHIBIAN ASSEMBLAGE BASED ON SKIN PEPTIDE DEFENSES. Journal of Wildlife Diseases, 2006, 42, 207-218.	0.8	130
71	Antimicrobial Peptide Defenses in Amphibian Skin. Integrative and Comparative Biology, 2005, 45, 137-142.	2.0	116
72	Antimicrobial Peptides from Amphibian Skin Potently Inhibit Human Immunodeficiency Virus Infection and Transfer of Virus from Dendritic Cells to T Cells. Journal of Virology, 2005, 79, 11598-11606.	3.4	157

#	Article	IF	CITATIONS
73	Antimicrobial peptide defenses against chytridiomycosis, an emerging infectious disease of amphibian populations. Developmental and Comparative Immunology, 2005, 29, 589-598.	2.3	153
74	Characterization of a peptide from skin secretions of male specimens of the frog, Leptodactylus fallax that stimulates aggression in male frogs. Peptides, 2005, 26, 597-601.	2.4	43
75	An antimicrobial peptide from the skin secretions of the mountain chicken frog Leptodactylus fallax (Anura:Leptodactylidae). Regulatory Peptides, 2005, 124, 173-178.	1.9	47
76	Amphibian Models and Approaches to Immunotoxicology. , 2005, , 77-90.		1
77	AN AMPHIBIAN MODEL TO TEST THE EFFECTS OF XENOBIOTIC CHEMICALS ON DEVELOPMENT OF THE HEMATOPOIETIC SYSTEM. Environmental Toxicology and Chemistry, 2004, 23, 2863.	4.3	6
78	Activities of Temporin Family Peptides against the Chytrid Fungus (Batrachochytrium dendrobatidis) Associated with Global Amphibian Declines. Antimicrobial Agents and Chemotherapy, 2003, 47, 1157-1160.	3.2	62
79	Antimicrobial peptide defenses of the Tarahumara frog, Rana tarahumarae. Biochemical and Biophysical Research Communications, 2002, 297, 361-367.	2.1	78
80	Antimicrobial peptide defenses against pathogens associated with global amphibian declines. Developmental and Comparative Immunology, 2002, 26, 63-72.	2.3	155
81	Activity of antimicrobial skin peptides from ranid frogs against Batrachochytrium dendrobatidis, the chytrid fungus associated with global amphibian declines. Developmental and Comparative Immunology, 2002, 26, 471-479.	2.3	140
82	Antibiotic Properties of Novel Synthetic Temporin A Analogs and a Cecropin A-Temporin A Hybrid Peptide. Protein and Peptide Letters, 2002, 9, 533-543.	0.9	15
83	FKBP Binding Characteristics of Cardiac Microsomes from Diverse Vertebrates. Biochemical and Biophysical Research Communications, 2001, 281, 979-986.	2.1	107
84	Inactivation of Frog Virus 3 and Channel Catfish Virus by Esculentin-2P and Ranatuerin-2P, Two Antimicrobial Peptides Isolated from Frog Skin. Virology, 2001, 288, 351-357.	2.4	81
85	Neuroendocrine-Immune System Interactions in Amphibians: Implications for Understanding Global Amphibian Declines. Immunologic Research, 2001, 23, 273-280.	2.9	74
86	Amphibian declines: an immunological perspective. Developmental and Comparative Immunology, 1999, 23, 459-472.	2.3	413
87	Metamorphosis and the amphibian immune system. Immunological Reviews, 1998, 166, 221-230.	6.0	240
88	In VitroStudies of Spontaneous and Corticosteroid-Induced Apoptosis of Lymphocyte Populations from Metamorphosing Frogs/RU486 Inhibition. Brain, Behavior, and Immunity, 1997, 11, 119-131.	4.1	29
89	Involvement of Thyroid Hormones in the Expression of MHC class I Antigens During Ontogeny in <i>Xenopus</i> . Autoimmunity, 1997, 5, 133-144.	0.6	36
90	Involvement of Glucocorticoids in the Reorganization of the Amphibian Immune System at Metamorphosis. Autoimmunity, 1997, 5, 145-152.	0.6	55

LOUISE A ROLLINS-SMITH

#	Article	IF	CITATIONS
91	Increased interleukin-6 (IL-6) production in a young child with clinical and pathologic features of multicentric Castleman's disease. Journal of Clinical Immunology, 1994, 14, 382-390.	3.8	16
92	The effects of corticosteroid hormones and thyroid hormones on lymphocyte viability and proliferation during development and metamorphosis of Xenopus laevis. Differentiation, 1993, 54, 155-160.	1.9	33
93	Effects of thyroid hormone deprivation on immunity in postmetamorphic frogs. Developmental and Comparative Immunology, 1993, 17, 157-164.	2.3	12
94	Thymus Ontogeny in Frogs: T-Cell Renewal at Metamorphosis. Autoimmunity, 1992, 2, 207-213.	0.6	25
95	Expression of Class II Major Histocompatibility Complex Antigens on Adult T Cells in <i>Xenopus</i> is Metamorphosis- Dependent. Autoimmunity, 1990, 1, 97-104.	0.6	48
96	Contribution of ventral blood island mesoderm to hematopoiesis in postmetamorphic and metamorphosis-inhibited Xenopus laevis. Developmental Biology, 1990, 142, 178-183.	2.0	34
97	Effects of thyroxine-driven precocious metamorphosis on maturation of adult-type allograft rejection responses in early thyroidectomized frogs. Differentiation, 1988, 37, 180-185.	1.9	24
98	Temperature-dependent dissociation of Lucké renal adenocarcinoma cells. Differentiation, 1984, 26, 227-230.	1.9	12
99	Mitogenic responses of frog lymphocytes to crude and purified preparations of bacterial lipopolysaccharide (LPS). Developmental and Comparative Immunology, 1983, 7, 483-496.	2.3	18