
Nikolai V Lukoyanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4888414/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Left-Right Side-Specific Neuropeptide Mechanism Mediates Contralateral Responses to a Unilateral Brain Injury. ENeuro, 2021, 8, ENEURO.0548-20.2021.	1.9	10
2	Unilateral brain injury to pregnant rats induces asymmetric neurological deficits in the offspring. European Journal of Neuroscience, 2021, 53, 3621-3633.	2.6	4
3	Hindlimb motor responses to unilateral brain injury: spinal cord encoding and left-right asymmetry. Brain Communications, 2020, 2, fcaa055.	3.3	15
4	Altered serotonin innervation in the rat epileptic brain. Brain Research Bulletin, 2019, 152, 95-106.	3.0	19
5	Partial depletion of septohippocampal cholinergic cells reduces seizure susceptibility, but does not mitigate hippocampal neurodegeneration in the kainate model of epilepsy. Brain Research, 2019, 1717, 235-246.	2.2	5
6	Neuroplasticity in Cholinergic Projections from the Basal Forebrain to the Basolateral Nucleus of the Amygdala in the Kainic Acid Model of Temporal Lobe Epilepsy. International Journal of Molecular Sciences, 2019, 20, 5688.	4.1	2
7	Trigeminal Aδ- and C-afferent supply of lamina I neurons in the trigeminocervical complex. Pain, 2019, 160, 2612-2623.	4.2	10
8	The pedunculopontine and laterodorsal tegmental nuclei in the kainate model of epilepsy. Neuroscience Letters, 2018, 672, 90-95.	2.1	9
9	Reorganization of the septohippocampal cholinergic fiber system in experimental epilepsy. Journal of Comparative Neurology, 2017, 525, 2690-2705.	1.6	20
10	Serotonin depletion increases seizure susceptibility and worsens neuropathological outcomes in kainate model of epilepsy. Brain Research Bulletin, 2017, 134, 109-120.	3.0	22
11	Diverse firing properties and AÎ2-, Aδ-, and C-afferent inputs of small local circuit neurons in spinal lamina I. Pain, 2016, 157, 475-487.	4.2	18
12	Epinephrine increases contextual learning through activation of peripheral β2-adrenoceptors. Psychopharmacology, 2016, 233, 2099-2108.	3.1	13
13	Altered taste preference and loss of limbic-projecting serotonergic neurons in the dorsal raphe nucleus of chronically epileptic rats. Behavioural Brain Research, 2016, 297, 28-36.	2.2	14
14	Loss of Hippocampal Neurons after Kainate Treatment Correlates with Behavioral Deficits. PLoS ONE, 2014, 9, e84722.	2.5	33
15	Protective effects of a catechin-rich extract on the hippocampal formation and spatial memory in aging rats. Behavioural Brain Research, 2013, 246, 94-102.	2.2	27
16	Seizure-induced structural and functional changes in the rat hippocampal formation: Comparison between brief seizures and status epilepticus. Behavioural Brain Research, 2011, 225, 538-546.	2.2	35
17	Chronic green tea consumption prevents age-related changes in rat hippocampal formation. Neurobiology of Aging, 2011, 32, 707-717.	3.1	59
18	Seizure-induced changes in neuropeptide Y-containing cortical neurons: Potential role for seizure threshold and epileptogenesis. Epilepsy and Behavior, 2010, 19, 559-567.	1.7	23

Νικοίαι V Lukoyanov

#	Article	IF	CITATIONS
19	Effects of repeated electroconvulsive shock seizures and pilocarpine-induced status epilepticus on emotional behavior in the rat. Epilepsy and Behavior, 2009, 14, 293-299.	1.7	32
20	Loss of synapses in the entorhinalâ€dentate gyrus pathway following repeated induction of electroshock seizures in the rat. Journal of Neuroscience Research, 2008, 86, 71-83.	2.9	24
21	Retrosplenial granular b cortex in normal and epileptic rats: A stereological study. Brain Research, 2008, 1218, 206-214.	2.2	12
22	Red wine antioxidants protect hippocampal neurons against ethanol-induced damage: A biochemical, morphological and behavioral study. Neuroscience, 2007, 146, 1581-1592.	2.3	55
23	Retrosplenial cortex lesions impair acquisition of active avoidance while sparing fear-based emotional memory. Behavioural Brain Research, 2006, 173, 229-236.	2.2	41
24	Reduced density of neuropeptide Y neurons in the somatosensory cortex of old male and female rats: Relation to cholinergic depletion and recovery after nerve growth factor treatment. Neuroscience, 2006, 137, 937-948.	2.3	17
25	Impaired water maze navigation of Wistar rats with retrosplenial cortex lesions: effect of nonspatial pretraining. Behavioural Brain Research, 2005, 158, 175-182.	2.2	30
26	Timed hypocaloric food restriction alters the synthesis and expression of vasopressin and vasoactive intestinal peptide in the suprachiasmatic nucleus. Brain Research, 2004, 1022, 226-233.	2.2	15
27	Selective loss of hilar neurons and impairment of initial learning in rats after repeated administration of electroconvulsive shock seizures. Experimental Brain Research, 2004, 154, 192-200.	1.5	50
28	Nerve growth factor improves spatial learning and restores hippocampal cholinergic fibers in rats withdrawn from chronic treatment with ethanol. Experimental Brain Research, 2003, 148, 88-94.	1.5	30
29	Restricted feeding facilitates time–place learning in adult rats. Behavioural Brain Research, 2002, 134, 283-290.	2.2	34
30	Chronic food restriction is associated with subtle dendritic alterations in granule cells of the rat hippocampal formation. Hippocampus, 2002, 12, 149-164.	1.9	27
31	Memantine, but not dizocilpine, ameliorates cognitive deficits in adult rats withdrawn from chronic ingestion of alcohol. Neuroscience Letters, 2001, 309, 45-48.	2.1	28
32	Synaptic reorganization in the hippocampal formation of alcohol-fed rats may compensate for functional deficits related to neuronal loss. Alcohol, 2000, 20, 139-148.	1.7	51
33	Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience, 2000, 97, 253-266.	2.3	667
34	Erratum to "Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement― Neuroscience, 2000, 101, 483.	2.3	15
35	Behavioral effects of protein deprivation and rehabilitation in adult rats: relevance to morphological alterations in the hippocampal formation. Behavioural Brain Research, 2000, 112, 85-97.	2.2	73
36	A single high dose of dizocilpine produces long-lasting impairment of the water maze performance in adult rats. Neuroscience Letters, 2000, 285, 139-142.	2.1	19

Nikolai V Lukoyanov

#	Article	IF	CITATIONS
37	Effects of age and sex on the water maze performance and hippocampal cholinergic fibers in rats. Neuroscience Letters, 1999, 269, 141-144.	2.1	54
38	Behavioral and Neuroanatomical Consequences of Chronic Ethanol Intake and Withdrawal. Physiology and Behavior, 1999, 66, 337-346.	2.1	96
39	Synthesis of phosphonium and ammonium derivatives of benzo-crown ethers and their cholinolytic activity. Pharmaceutical Chemistry Journal, 1991, 25, 27-30.	0.8	3
40	Synthesis and biological activity of phosphonium derivatives of AZA-crown ethers. Pharmaceutical Chemistry Journal, 1991, 25, 855-858.	0.8	0
41	Modeling the structure-activity relationship. V. Antihypoxic and anticonvulsant activity of crown ethers. Pharmaceutical Chemistry Journal, 1990, 24, 65-70.	0.8	0
42	Influence of substituents on antihypoxic and anticonvulsive properties of benzo-15-crown-5 derivatives. Pharmaceutical Chemistry Journal, 1989, 23, 164-166.	0.8	0
43	Molecular structure and properties of benzo-12-crown-4 and acetylbenzo-12-crown-4. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1988, 37, 918-921.	0.0	Ο
44	Synthesis, structure, and properties of benzosulfinyl-11-crown-4. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1988, 37, 2323-2325.	0.0	0

4