Abdulhadi Baykal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4887564/publications.pdf

Version: 2024-02-01

525 papers 19,787 citations

75 h-index 99 g-index

536 all docs

536 docs citations

536 times ranked

11002 citing authors

#	Article	IF	Citations
1	Electrical and dielectric properties of Ni0.5Co0.5Ga Fe1.8–O4 (x ≠1.0) spinel ferrite microspheres. Journal of Rare Earths, 2023, 41, 259-267.	4.8	11
2	Preparation of cerium and yttrium doped ZnO nanoparticles and tracking their structural, optical, and photocatalytic performances. Journal of Rare Earths, 2023, 41, 682-688.	4.8	27
3	Structural, morphological and magnetic properties of (Ni0.5Co0.5)[Ga Gd Fe2–2]O4 nanoparticles prepared via sonochemical approach. Journal of Rare Earths, 2023, 41, 561-571.	4.8	4
4	Fate and impact of maghemite (γ-Fe2O3) and magnetite (Fe3O4) nanoparticles in barley (Hordeum vulgare) Tj	ETQq0 0 () rgBT /Overloc
5	Investigation on the structural, optical, and magnetic features of Dy3+ and Y3+ co-doped Mn0.5Zn0.5Fe2O4 spinel ferrite nanoparticles. Journal of Molecular Structure, 2022, 1248, 131412.	3.6	27
6	Green synthesis of Nd substituted Co-Ni nanospinel ferrites: a structural, magnetic, and antibacterial/anticancer investigation. Journal Physics D: Applied Physics, 2022, 55, 055002.	2.8	19
7	Structural and magnetic properties of hydrothermally synthesized Bi-substituted Ni–Co nanosized spinel ferrites. Ceramics International, 2022, 48, 5450-5458.	4.8	27
8	Synthesis, characterization, and performance assessment of new composite ceramics towards radiation shielding applications. Journal of Alloys and Compounds, 2022, 899, 163173.	5.5	43
9	Investigation of exchange coupling and microwave properties of hard/soft (SrNi0.02Zr0.01Fe11.96O19)/(CoFe2O4)x nanocomposites. Materials Today Nano, 2022, 18, 100186.	4.6	37
10	Structure, magnetoelectric, and anticancer activities of core-shell Co0·8Mn0.2R0.02Fe1·98O4@BaTiO3 nanocomposites (R = Ce, Eu, Tb, Tm, or Gd). Ceramics International, 2022, 48, 14640-14651.	4.8	16
11	Impact of Sm ³⁺ and Er ³⁺ Cations on the Structural, Optical, and Magnetic Traits of Spinel Cobalt Ferrite Nanoparticles: Comparison Investigation. ACS Omega, 2022, 7, 6292-6301.	3.5	40
12	Influence of Ce3+ on the Structural, Morphological, Magnetic, Photocatalytic and Antibacterial Properties of Spinel MnFe2O4 Nanocrystallites Prepared by the Combustion Route. Crystals, 2022, 12, 268.	2.2	15
13	Radiation shielding and structural features for different perovskites doped YBa2Cu3Oy composites. Ceramics International, 2022, 48, 18855-18865.	4.8	10
14	A study on the conductivity, dielectric, and microwave properties of SrNbxYxFe12-2xO19 (0.00 ≠x â‰) Tj ET	QqQ.8 0 rį	gBT _g /Overlock
15	Effect of Bi3+ ions substitution on the structure, morphology, and magnetic properties of Co–Ni spinel ferrite nanofibers. Materials Chemistry and Physics, 2022, 284, 126071.	4.0	11
16	Structural investigation of Cu doped calcium ferrite (Ca1-xCuxFe2O4; $x = 0, 0.2, 0.4, 0.6, 0.8, 1$) nanomaterials prepared by co-precipitation method. Journal of Materials Research and Technology, 2022, 18, 705-719.	5.8	21
17	Sonochemical synthesis of Mn0.5Zn0.5ErxDyxFe2-2xO4 (xÂâ‰Â0.1) spinel nanoferrites: Magnetic and textural investigation. Journal of Molecular Structure, 2022, 1258, 132680.	3.6	7
18	An investigation on structural, optical and magnetic properties of hard-soft SrFe12O19/(CoEu0.02Fe1.98O4)x nanofiber composites. Journal of Alloys and Compounds, 2022, 905, 164240.	5 . 5	9

#	Article	IF	CITATIONS
19	Tuning the Structure, Magnetic, and High Frequency Properties of Scâ€Doped Sr _{0.5} Ba _{0.5} Sc <i>_x</i> Fe _{12â€} <i>_x</i> Hard/Soft Nanocomposites. Advanced Electronic Materials, 2022, 8, .	< ₺™ b>/N	iF & 4sub>2⟨/s
20	Sol–gel combustion synthesis and photocatalytic dye degradation studies of rare earth element Ce substituted Mn–Zn ferrite nanoparticles. Journal of Materials Research and Technology, 2022, 18, 5280-5289.	5.8	23
21	Structural parameters, energy states and magnetic properties of the novel Se-doped NiFe2O4 ferrites as highly efficient electrocatalysts for HER. Ceramics International, 2022, 48, 24866-24876.	4.8	77
22	One-pot synthesis of hard/soft SrFe10O19/x(Ni0.8Zn0.2Fe1.8Cr0.2O4) nanocomposites: Electrical features and reflection losses. Ceramics International, 2022, 48, 25390-25401.	4.8	8
23	Magnetic Characterization of Nanomaterials. , 2022, , 177-238.		1
24	Ultrasound-assisted synthesis and magnetic investigations of Ni0.4Cu0.4Zn0.2GaxGdxFe2-2xO4 (0.00 â‰â€‰x â‰â€‰0.04) nanosized spinel ferrites. Applied Physics A: Materials Science and Proces	ssing, 202	2,4128, .
25	BaTiO3/(Co0.8Ni0.1Mn0.1Fe1.9Ce0.1O4) composites: Analysis of the effect of Co0.8Ni0.1Mn0.1Fe1.9Ce0.1O4 doping at different concentrations on the structural, morphological, optical, magnetic, and magnetoelectric coupling properties of BaTiO3. Ceramics International, 2022, 48, 30499-30509.	4.8	18
26	Impact of sonication time on the structural and magnetic features of CoFe2O4/Ni0.8Cu0.1Zn0.1Fe2O4 hard-soft nanocomposites. Journal of Alloys and Compounds, 2022, 923, 166347.	5.5	5
27	Synthesis of niobium substituted cobalt-nickel nano-ferrite		

#	Article	IF	CITATIONS
37	Influence of Ni substitution on opto-magnetic and electrochemical properties of CTAB-capped mesoporous SnO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 2021, 32, 7630-7646.	2.2	17
38	Synthesis, Characterization, Anti-Cancer Analysis of Sr0.5Ba0.5DyxSmxFe8â^'2xO19 (0.00 ≠x ≠1.0) Microsphere Nanocomposites. Nanomaterials, 2021, 11, 700.	4.1	13
39	Development of highly active, chemically stable and recyclable magnetic nanophotocatalyst based on plasmonic silver nanoparticles and photosensitive transâ€3â€(transâ€4â€imidazolyl) acrylic acid molecules. Applied Organometallic Chemistry, 2021, 35, e6229.	3.5	13
40	Structural, fabrication and enhanced electromagnetic wave absorption properties of reduced graphene oxide (rGO)/zirconium substituted cobalt ferrite (CoO·5ZrO·5Fe2O4) nanocomposites. Physica B: Condensed Matter, 2021, 605, 412784.	2.7	23
41	Fabrication of exchange coupled hard/soft magnetic nanocomposites: Correlation between composition, magnetic, optical and microwave properties. Arabian Journal of Chemistry, 2021, 14, 102992.	4.9	46
42	Kinetic Modeling for Photo-Assisted Penicillin G Degradation of (Mn0.5Zn0.5)[CdxFe2-x]O4 (x ≠0.05) Nanospinel Ferrites. Nanomaterials, 2021, 11, 970.	4.1	10
43	Review on recent advances of zinc substituted cobalt ferrite nanoparticles: Synthesis characterization and diverse applications. Ceramics International, 2021, 47, 10512-10535.	4.8	76
44	Review on Recent Advances of Synthesis, Magnetic Properties, and Water Treatment Applications of Cobalt Ferrite Nanoparticles and Nanocomposites. Journal of Superconductivity and Novel Magnetism, 2021, 34, 995-1018.	1.8	62
45	Influence of Dy ³⁺ Ions on the Microstructures and Magnetic, Electrical, and Microwave Properties of [Ni _{0.4} Cu _{0.2} Zn _{0.4}](Fe _{2â€"<i>×</i>} Dy _{<i>×</i>} C(0.00 ≠ <i>×</i> Dy _{Ferrites, ACS Omega, 2021, 6, 10266-10280.}) <\$\dagge{3}\dagge\dagge{5}\dagge\d	sub>
46	Review on functional bi-component nanocomposites based on hard/soft ferrites: Structural, magnetic, electrical and microwave absorption properties. Nano Structures Nano Objects, 2021, 26, 100728.	3.5	63
47	Polysubstituted High-Entropy [LaNd](Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 Perovskites: Correlation of the Electrical and Magnetic Properties. Nanomaterials, 2021, 11, 1014.	4.1	24
48	Impact of calcination temperature on electrical and dielectric properties of SrGa0.02Fe11.98O19-Zn0.5Ni0.5Fe2O4 hard/soft nanocomposites. Journal of Materials Science: Materials in Electronics, 2021, 32, 16589-16600.	2.2	7
49	Ultrasonic Synthesis and Biomedical Application of Mn0.5Zn0.5ErxYxFe2â^'2xO4 Nanoparticles. Biomolecules, 2021, 11, 703.	4.0	7
50	Investigation of hard/soft <scp> CoFe ₂ O ₄ </scp> / <scp> NiSc ₀ </scp> _. <scp> ₉₇ O ₄ </scp> _. <scp> ₉₇ O ₄ ₉₇ O ₄ <td>4.5</td><td>31</td></scp>	4.5	31
51	Designing of Co0.5Ni0.5GaxFe $2\hat{a}^{\circ}$ xO4 (0.0 \hat{a} % x \hat{a} % 1.0) Microspheres via Hydrothermal Approach and Their Selective Inhibition on the Growth of Cancerous and Fungal Cells. Pharmaceutics, 2021, 13, 962.	4.5	13
52	Evaluation of Cu–MgFe2O4 spinel nanoparticles for photocatalytic and antimicrobial activates. Journal of Physics and Chemistry of Solids, 2021, 153, 110010.	4.0	49
53	A study on the electrical and dielectric properties of SrGdxFe12ⰒxO19 (x = 0.00–0.05) nanosized M-ty-hexagonal ferrites. Journal of Materials Science: Materials in Electronics, 2021, 32, 18317-18329.	ype 2.2	6
54	Sm–Dy co-substituted Sr hexaferrite microspheres: An investigation on their structural, magnetic, optical, and porosity characteristics. Ceramics International, 2021, 47, 25131-25141.	4.8	7

#	Article	lF	CITATIONS
55	Anisotropy of the electrical properties of a single crystal of BaFe11.25Ti0.75O19 M-type barium hexaferrite. Journal of Solid State Chemistry, 2021, 298, 122104.	2.9	8
56	(BaTiO ₃) _{1â€x} + (Co _{0.5} Ni _{0.5} Nb _{0.06} Fe _{1.94} O ₄ _x nanocomposites: Structure, morphology, magnetic and dielectric properties. Journal of the American Ceramic Society, 2021, 104, 5648-5658.	3.8	39
57	Correlation between chemical composition, electrical, magnetic and microwave properties in Dy-substituted Ni-Cu-Zn ferrites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 270, 115202.	3.5	34
58	Impact of Gd substitution on the structure, hyperfine interactions, and magnetic properties of Sr hexaferrites. Ceramics International, 2021, 47, 33853-33864.	4.8	29
59	Structural, Magnetic, and Mossbauer Parameters' Evaluation of Sonochemically Synthesized Rare Earth Er ³⁺ and Y ³⁺ lons-Substituted Manganese–Zinc Nanospinel Ferrites. ACS Omega, 2021, 6, 22429-22438.	3.5	7
60	Sol–Gel Synthesis of Dy-Substituted Ni0.4Cu0.2Zn0.4(Fe2-xDyx)O4 Nano Spinel Ferrites and Evaluation of Their Antibacterial, Antifungal, Antibiofilm and Anticancer Potentialities for Biomedical Application. International Journal of Nanomedicine, 2021, Volume 16, 5633-5650.	6.7	28
61	Biosynthesis effect of Moringa oleifera leaf extract on structural and magnetic properties of Zn doped Ca-Mg nano-spinel ferrites. Arabian Journal of Chemistry, 2021, 14, 103261.	4.9	39
62	Structural and Magnetic Properties of Co0.5Ni0.5Ga0.01Gd0.01Fe1.98O4/ZnFe2O4 Spinel Ferrite Nanocomposites: Comparative Study between Sol-Gel and Pulsed Laser Ablation in Liquid Approaches. Nanomaterials, 2021, 11, 2461.	4.1	62
63	Electronic, magnetic, and microwave properties of hard/soft nanocomposites based on hexaferrite SrNi0.02Zr0.02Fe11.96O19 with variable spinel phase MFe2O4 (M = Mn, Co, Cu, and Zn). Ceramics International, 2021, 47, 35209-35223.	4.8	35
64	Effects of Ce–Dy rare earths co-doping on various features of Ni–Co spinel ferrite microspheres prepared via hydrothermal approach. Journal of Materials Research and Technology, 2021, 14, 2534-2553.	5.8	35
65	Features of structure, magnetic state and electrodynamic performance of SrFe12â^'xlnxO19. Scientific Reports, 2021, 11, 18342.	3.3	77
66	Electrospinning synthesis of Cd-substituted Ni–Co spinel ferrite nanofibers: an investigation into their structural and magnetic features. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	4
67	Emerging trends in the delivery of nanoformulated oxytocin across Blood-Brain barrier. International Journal of Pharmaceutics, 2021, 609, 121141.	5.2	9
68	Alterations in the magnetic and electrodynamic properties of hard-soft Sr0.5Ba0.5Eu0.01Fe12O19/NixCuyZnwFe2O4 nanocomposites. Journal of Materials Research and Technology, 2021, 15, 1416-1429.	5.8	12
69	Morphological, structural, and magnetic characterizations of hard-soft ferrite nanocomposites synthesized via pulsed laser ablation in liquid. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 273, 115446.	3.5	13
70	Effect of Sr2+ Ion–Substituted Nickel Ferrite Nanoparticles Prepared by a Simple Microwave Combustion Method. Journal of Superconductivity and Novel Magnetism, 2021, 34, 971-980.	1.8	7
71	xmins:mml="http://www.w3.org/1998/Math/Math/Math/Misplay="inline" id="d1e24/2" altimg="si11.svg"> <mml:msub><mml:mrow><mml:mrow><mml:mi mathvariant="normal">0.5</mml:mi></mml:mrow></mml:mrow></mml:msub> Zn <mml:math <="" display="inline" id="d1e2480" td="" xmlns:mml="http://www.w3.org/1998/Math/Math/ML"><td>3.5</td><td>11</td></mml:math>	3. 5	11
72	Timing and spectral analysis of 2S 1417â ² 624 during its 2018 outburst. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1438-1449.	4.4	8

#	Article	IF	CITATIONS
73	AC susceptibility investigation of YBCO superconductor added by carbon nanotubes. Journal of Alloys and Compounds, 2020, 812, 152150.	5 . 5	74
74	Effect of thulium substitution on conductivity and dielectric belongings of nanospinel cobalt ferrite. Journal of Rare Earths, 2020, 38, 1103-1113.	4.8	22
75	Co-substitution of zirconium and neodymium on hyperfine interactions and AC susceptibility of SrFe12O19 nanohexaferrites. Journal of Rare Earths, 2020, 38, 265-273.	4.8	8
76	Microstructure, magnetic and optical properties of Nb3+ and Y3+ ions co-substituted Sr hexaferrites. Ceramics International, 2020, 46, 4610-4618.	4.8	35
77	Tb3+ substituted strontium hexaferrites: Structural, magnetic and optical investigation and cation distribution. Journal of Rare Earths, 2020, 38, 402-410.	4.8	19
78	Synthesis and characterization of Co1–2Ni Mn Ce Fe2–O4 nanoparticles. Journal of Rare Earths, 2020, 38, 188-194.	4.8	33
79	Magnetic Behavior and Nutrient Content Analyses of Barley (Hordeum vulgare L.) Tissues upon CoNd0.2Fe1.8O4 Magnetic Nanoparticle Treatment. Journal of Soil Science and Plant Nutrition, 2020, 20, 357-366.	3.4	14
80	Comparative study of sonochemically synthesized Co-Zr and Ni-Zr substituted Sr-hexaferrites: Magnetic and structural investigations. Journal of Magnetism and Magnetic Materials, 2020, 497, 165996.	2.3	24
81	Sonochemical synthesis of Dy3+ substituted Mn0.5Zn0.5Fe2â^x04 nanoparticles: Structural, magnetic and optical characterizations. Ultrasonics Sonochemistry, 2020, 61, 104836.	8.2	37
82	Dimensionality and superconducting parameters of YBa2Cu3O7â^d/(WO3 NPs)x composites deduced from excess conductivity analysis. Materials Chemistry and Physics, 2020, 243, 122665.	4.0	18
83	Enhancement on the exchange coupling behavior of SrCo0.02Zr0.02Fe11.96O19/MFe2O4 (M = Co, Ni, Cu. 2020, 499, 166308.) Tj ETQq1 2.3	l 1 0.784314 71
84	Synthesis and biological characterization of Mn0.5Zn0.5EuxDyxFe1.8-2xO4 nanoparticles by sonochemical approach. Materials Science and Engineering C, 2020, 109, 110534.	7.3	31
85	Correlation between microstructure parameters and anti-cancer activity of the [Mn0.5Zn0.5](EuxNdxFe2-2x)O4 nanoferrites produced by modified sol-gel and ultrasonic methods. Ceramics International, 2020, 46, 7346-7354.	4.8	128
86	A study on the spectral, microstructural, and magnetic properties of Eu–Nd double-substituted Ba0.5Sr0.5Fe12O19 hexaferrites synthesized by an ultrasonic-assisted approach. Ultrasonics Sonochemistry, 2020, 62, 104847.	8.2	35
87	Exchange-coupling effect in hard/soft SrTb0.01Tm0.01Fe11.98O19/AFe2O4 (where A = Co, Ni, Zn, Cu and) Tj ET	Qq1,1 0.7	84314 rgBT
88	Effect of Nd-Y co-substitution on structural, magnetic, optical and microwave properties of NiCuZn nanospinel ferrites. Journal of Materials Research and Technology, 2020, 9, 11278-11290.	5.8	33
89	Customized magnetic properties of (Mn0.5Zn0.5) [EuxNdxFe2-2x]O4 nanospinel ferrites synthesized via ultrasonic irradiation approach. Results in Physics, 2020, 19, 103350.	4.1	26
90	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1728" altimg="si32.svg"> <mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mi mathvariant="normal">0.5</mml:mi></mml:mrow></mml:msub> Co <mml:math altimg="si33.svg" display="inline" id="d1e1736" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mi mathvariant="normal">0.5a^'x<td>3.5</td><td>11</td></mml:mi></mml:mrow></mml:msub></mml:math>	3.5	11

6

#	Article	IF	Citations
91	Strong correlation between Dy3+ concentration, structure, magnetic and microwave properties of the [Ni0.5Co0.5](DyxFe2-x)O4 nanosized ferrites. Journal of Industrial and Engineering Chemistry, 2020, 90, 251-259.	5.8	103
92	Freestanding electrospun carbon nanofibers uniformly decorated with bimetallic alloy nanoparticles as supercapacitor electrode. Journal of Energy Storage, 2020, 32, 101671.	8.1	27
93	Microstructure, dielectric and microwave features of [Ni0.4Cu0.2Zn0.4](Fe2â^'Tb)O4 (x≠0.1) nanospinel ferrites. Journal of Materials Research and Technology, 2020, 9, 10608-10623.	5.8	25
94	Uptake, translocation, and physiological effects of hematite (\hat{l} ±-Fe2O3) nanoparticles in barley (Hordeum vulgare L.). Environmental Pollution, 2020, 266, 115391.	7. 5	43
95	Synthesis of Electrospun TiO2 Nanofibers and Characterization of Their Antibacterial and Antibiofilm Potential against Gram-Positive and Gram-Negative Bacteria. Antibiotics, 2020, 9, 572.	3.7	81
96	Peculiarities of the microwave properties of hard–soft functional composites SrTb _{0.01} Tm _{0.01} Fe _{11.98} O ₁₉ –AFe ₂ O _{4-(A = Co, Ni, Zn, Cu, or Mn). RSC Advances, 2020, 10, 32638-32651.}	(314 p)	92
97	Bactericidal and In Vitro Cytotoxicity of Moringa oleifera Seed Extract and Its Elemental Analysis Using Laser-Induced Breakdown Spectroscopy. Pharmaceuticals, 2020, 13, 193.	3.8	43
98	Impact of Tm3+ and Tb3+ Rare Earth Cations Substitution on the Structure and Magnetic Parameters of Co-Ni Nanospinel Ferrite. Nanomaterials, 2020, 10, 2384.	4.1	42
99	Developing the magnetic, dielectric and anticandidal characteristics of SrFe12O19/(Mg0.5Cd0.5Dy0.03Fe1.97O4)x hard/soft ferrite nanocomposites. Journal of the Taiwan Institute of Chemical Engineers, 2020, 113, 344-362.	5.3	50
100	Functional Sr0.5Ba0.5Sm0.02Fe11.98O4/x(Ni0.8Zn0.2Fe2O4) Hard–Soft Ferrite Nanocomposites: Structure, Magnetic and Microwave Properties. Nanomaterials, 2020, 10, 2134.	4.1	71
101	Magnetic properties, anticancer and antibacterial effectiveness of sonochemically produced Ce3+/Dy3+ co-activated Mn-Zn nanospinel ferrites. Arabian Journal of Chemistry, 2020, 13, 7403-7417.	4.9	53
102	Incorporation of Micro-nutrients (Nickel, Copper, Zinc, and Iron) into Plant Body Through Nanoparticles. Journal of Soil Science and Plant Nutrition, 2020, 20, 1872-1881.	3.4	11
103	SrCoxZrxFe12â^'2xO19 and SrNixZrxFe12â^'2xO19 hexaferrites: A Comparison Study of AC Susceptibility, FC-ZFC and hyperfine interactions. Chinese Journal of Physics, 2020, 66, 596-605.	3.9	12
104	Influence of the dysprosium ions on structure, magnetic characteristics and origin of the reflection losses in the Ni–Co spinels. Journal of Alloys and Compounds, 2020, 841, 155667.	5.5	109
105	Structural, morphological and optical properties of multifunctional magnetic-luminescent ZnO@Fe3O4 nanocomposite. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114291.	2.7	41
106	Influence of Tm–Tb substitution on magnetic and optical properties of Ba–Sr hexaferrites prepared by ultrasonic assisted citrate sol-gel approach. Materials Chemistry and Physics, 2020, 253, 123324.	4.0	41
107	Comprehensive analysis of the transient X-ray pulsar MAXI J1409â^'619. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1768-1783.	4.4	3
108	Engineered magnetic nanoparticles enhance chlorophyll content and growth of barley through the induction of photosystem genes. Environmental Science and Pollution Research, 2020, 27, 34311-34321.	5.3	28

#	ARTICLE	IF	CITATIONS
109	Synthesis of Dy-Y co-substituted manganeseâ€ʻzinc spinel nanoferrites induced anti-bacterial and anti-cancer activities: Comparison between sonochemical and sol-gel auto-combustion methods. Materials Science and Engineering C, 2020, 116, 111186.	7.3	50
110	Ultrasonic synthesis, magnetic and optical characterization of Tm3+ and Tb3+ ions co-doped barium nanohexaferrites. Journal of Solid State Chemistry, 2020, 286, 121310.	2.9	29
111	Investigation of structural and physical properties of Eu3+ ions substituted Ni0.4Cu0.2Zn0.4Fe2O4 spinel ferrite nanoparticles prepared via sonochemical approach. Results in Physics, 2020, 17, 103061.	4.1	99
112	Exchange-coupling behavior in SrTb _{0.01} Tm _{0.01} Fe _{11.98} O ₁₉ /(CoFe ₂ O _{4 hard/soft nanocomposites. New Journal of Chemistry, 2020, 44, 5800-5808.}	-< डग 8>)<३	sub40
113	Role of WO3 nanoparticles in electrical and dielectric properties of BaTiO3–SrTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 7786-7797.	2.2	74
114	Size effect of iron (III) oxide nanomaterials on the growth, and their uptake and translocation in common wheat (Triticum aestivum L.). Ecotoxicology and Environmental Safety, 2020, 194, 110377.	6.0	66
115	Electrical and optical properties of NiO·5CoO.5-xCdxNdO.02Fe1·78O4 (x ≠0.25) spinel ferrite nanofibers. Ceramics International, 2020, 46, 24605-24614.	4.8	26
116	Impacts of Sol-Gel Auto-Combustion and Ultrasonication Approaches on Structural, Magnetic, and Optical Properties of Sm-Tm Co-Substituted Sr0.5Ba0.5Fe12O19 Nanohexaferrites: Comparative Study. Nanomaterials, 2020, 10, 272.	4.1	19
117	Magnetic nanoparticles based nanocontainers for biomedical application. , 2020, , 229-250.		6
118	Impact of Eu3+ ion substitution on structural, magnetic and microwave traits of Ni–Cu–Zn spinel ferrites. Ceramics International, 2020, 46, 11124-11131.	4.8	126
119	Investigation of the crystal/magnetic structure, magnetic and optical properties of SrY _x Nb _x Fe _{12â^'2x} O ₁₉ (x ≠0.05) hexaferrites. Physica Scripta, 2020, 95, 055802.	2.5	17
120	Magnetic and microwave properties of SrFe12O19/MCe0.04Fe1.96O4 (M = Cu, Ni, Mn, Co and Zn) hard/soft nanocomposites. Journal of Materials Research and Technology, 2020, 9, 5858-5870.	5.8	102
121	Synthesis of Ni0.5Co0.5-xCdxFe1.78Nd0.02O4 (x ≠0.25) nanofibers by using electrospinning technique induce anti-cancer and anti-bacterial activities. Journal of Biomolecular Structure and Dynamics, 2020, 39, 1-8.	3.5	26
122	CoFe Nanoparticles in Carbon Nanofibers as an Electrode for Ultra-Stable Supercapacitor. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 3608-3616.	3.7	15
123	Iron oxide nanoparticles translocate in pumpkin and alter the phloem sap metabolites related to oil metabolism. Scientia Horticulturae, 2020, 265, 109223.	3.6	24
124	Investigation of structural, morphological, optical, magnetic and dielectric properties of (1-x)BaTiO3/xSr0.92Ca0.04Mg0.04Fe12O19 composites. Journal of Magnetism and Magnetic Materials, 2020, 510, 166933.	2.3	89
125	Magnetic and microstructural features of Dy3+ substituted NiFe2O4 nanoparticles derived by sol–gel approach. Journal of Sol-Gel Science and Technology, 2020, 95, 202-210.	2.4	26
126	Synthesis, characterization and magnetic investigation of Er-substituted electrospun NiFe ₂ O ₄ nanofibers. Physica Scripta, 2020, 95, 075801.	2.5	13

#	Article	IF	CITATIONS
127	Mössbauer Studies and Magnetic Properties of Cubic CuFe2O4 Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2019, 32, 557-564.	1.8	74
128	Microstructural, Optical, and Magnetic Properties of Vanadium-Substituted Nickel Spinel Nanoferrites. Journal of Superconductivity and Novel Magnetism, 2019, 32, 1057-1065.	1.8	72
129	Ca2+/Mg2+ co-substituted strontium nanohexaferrites: magnetic investigation and Mossbauer analysis. Journal of Sol-Gel Science and Technology, 2019, 92, 239-251.	2.4	12
130	The Conductivity and Dielectric Properties of Neobium Substituted Sr-Hexaferrites. Nanomaterials, 2019, 9, 1168.	4.1	27
131	Tailored microstructures, optical and magnetic qualities of strontium hexaferrites: Consequence of Tm3+ and Tb3+ ions Co-substitution. Ceramics International, 2019, 45, 21385-21394.	4.8	28
132	Tb3+ ion substituted Sr-hexaferrites as high quality microwave absorbers. Journal of Magnetism and Magnetic Materials, 2019, 491, 165595.	2.3	19
133	AC susceptibility, DC magnetization and superconducting properties of tungsten oxide nanowires added YBa2Cu3Oy. Ceramics International, 2019, 45, 21864-21869.	4.8	13
134	Structural, optical and magnetic properties of Tb3+ substituted Co nanoferrites prepared via sonochemical approach. Ceramics International, 2019, 45, 22538-22546.	4.8	45
135	Magnetic Attributes of NiFe2O4 Nanoparticles: Influence of Dysprosium lons (Dy3+) Substitution. Nanomaterials, 2019, 9, 820.	4.1	95
136	Impact of calcium and magnesium substituted strontium nano-hexaferrite on mineral uptake, magnetic character, and physiology of barley (Hordeum vulgare L.). Ecotoxicology and Environmental Safety, 2019, 186, 109751.	6.0	30
137	Ni0.4Cu0.2Zn0.4TbxFe2-xO4 nanospinel ferrites: Ultrasonic synthesis and physical properties. Ultrasonics Sonochemistry, 2019, 59, 104757.	8.2	89
138	Pulse frequency fluctuations of magnetars. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2-12.	4.4	10
139	Electrical properties of La3+ and Y3+ ions substituted Ni0.3Cu0.3Zn0.4Fe2O4 nanospinel ferrites. Results in Physics, 2019, 15, 102755.	4.1	29
140	Flux pinning properties of YBCO added by WO3 nanoparticles. Journal of Alloys and Compounds, 2019, 810, 151884.	5.5	27
141	Morphology and magnetic traits of strontium nanohexaferrites: Effects of manganese/yttrium co-substitution. Journal of Rare Earths, 2019, 37, 732-740.	4.8	72
142	Enhanced magnetic property and antibacterial biomedical activity of Ce3+ doped CuFe2O4 spinel nanoparticles synthesized by sol-gel method. Journal of Magnetism and Magnetic Materials, 2019, 478, 140-147.	2.3	124
143	Effect of Nb substitution on magneto-optical properties of Co0.5Mn0.5Fe2O4 nanoparticles. Journal of Molecular Structure, 2019, 1195, 269-279.	3.6	40
144	Electrical and dielectric properties of Nb3+ ions substituted Ba-hexaferrites. Results in Physics, 2019, 14, 102468.	4.1	27

#	Article	IF	CITATIONS
145	Study of tungsten oxide effect on the performance of BaTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 13509-13518.	2.2	82
146	Sonochemical synthesis and physical properties of Co0.3Ni0.5Mn0.2EuxFe2â^'xO4 nano-spinel ferrites. Ultrasonics Sonochemistry, 2019, 58, 104654.	8.2	99
147	Sonochemical Synthesis of CoFe2-xNdxO4 Nanoparticles: Structural, Optical, and Magnetic Investigation. Journal of Superconductivity and Novel Magnetism, 2019, 32, 3837-3844.	1.8	25
148	Exploration of catalytic and cytotoxicity activities of CaxMgxNi1-2xFe2O4 nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 2019, 196, 111506.	3.8	20
149	Sonochemical synthesis of Eu3+ substituted CoFe2O4 nanoparticles and their structural, optical and magnetic properties. Ultrasonics Sonochemistry, 2019, 58, 104621.	8.2	77
150	Structural, magnetic, optical properties and cation distribution of nanosized Co0.7Zn0.3TmxFe2â^'xO4 (0.0â€^â‰â€¯x â‰â€¯0.04) spinel ferrites synthesized by ultrasonic irradiation. Ultrasonics Sonochemistry, 20 104638.	1 9, 258,	64
151	Effect of Nb3+ ion substitution on the magnetic properties of SrFe12O19 hexaferrites. Journal of Materials Science: Materials in Electronics, 2019, 30, 11181-11192.	2.2	36
152	Ce–Nd Co-substituted nanospinel cobalt ferrites: An investigation of their structural, magnetic, optical, and apoptotic properties. Ceramics International, 2019, 45, 16147-16156.	4.8	90
153	Multistimuli-responsive magnetic assemblies. , 2019, , 155-193.		3
154	Structural, magnetic, optical properties and cation distribution of nanosized Ni0.3Cu0.3Zn0.4TmxFe2â^'xO4 (0.0â€â‰â€xâ€â‰â€0.10) spinel ferrites synthesized by ultrasound irradiatio Ultrasonics Sonochemistry, 2019, 57, 203-211.	n8.2	81
155	Structural, magnetic and electrochemical characterizations of Bi2Mo2O9 nanoparticle for supercapacitor application. Journal of Magnetism and Magnetic Materials, 2019, 486, 165254.	2.3	88
156	Uptake and translocation of magnetite (Fe3O4) nanoparticles and its impact on photosynthetic genes in barley (Hordeum vulgare L.). Chemosphere, 2019, 226, 110-122.	8.2	117
157	Frequency and dc bias voltage dependent dielectric properties and electrical conductivity of BaTiO3SrTiO3/(SiO2)x nanocomposites. Ceramics International, 2019, 45, 11989-12000.	4.8	81
158	Influence of charge disproportionation on microwave characteristics of Zn–Nd substituted Sr-hexaferrites. Journal of Materials Science: Materials in Electronics, 2019, 30, 6776-6785.	2.2	3
159	Effect of Nb3+ Substitution on the Structural, Magnetic, and Optical Properties of Co0.5Ni0.5Fe2O4 Nanoparticles. Nanomaterials, 2019, 9, 430.	4.1	86
160	Structure, Mössbauer and AC susceptibility of strontium nanohexaferrites: Effect of vanadium ions doping. Ceramics International, 2019, 45, 11615-11624.	4.8	15
161	Investigation of the effects of Tm3+ on the structural, microstructural, optical, and magnetic properties of Sr hexaferrites. Results in Physics, 2019, 13, 102166.	4.1	52
162	Impact of superparamagnetic iron oxide nanoparticles (SPIONs) and ionic iron on physiology of summer squash (Cucurbita pepo): A comparative study. Plant Physiology and Biochemistry, 2019, 139, 56-65.	5.8	40

#	Article	IF	CITATIONS
163	Tracking of SPIONs in Barley (Hordeum vulgare L.) Plant Organs During its Growth. Journal of Superconductivity and Novel Magnetism, 2019, 32, 3285-3294.	1.8	8
164	Calcination effect on the magneto-optical properties of vanadium substituted NiFe2O4 nanoferrites. Journal of Materials Science: Materials in Electronics, 2019, 30, 9143-9154.	2.2	58
165	The impact of Zr substituted Sr hexaferrite: Investigation on structure, optic and magnetic properties. Results in Physics, 2019, 13, 102244.	4.1	44
166	Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 9520-9530.	2.2	97
167	Tracking of NiFe2O4 nanoparticles in barley (Hordeum vulgare L.) and their impact on plant growth, biomass, pigmentation, catalase activity, and mineral uptake. Environmental Nanotechnology, Monitoring and Management, 2019, 11, 100223.	2.9	24
168	Correlation Between Composition and Electrodynamics Properties in Nanocomposites Based on Hard/Soft Ferrimagnetics with Strong Exchange Coupling. Nanomaterials, 2019, 9, 202.	4.1	213
169	Magnetic Mesocellular Foam Functionalized by Curcumin for Potential Multifunctional Therapeutics. Journal of Superconductivity and Novel Magnetism, 2019, 32, 2077-2090.	1.8	6
170	Effect of dysprosium substitution on magnetic and structural properties of NiFe2O4 nanoparticles. Journal of Rare Earths, 2019, 37, 871-878.	4.8	93
171	Structural, optical and magnetic properties of Tm3+ substituted cobalt spinel ferrites synthesized via sonochemical approach. Ultrasonics Sonochemistry, 2019, 54, 1-10.	8.2	108
172	Influence of the charge ordering and quantum effects in heterovalent substituted hexaferrites on their microwave characteristics. Journal of Alloys and Compounds, 2019, 788, 1193-1202.	5.5	105
173	AC susceptibility and hyperfine interactions of Mg-Ca ions co-substituted BaFe12O19 nanohexaferrites. Ceramics International, 2019, 45, 10048-10055.	4.8	25
174	Fabrication of Spinel Cobalt Ferrite (CoFe ₂ O ₄) Nanoparticles with Unique Earth Element Cerium and Neodymium for Anticandidal Activities. ChemistrySelect, 2019, 4, 14329-14334.	1.5	13
175	Synthesis of Mn0.5Zn0.5SmxEuxFe1.8â^2xO4 Nanoparticles via the Hydrothermal Approach Induced Anti-Cancer and Anti-Bacterial Activities. Nanomaterials, 2019, 9, 1635.	4.1	56
176	Targeted therapeutic effect against the breast cancer cell line MCF-7 with a CuFe2O4/silica/cisplatin nanocomposite formulation. Beilstein Journal of Nanotechnology, 2019, 10, 2217-2228.	2.8	11
177	Impact of La ³⁺ and Y ³⁺ ion substitutions on structural, magnetic and microwave properties of Ni _{0.3} Cu _{0.3} Zn _{0.4} Fe ₂ O ₄ 4 nanospinel ferrites synthesized <i>ivia</i> iv sonochemical route, RSC Advances, 2019, 9, 30671-30684.	3.6	90
178	Microstructural and magnetic investigation of vanadium-substituted Sr-nanohexaferrite. Journal of Magnetism and Magnetic Materials, 2019, 471, 124-132.	2.3	80
179	Investigation of Microstructural and Magnetic Properties of BaVxFe12â^'xO19 Nanohexaferrites. Journal of Superconductivity and Novel Magnetism, 2019, 32, 1437-1445.	1.8	15
180	Journal of Superconductivity and Novel Magnetism, 2019, 32, 1663-1670.	1.8	18

#	Article	IF	CITATIONS
181	Improvement of flux pinning ability by tungsten oxide nanoparticles added in YBa2Cu3Oy superconductor. Ceramics International, 2019, 45, 6828-6835.	4.8	71
182	Effect of bimetallic (Ca, Mg) substitution on magneto-optical properties of NiFe2O4 nanoparticles. Ceramics International, 2019, 45, 6021-6029.	4.8	88
183	Manganese/Yttrium Codoped Strontium Nanohexaferrites: Evaluation of Magnetic Susceptibility and Mossbauer Spectra. Nanomaterials, 2019, 9, 24.	4.1	77
184	Magneto-optical properties of rare earth metals substituted Co-Zn spinel nanoferrites. Ceramics International, 2019, 45, 3449-3458.	4.8	111
185	The effect of Yb3+ ion substitution on dielectric and microstructural properties of Y3Al5O12 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 609-623.	2.2	2
186	Magnetic and structural characterization of Nb3+-substituted CoFe2O4 nanoparticles. Ceramics International, 2019, 45, 8222-8232.	4.8	98
187	Electrical Properties of Cerium and Yttrium Co-substituted Strontium Nanohexaferrites. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 402-415.	3.7	10
188	Influence of WO3 nanowires on structural, morphological and flux pinning ability of YBa2Cu3Oy superconductor. Ceramics International, 2019, 45, 2621-2628.	4.8	89
189	The effect of Nb substitution on magnetic properties of BaFe12O19 nanohexaferrites. Ceramics International, 2019, 45, 1691-1697.	4.8	84
190	The impact of Eu3+ ion substitution on dielectric properties of Y3â^'xEuxAl5O12 (0.00 â‰â€‰x â‰â€ Journal of Materials Science: Materials in Electronics, 2019, 30, 2489-2500.	‰0.10) co	eramics.
191	Nd3+ Ion-Substituted Co1â^'2xNixMnxFe2â^'yNdyO4 Nanoparticles: Structural, Morphological, and Magnetic Investigations. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 783-791.	3.7	29
192	Cr3+-substituted Ba nanohexaferrites as high-quality microwave absorber in X band. Journal of Alloys and Compounds, 2019, 779, 420-426.	5.5	26
193	Development of Novel Nano-ZnO Enhanced Polymeric Membranes for Water Purification. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 979-988.	3.7	9
194	Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 2019, 476, 157-165.	2.3	139
195	Impact of Nd-Zn co-substitution on microstructure and magnetic properties of SrFe12O19 nanohexaferrite. Ceramics International, 2019, 45, 963-969.	4.8	78
196	Oleylamine surface functionalized FeCo Fe2â^'O4 (0.0 â $@\frac{1}{2}$ yâ $@\frac{1}{2}$ 1.0) nanoparticles. Arabian Journal of Chemist 2019, 12, 4971-4981.	iry9	5
197	Viewing the Emphasis on State-of-the-Art Magnetic Nanoparticles: Synthesis, Physical Properties, and Applications in Cancer Theranostics. Current Pharmaceutical Design, 2019, 25, 1505-1523.	1.9	17

Enhanced Magneto-optical and Photocatalytic Properties of Ferromagnetic Mg1a^'yNiyFe2O4 (0.0 a\% y) Tj ETQq0 0.0 rgBT $\frac{0.0}{35}$ rgBT

198

#	Article	IF	Citations
199	Sensitive Determination of 6-Thioguanine Using Caffeic Acid-functionalized Fe3O4 Nanoparticles as an Electrochemical Sensor. Journal of Electronic Materials, 2018, 47, 2198-2208.	2.2	14
200	Effect of Annealing Temperature on Magnetic and Mössbauer Properties of ZnFe2O4 Nanoparticles by Sol-gel Approach. Journal of Superconductivity and Novel Magnetism, 2018, 31, 3347-3356.	1.8	51
201	The Effect of Folic Acid- and Caffeic Acid-Functionalized SPION on Different Cancer Cell Lines. Journal of Superconductivity and Novel Magnetism, 2018, 31, 3579-3588.	1.8	3
202	AC susceptibility study of Cu substituted BaFe12O19 nanohexaferrites. Ceramics International, 2018, 44, 13097-13105.	4.8	34
203	Facile combustion synthesis, structural, morphological, optical and antibacterial studies of Bilâ°'xAlxFeO3 (0.0†≠x†â‰â€ 0.15) nanoparticles. Ceramics International, 2018, 44, 13247-13252.	4.8	104
204	AC susceptibility and Mossbauer study of Ce 3+ ion substituted SrFe 12 O 19 nanohexaferrites. Ceramics International, 2018, 44, 10470-10477.	4.8	56
205	Ce-Y co-substituted strontium nanohexaferrites: AC susceptibility and Mossbauer studies. Ceramics International, 2018, 44, 12520-12527.	4.8	17
206	Structural and magnetic properties of Ce-Y substituted strontium nanohexaferrites. Ceramics International, 2018, 44, 12511-12519.	4.8	88
207	Photocatalytic Degradation of Azo Dyes and Organic Contaminants in Wastewater Using Magnetically Recyclable Fe3O4@UA-Cu Nano-catalyst. Catalysis Letters, 2018, 148, 1130-1141.	2.6	25
208	The Temperature Effect on Magnetic Properties of NiFe2O4 Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1587-1597.	3.7	62
209	Structural and magnetic properties of Ce-doped strontium hexaferrite. Ceramics International, 2018, 44, 9000-9008.	4.8	151
210	Hydrothermal synthesis of CoyZnyMn1-2yFe2O4 nanoferrites: Magneto-optical investigation. Ceramics International, 2018, 44, 5751-5759.	4.8	120
211	Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites. Journal of Magnetism and Magnetic Materials, 2018, 452, 380-388.	2.3	180
212	Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution. Ceramics International, 2018, 44, 14242-14250.	4.8	138
213	Effect of Cr 3+ substitution on AC susceptibility of Ba hexaferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 2018, 458, 204-212.	2.3	88
214	Structural, Optical and Mössbauer Study of Bal â^ xCuxFe12O19 (0.5 â‰â€‰x) Nano Hexaferr Inorganic and Organometallic Polymers and Materials, 2018, 28, 1446-1456.	iteş. Journ	al of
215	${\sf M}{\tilde{\sf A}}{\sf q}$ ssbauer Analysis and Cation Distribution of Zn Substituted BaFe12O19 Hexaferrites. Journal of Superconductivity and Novel Magnetism, 2018, 31, 151-156.	1.8	13
216	Luteolin-Loaded Spion as a Drug Carrier for Cancer Cell In Vitro. Journal of Superconductivity and Novel Magnetism, 2018, 31, 467-474.	1.8	6

#	Article	IF	Citations
217	Concentration and temperature-dependent magnetic properties of Ba1â^'xZnxFe12O19 hexaferrites. Ceramics International, 2018, 44, 988-992.	4.8	12
218	Magneto-optical properties of BaCryFe12â^'yO19 (0.0â€â‰â€yâ€â‰â€1.0) hexaferrites. Journal of Magnetism Magnetic Materials, 2018, 451, 463-472.	ı <u>a</u> ŋd	51
219	SPION@APTES@FA-PEG@Usnic Acid Bionanodrug for Cancer Therapy. Journal of Superconductivity and Novel Magnetism, 2018, 31, 1395-1401.	1.8	8
220	Investigation of Structural and Magnetic Properties on Mg1â^'xZnxFe2â^'xAlxO4 (0.0 â‰â€‰x â6€‰ Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 942-953.	∘9.8) 3.7	18
221	Synthesis and Magnetic Characterization of Cu Substituted Barium Hexaferrites. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1065-1071.	3.7	51
222	Synthesis and Characterization of Cu–Mn Substituted SrFe12O19 Hexaferrites. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 212-222.	3.7	9
223	Ca2+ and Mg2+ incorporated barium hexaferrites: structural and magnetic properties. Journal of Sol-Gel Science and Technology, 2018, 88, 628-638.	2.4	48
224	Impact of manganese ferrite (MnFe2O4) nanoparticles on growth and magnetic character of barley (Hordeum vulgare L.). Environmental Pollution, 2018, 243, 872-881.	7.5	76
225	Exchange spring magnetic behavior of Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x nanocomposites fabricated by a one-pot citrate sol-gel combustion method. Journal of Alloys and Compounds, 2018, 762, 389-397.	5.5	90
226	Electrochemical and magneto-optical properties of cobalt molybdate nano-catalyst as high-performance supercapacitor. Ceramics International, 2018, 44, 17735-17742.	4.8	51
227	AC susceptibility and hyperfine interactions of vanadium substituted barium nanohexaferrites. Ceramics International, 2018, 44, 17749-17758.	4.8	34
228	Structural, morphological and magneto-optical properties of CuMoO4 electrochemical nanocatalyst as supercapacitor electrode. Ceramics International, 2018, 44, 20075-20083.	4.8	95
229	Structural, morphological and magnetic properties of hard/soft SrFe12-xVxO19/(Ni0.5Mn0.5Fe2O4)y nanocomposites: Effect of vanadium substitution. Journal of Alloys and Compounds, 2018, 767, 966-975.	5.5	80
230	Dielectric and microstructural properties of YAG:Dy3+ ceramics. Journal of Rare Earths, 2018, 36, 1310-1318.	4.8	5
231	Synthesis and Characterization of Antibacterial Activity of Spinel Chromium-Substituted Copper Ferrite Nanoparticles for Biomedical Application. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 2316-2327.	3.7	57
232	Substitution effect of Cr3+ on hyperfine interactions, magnetic and optical properties of Sr-hexaferrites. Ceramics International, 2018, 44, 15995-16004.	4.8	77
233	Magneto Optical Properties and Hyperfine Interactions of Cr3+ Ion Substituted Copper Ferrite Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 2533-2544.	3.7	32
234	Electrical and Dielectric Properties of Y3+-Substituted Barium Hexaferrites. Journal of Superconductivity and Novel Magnetism, 2017, 30, 1813-1826.	1.8	20

#	Article	IF	CITATIONS
235	Synthesis and Structural and Magnetic Characterization of BaZn x Fe12â^x O19 Hexaferrite: Hyperfine Interactions. Journal of Superconductivity and Novel Magnetism, 2017, 30, 1585-1592.	1.8	18
236	Enhanced antibacterial performance of Fe3O4–Ag and MnFe2O4–Ag nanocomposites. Bulletin of Materials Science, 2017, 40, 147-155.	1.7	13
237	Synthesis and Characterization of Carboxylated Luteolin (CL)-Functionalized SPION. Journal of Superconductivity and Novel Magnetism, 2017, 30, 2797-2804.	1.8	5
238	Magnetic properties and hyperfine interactions of Co1-2xNixMnxFe2O4 nanoparticles. Ceramics International, 2017, 43, 4746-4752.	4.8	16
239	Superparamagnetic Iron Oxide Nanoparticles (SPION) Functionalized by Caffeic Acid (CFA). Journal of Superconductivity and Novel Magnetism, 2017, 30, 2699-2706.	1.8	5
240	Electrical and Dielectric Characterization of Bi–La Ion-Substituted Barium Hexaferrites. Journal of Superconductivity and Novel Magnetism, 2017, 30, 1499-1514.	1.8	3
241	Pb substituted Ba,Sr-hexaferrite nanoparticles as high quality microwave absorbers. Ceramics International, 2017, 43, 14023-14030.	4.8	36
242	Magnetic Properties of FeMnyCoyFe2â^'2yO4@Oleylamine Nanocomposite with Cation Distribution. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1740-1749.	3.7	3
243	Magnetic properties and Mössbauer spectroscopy of Cu-Mn substituted BaFe12O19 hexaferrites. Ceramics International, 2017, 43, 15486-15492.	4.8	31
244	Magnetic and optical properties of Zn 2+ ion substituted barium hexaferrites. Journal of Magnetism and Magnetic Materials, 2017, 430, 29-35.	2.3	79
245	Magneto-optical properties of SrBi x La x Fe 12-2x O 19 (0.0â‰xâ‰0.5) hexaferrites by sol-gel auto-combustion technique. Ceramics International, 2017, 43, 1298-1303.	4.8	29
246	Magneto-optical properties and MÃ \P ssbauer Investigation of Ba x Sr y Pb z Fe 12 O 19 Hexaferrites. Ceramics International, 2017, 43, 3475-3482.	4.8	23
247	Magneto-optical and catalytic properties of Fe3O4@HA@Ag magnetic nanocomposite. Journal of Magnetism and Magnetic Materials, 2017, 421, 462-471.	2.3	31
248	Discovery of a glitch in the accretion-powered pulsar SXP 1062. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4982-4989.	4.4	17
249	Comprehensive timing and X-ray spectral analysis of GX 1+4. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2509-2516.	4.4	6
250	Enhanced Opto-Magneto Properties of Ni <i>>_x</i> >(0.0 â‰ <i>x</i> ≠1.0) Ferrites Nano-Catalysts. Journal of Nanoelectronics and Optoelectronics, 2017, 12, 1326-1333.	0.5	66
251	Magnetic properties of triethylene glycol coated CoFe2O4 and Mn0.2Co0.8Fe2O4 NP's synthesized by polyol method. Arabian Journal of Chemistry, 2016, 9, S1131-S1137.	4.9	7
252	Synthesis and characterization of oleylamine capped MnxFe1-xFe2O4 nanocomposite: Magneto-optical properties, cation distribution and hyperfine interactions. Journal of Alloys and Compounds, 2016, 688, 675-686.	5.5	34

#	Article	IF	Citations
253	XIPE: the x-ray imaging polarimetry explorer. , 2016, , .		16
254	Structural, magneto-optical properties and cation distribution of SrBi x La x Y x Fe 12â^3x O 19 (0.0 ≠x â‰)	Тј Е<u>Т</u>.2 q0	00 ggBT /Ove
255	Magnetic and dielectric properties of Bi3+ substituted SrFe12O19 hexaferrite. Journal of Magnetism and Magnetic Materials, 2016, 412, 69-82.	2.3	53
256	Conductivity and Dielectric Properties of Nearly Monodisperse NiFe 2 O 4 Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2016, 29, 1923-1930.	1.8	8
257	Synthesis, Characterization, and Dielectric Properties of BaFe10(Mn2+Zn2+Zn2+)O19 Hexaferrite. Journal of Superconductivity and Novel Magnetism, 2016, 29, 199-205.	1.8	13
258	Synthesis and magneto-electrical properties of MFe2O4 (Co, Zn) nanoparticles by oleylamine route. Ceramics International, 2016, 42, 13350-13358.	4.8	17
259	Biomedical applications of SPION@APTES@PEG-folic acid@carboxylated quercetin nanodrug on various cancer cells. Applied Surface Science, 2016, 378, 572-581.	6.1	39
260	Structural, morphological, optical, cation distribution and Mössbauer analysis of Bi3+ substituted strontium hexaferrite. Ceramics International, 2016, 42, 8627-8635.	4.8	69
261	Magneto-optical properties BaBixLaxFe12â^2xO19 (0.0â‰xâ‰0.5) hexaferrites. Journal of Magnetism and Magnetic Materials, 2016, 409, 92-98.	2.3	39
262	Synthesis, characterization and magneto optical properties of BaBi La Y Fe12â^3O19 (0.0â‰xâ‰0.33) hexaferrites. Journal of Magnetism and Magnetic Materials, 2016, 416, 261-268.	2.3	52
263	Effect of temperature on magnetic properties of BaYxFe12â^'xO19 hexaferrites. Ceramics International, 2016, 42, 16296-16302.	4.8	54
264	Microwave, dielectric and magnetic properties of Mg-Ti substituted Ni-Zn ferrite nanoparticles. Ceramics International, 2016, 42, 17317-17331.	4.8	31
265	The Effect of Cr3+ Substitution on Magnetic Properties of CoFe2O4 Nanoparticles Synthesized by Microwave Combustion Route. Journal of Superconductivity and Novel Magnetism, 2016, 29, 2395-2400.	1.8	2
266	Influence of calcination rate on morphologies and magnetic properties of MnFe2O4 nanofibers. Ceramics International, 2016, 42, 18189-18195.	4.8	14
267	The LOFT mission concept: a status update. Proceedings of SPIE, 2016, , .	0.8	9
268	Effect of bimetallic (Ni and Co) substitution on magnetic properties of MnFe2O4 nanoparticles. Ceramics International, 2016, 42, 13773-13782.	4.8	25
269	Sr 1-x La x Fe 12 O 19 (0.0â‰xâ‰0.5) hexaferrites: Synthesis, characterizations, hyperfine interactions and magneto-optical properties. Ceramics International, 2016, 42, 12995-13003.	4.8	45
270	Conductivity and dielectric properties of SrLaxBixYxFe12â^'3xO19 (0.0â%xâ%0.33) hexaferrites. Ceramics International, 2016, 42, 11780-11795.	4.8	21

#	Article	IF	Citations
271	Maxwell-Wagner relaxation in grain boundary of BaBixLaxYxFe12â^'3xO19 (0.0Ââ%ÂxÂâ%Â0.33) hexaferrites. Composites Part B: Engineering, 2016, 99, 248-256.	12.0	26
272	Fe3O4@Nico-Ag magnetically recyclable nanocatalyst for azo dyes reduction. Applied Surface Science, 2016, 363, 66-73.	6.1	56
273	Structural characterization and vibrational studies of human urinary stones from Istanbul, Turkey. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 160, 1-7.	3.9	7
274	Magnetically Recyclable Fe ₃ O ₄ @His@Cu Nanocatalyst for Degradation of Azo Dyes. Journal of Nanoscience and Nanotechnology, 2016, 16, 2548-2556.	0.9	12
275	Synthesis and characterization of monodisperse NiFe2O4 nanoparticles. Ceramics International, 2016, 42, 7987-7992.	4.8	33
276	<i>RXTE</i> and <i>Swift</i> Observations of SWIFT J0513.4–6547. Monthly Notices of the Royal Astronomical Society, 2016, 456, 845-852.	4.4	3
277	Dielectric properties, cationic distribution calculation and hyperfine interactions of La3+ and Bi3+ doped strontium hexaferrites. Ceramics International, 2016, 42, 9100-9115.	4.8	39
278	Synthesis of magnetically recyclable MnFe 2 O 4 @SiO 2 @Ag nanocatalyst: Its high catalytic performances for azo dyes and nitro compounds reduction. Applied Surface Science, 2016, 376, 16-25.	6.1	110
279	Superparamagnetic iron oxide conjugated with folic acid and carboxylated quercetin for chemotherapy applications. Ceramics International, 2016, 42, 9065-9072.	4.8	43
280	MnFe2O4@PANI@Ag Heterogeneous Nanocatalyst for Degradation of Industrial Aqueous Organic Pollutants. Journal of Materials Science and Technology, 2016, 32, 134-141.	10.7	38
281	Magneto-optical investigation and hyperfine interactions of copper substituted Fe3O4 nanoparticles. Ceramics International, 2016, 42, 5650-5658.	4.8	22
282	Structural investigation and hyperfine interactions of BaBi x La x Fe 12 \hat{a}^2 2 x 0 19 (0.0 \hat{a} % x \hat{a} %0.5) hexaferrites. Ceramics International, 2016, 42, 3380-3387.	4.8	66
283	Magnetic, electrical and microwave properties of Mn–Co substituted Ni x Zn 0,8-x Fe 2 O 4 nanoparticles. Journal of Alloys and Compounds, 2016, 660, 324-335.	5.5	32
284	Electrical Properties of Cu Substituted Fe3O4 Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2016, 29, 389-400.	1.8	11
285	Microwave properties of BaFe11Mg2+0.25X2+0.25Ti4+0.25O19 (X2+=Cu, Mn, Zn, Ni and Co) nanoparticles in 0–26.5GHz range. Ceramics International, 2016, 42, 2611-2625.	4.8	21
286	MnCrxFe2â^'xO4 Nanoparticles: Magnetic and Microwave Absorption Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 134-141.	3.7	10
287	Temperature and Frequency Dependence on Electrical Properties of Fe3O4@ Caffeic Acid Nanocomposite. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 190-196.	3.7	11
288	Magneto-optical properties of Mn3+ substituted Fe3O4 nanoparticles. Ceramics International, 2015, 41, 10915-10922.	4.8	68

#	Article	IF	Citations
289	Electrical properties and hyperfine interactions of boron doped Fe3O4 nanoparticles. Superlattices and Microstructures, 2015, 88, 450-466.	3.1	28
290	Effect of Annealing Temperature and Boron Addition on Magnetic Properties of Hexaferrites Synthesized by Standard Ceramic Method. Journal of Superconductivity and Novel Magnetism, 2015, 28, 1395-1404.	1.8	4
291	Rapid color degradation of organic dyes by Fe3O4@His@Ag recyclable magnetic nanocatalyst. Journal of Industrial and Engineering Chemistry, 2015, 27, 347-353.	5.8	81
292	Recyclable Fe3O4@Tween2O@Ag Nanocatalyst for Catalytic Degradation of Azo Dyes. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 921-929.	3.7	41
293	Fe3O4@Tween20@Ag Magnetically Recyclable Nanocatalyst for Various Hydrogenation Reactions. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 657-663.	3.7	11
294	Synthesis and Characterization of CoxZn1â^'xAlFeO4 Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 747-754.	3.7	33
295	Magnetic and Microwave Absorption Properties of Ni x Zn0.9â^'x Mn0.1Fe2 O 4 Prepared by Boron Addition. Journal of Superconductivity and Novel Magnetism, 2015, 28, 1047-1050.	1.8	8
296	Polyol synthesis of Mn3+ substituted Fe3O4 nanoparticles: Cation distribution, structural and electrical properties. Superlattices and Microstructures, 2015, 85, 747-760.	3.1	29
297	Magnetic and microwave properties of BaFe12O19 substituted with magnetic, non-magnetic and dielectric ions. Ceramics International, 2015, 41, 9602-9609.	4.8	81
298	Fe3O4@Hpipe-4@Cu Nanocatalyst for Hydrogenation of Nitro-Aromatics and Azo Dyes. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 1120-1128.	3.7	18
299	Magnetic and Catalytic Properties of Cu \times Fe1â^2 \times Fe2O4 Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2015, 28, 2447-2454.	1.8	22
300	Microwave Assisted Synthesis and Characterization of CoxZn1â^xcr0.5Fe0.5O4 Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 619-626.	3.7	13
301	A Fe3O4@Nico@Ag nanocatalyst for the hydrogenation of nitroaromatics. Chinese Journal of Catalysis, 2015, 36, 705-711.	14.0	30
302	Magneto Optical Properties of FeBxFe2â^'xO4 Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 1111-1119.	3.7	40
303	Preparation and characterization of SPION functionalized via caffeic acid. Journal of Magnetism and Magnetic Materials, 2015, 395, 199-204.	2.3	34
304	Structural and Magnetic Properties of NiCr x Fe2â^'x O4 Nanoparticles Synthesized via Microwave Method. Journal of Superconductivity and Novel Magnetism, 2015, 28, 3405-3410.	1.8	10
305	Synthesis and application of magnetically recyclable nanocatalyst Fe3O4@Nico@Cu in the reduction of azo dyes. Chinese Journal of Catalysis, 2015, 36, 1280-1286.	14.0	30
306	Dielectric properties of triethylene glycol-stabilized Mn1â°xZnxFe2O4 nanoparticles. Materials Chemistry and Physics, 2015, 165, 156-167.	4.0	10

#	Article	IF	CITATIONS
307	Electrical Properties of Mn-Doped Ni x Zn0.9â^'x Fe2O4 Particles. Journal of Superconductivity and Novel Magnetism, 2015, 28, 1055-1064.	1.8	4
308	Magnetic and optical properties of Cu1â^xZnxFe2O4 nanoparticles dispersed in a silica matrix by a sol–gel auto-combustion method. Ceramics International, 2015, 41, 231-239.	4.8	61
309	Synthesis and magneto-optical properties of triethylene glycol stabilized Mn1Zn Fe2O4 nanoparticles. Journal of Alloys and Compounds, 2015, 619, 5-11.	5 . 5	49
310	Timing studies of X Persei and the discovery of its transient quasi-periodic oscillation feature. Monthly Notices of the Royal Astronomical Society, 2014, 444, 457-465.	4.4	7
311	Ultrarapid catalytic reduction of some dyes by reusable novel erythromycin-derived silver nanoparticles. Turkish Journal of Chemistry, 2014, 38, 765-774.	1.2	22
312	Green synthesis of Fe\$_{3}\$O\$_{4}\$ nanoparticles by one-pot saccharide-assisted hydrothermal method. Turkish Journal of Chemistry, 2014, 38, 825-836.	1.2	12
313	ZnxCu(1â^'x)Fe2O4 Nanoferrites by Solâ€"Gel Auto Combustion Route: Cation Distribution and Microwave Absorption Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 963-970.	3.7	6
314	The Large Observatory for x-ray timing. Proceedings of SPIE, 2014, , .	0.8	10
315	Effect of Zn Substitution on Electrical Properties of Nanocrystalline Cobalt Ferrite. Journal of Superconductivity and Novel Magnetism, 2014, 27, 469-479.	1.8	30
316	Polyaniline–MnFe2O4–CTAB Nanocomposite: Low Temperature Magnetic Investigation. Journal of Superconductivity and Novel Magnetism, 2014, 27, 1517-1523.	1.8	0
317	Magnetic Properties of Annealed CoFe2O4 Nanoparticles Synthesized by the PEG-Assisted Route. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 424-430.	3.7	8
318	Green Chemical Synthesis of Silver Nanoparticles and its Catalytic Activity. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 401-406.	3.7	26
319	Synthesis and Characterization of Superparamagnetic Co3O4@ZnO Nanocomposite. Journal of Superconductivity and Novel Magnetism, 2014, 27, 1751-1755.	1.8	7
320	Solvothermal Synthesis of Pure SrFe12O19 Hexaferrite Nanoplatelets. Journal of Superconductivity and Novel Magnetism, 2014, 27, 877-880.	1.8	32
321	Solvothermal Synthesis of SrFe12O19 Hexaferrites: Without Calcinations. Journal of Superconductivity and Novel Magnetism, 2014, 27, 1593-1598.	1.8	19
322	Polyaniline–MnFe2O4-CTAB Nanocomposite in Ionic Liquid: Electrical Properties. Journal of Superconductivity and Novel Magnetism, 2014, 27, 1073-1078.	1.8	1
323	Magnetic, dielectric and microwave properties of M–Ti substituted barium hexaferrites (M=Mn2+,) Tj ETQq1 1	0.784314 4.8	rgBT/Overlo
324	Synthesis, characterization and catalytic activity of CoFe2O4-APTES-Pd magnetic recyclable catalyst. Journal of Alloys and Compounds, 2014, 582, 201-207.	5.5	38

#	Article	IF	Citations
325	Poly(amidoamine)-Grafted Superparamagnetic Iron Oxide Nanoparticles: Synthesis and Characterization. Journal of Superconductivity and Novel Magnetism, 2014, 27, 2097-2103.	1.8	5
326	Low temperature magnetic investigation of Fe3O4 nanoparticles filled into multiwalled carbon nanotubes. Synthetic Metals, 2014, 187, 75-80.	3.9	50
327	A novel green synthesis and characterization of Ag NPs with its ultra-rapid catalytic reduction of methyl green dye. Applied Surface Science, 2014, 290, 499-503.	6.1	66
328	Size Controlled Synthesis of CoFe2O4 Nanoparticles with Polyethylene Glycol. Journal of Superconductivity and Novel Magnetism, 2014, 27, 1309-1313.	1.8	2
329	Polyol Synthesis of Fe3 O 4@Tween20 Nanocomposite in Vaseline Oil. Journal of Superconductivity and Novel Magnetism, 2014, 27, 2835-2839.	1.8	4
330	Effect of zinc substitution on magneto-optical properties of Mn1â^'xZnxFe2O4/SiO2 nanocomposites. Ceramics International, 2014, 40, 13401-13408.	4.8	51
331	Fabrication and characterization of Fe 3 O 4 @APTES@PAMAM-Ag highly active and recyclable magnetic nanocatalyst: Catalytic reduction of 4-nitrophenol. Materials Research Bulletin, 2014, 60, 79-87.	5. 2	69
332	Synthesis and characterization of amoxicillin derived silver nanoparticles: Its catalytic effect on degradation of some pharmaceutical antibiotics. Applied Surface Science, 2014, 317, 914-922.	6.1	31
333	Synthesis and Characterization of Sulfamic-Acid Functionalized Magnetic Fe3O4 Nanoparticles Coated by Poly(amidoamine) Dendrimer. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 948-953.	3.7	7
334	Mn3O4@ZnO Core–Shell Nanocomposite: Synthesis and Characterization. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 531-535.	3.7	4
335	SrFe12O19/Zn0.65Ni0.25Cu0.1Fe2O4 Core–Shell Nanocomposite: Synthesis, Chracterization and Catalytic Activity in Aqueous Solution. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 722-728.	3.7	12
336	CoFe2O4–Pd (0) Nanocomposite: Magnetically Recyclable Catalyst. Journal of Superconductivity and Novel Magnetism, 2014, 27, 2041-2047.	1.8	24
337	Triethanolamine Assisted Hydrothermal Synthesis of Superparamagnetic Co3O4 Nanoparticles and Their Characterizations. Journal of Superconductivity and Novel Magnetism, 2014, 27, 2117-2122.	1.8	8
338	Magneto-optical properties of Culâ^xZnxFe2O4 nanoparticles. Superlattices and Microstructures, 2014, 74, 184-197.	3.1	44
339	Reversible immobilization of BSA on Cu-chelated PAMAM dendrimer modified iron oxide nanoparticles. Applied Surface Science, 2014, 314, 697-703.	6.1	12
340	Magnetic and Optical Properties of Mn1 \hat{a} °xZnxFe2O4 Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 729-736.	3.7	36
341	Negative Permittivity of Polyaniline–Fe3O4 Nanocomposite. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 306-314.	3.7	35
342	Synthesis and Characterization of Multiwall-Carbon Nanotubes Decorated with Nickel Ferrite Hybrid. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 489-498.	3.7	8

#	Article	IF	Citations
343	M-hexaferrite–APTES/Pd(0) Magnetically Recyclable Nano Catalysts (MRCs). Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 1274-1281.	3.7	12
344	The Electrical Properties of Polyaniline (PANI)–Co0.5Mn0.5Fe2O4 Nanocomposite. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 1089-1096.	3.7	11
345	Recyclable NiFe2O4–APTES/Pd Magnetic Nanocatalyst. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 937-943.	3.7	20
346	Electrical Properties of Triethylene Glycol Stabilized MnxCo1-xFe2O4 Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 690-702.	3.7	14
347	Synthesis and Characterization of Catalytically Activity Fe3o4–3-Aminopropyl-triethoxysilane/Pd Nanocomposite. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 409-417.	3.7	34
348	Microwave Absorption Properties of BaFe12O19-TiO2 Composite Coated with Conducting Polymer. Journal of Superconductivity and Novel Magnetism, 2013, 26, 1369-1373.	1.8	9
349	Yafet–Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	132
350	Reversible immobilization of invertase on Cu-chelated polyvinylimidazole-grafted iron oxide nanoparticles. Bioprocess and Biosystems Engineering, 2013, 36, 1807-1816.	3.4	6
351	Simple hydrothermal synthesis of Fe3O4-PEG nanocomposite. Open Chemistry, 2013, 11, 1527-1532.	1.9	26
352	Fluorescence and magnetic properties of hydrogels containing Fe3O4 nanoparticles. Journal of Molecular Structure, 2013, 1037, 361-366.	3.6	32
353	Multiwall-carbon nanotube/cobalt ferrite hybrid: Synthesis, magnetic and conductivity characterization. Current Applied Physics, 2013, 13, 1404-1412.	2.4	24
354	Green synthesis of superparamagnetic Fe3O4 nanoparticles with maltose: Its magnetic investigation. Polyhedron, 2013, 65, 282-287.	2.2	83
355	Sol–gel auto combustion synthesis of CoFe 2 O 4 /1-methyl-2-pyrrolidone nanocomposite: Its magnetic characterization. Ceramics International, 2013, 39, 6407-6413.	4.8	14
356	Temperature dependent magnetic properties of CoFe 2 O 4 /CTAB nanocomposite synthesized by sol–gel auto-combustion technique. Ceramics International, 2013, 39, 6551-6558.	4.8	96
357	Sol–gel auto-combustion synthesis of PVP/CoFe2O4 nanocomposite and its magnetic characterization. Materials Research Bulletin, 2013, 48, 4889-4895.	5.2	30
358	Grafted/ungrafted iron oxide and alginic acid–polyvinylimidazole nanocomposites: Synthesis and electrical properties. Materials Research Bulletin, 2013, 48, 3973-3980.	5.2	2
359	Magnetic hydrogel with high coercivity. Materials Research Bulletin, 2013, 48, 2751-2757.	5.2	6
360	Facile synthesis of PVA–MnFe2O4 nanocomposite: Its magnetic investigation. Materials Research Bulletin, 2013, 48, 4066-4071.	5.2	32

#	Article	IF	CITATIONS
361	Polyaniline (PANI)–Co0.5Mn0.5Fe2O4 nanocomposite: Synthesis, characterization and magnetic properties evaluation. Ceramics International, 2013, 39, 5137-5143.	4.8	47
362	Synthesis, Electrical and Magnetic Characterization of Polyacrylamide Hydrogels Including NiFe2O4 Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2013, 26, 213-218.	1.8	10
363	Synthesis and Characterization of High Catalytic Activity Magnetic Fe3O4 Supported Pd Nanocatalyst. Journal of Superconductivity and Novel Magnetism, 2013, 26, 165-171.	1.8	23
364	Effect of ionic liquids on the electrical and magnetic performance of polyaniline–nickel ferrite nanocomposite. Materials Research Bulletin, 2013, 48, 378-382.	5.2	31
365	Magnetic and spectroscopic properties of Polyacrylamide-CoFe2O4 magnetic hydrogel. Journal of Molecular Structure, 2013, 1036, 386-391.	3.6	11
366	Poly(glycidylmethacrylate-co-vinyl ferrocene)-grafted iron oxide nanoparticles as an electron transfer mediator for amperometric phenol detection. Current Applied Physics, 2013, 13, 1611-1619.	2.4	8
367	Potentiometric urea biosensor based on poly(glycidylmethacrylate)-grafted iron oxide nanoparticles. Current Applied Physics, 2013, 13, 280-286.	2.4	22
368	Acid Functionalized Multiwall Carbon Nanotube/Magnetite (MWCNT)-COOH/Fe3O4 Hybrid: Synthesis, Characterization and Conductivity Evaluation. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 726-735.	3.7	66
369	Triethylene glycol stabilized MnFe2O4 nanoparticle: Synthesis, magnetic and electrical characterization. Materials Research Bulletin, 2013, 48, 1057-1064.	5.2	39
370	Simple polyol route to synthesize heptanoic acid coated magnetite (Fe3O4) nanoparticles. Materials Research Bulletin, 2013, 48, 1296-1303.	5.2	22
371	Polyvinylpyrrolidone (PVP)/MnFe2O4 nanocomposite: Sol–Gel autocombustion synthesis and its magnetic characterization. Ceramics International, 2013, 39, 5651-5658.	4.8	58
372	Sol–gel auto combustion synthesis of CoFe2O4/1-methyl-2-pyrrolidone nanocomposite with ethylene glycol: Its magnetic characterization. Materials Research Bulletin, 2013, 48, 3247-3253.	5.2	26
373	Polymer Assisted Co-precipitation Synthesis and Characterization of Polyethylene Glycol (PEG)/CoFe2O4 Nanocomposite. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 592-598.	3.7	11
374	Cefditorene-Mediated Synthesis of Silver Nanoparticles and Its Catalytic Activity. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 970-975.	3.7	23
375	Magnetic metal nanoparticles coated polyacrylonitrile textiles as microwave absorber. Journal of Magnetism and Magnetic Materials, 2013, 327, 151-158.	2.3	56
376	Synthesis, structural, magnetic and electrical properties of Co1â°xZnxFe2O4 (x=0.0, 0.2) nanoparticles. Materials Research Bulletin, 2013, 48, 646-654.	5.2	26
377	Preparation and conductivities of polyacrylic acid/polyvinylimidazole grafted and ungrafted iron oxide nanocomposite polymer electrolytes. Open Chemistry, 2013, 11, 1768-1779.	1.9	0
378	The Ionic Liquid Based Synthesis of Polyaniline–MnFe2O4–CTAB Nanocomposite: Electrical Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 1335-1340.	3.7	8

#	Article	IF	CITATIONS
379	Synthesis of Polyaniline–MnFe2O4–CTAB Nanocomposite in Ionic Liquid: Its Magnetic Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 1368-1374.	3.7	9
380	RXTE and Swift observations of SWIFT J1729.9â°3437. Monthly Notices of the Royal Astronomical Society, 2013, 434, 2772-2778.	4.4	1
381	Effect of conducting polymer layer on microwave absorption properties of BaFe ₁₂ O ₁₉ TiO ₂ composite. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 395-402.	1.8	19
382	Structural and magnetic properties of triethylene glycol stabilized ZnxCo1â^xFe2O4 nanoparticles. Materials Research Bulletin, 2012, 47, 2442-2448.	5.2	54
383	Hydrothermal Synthesis and Characterization of PEG Stabilized Co3O4 nanoparticles. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2403-2406.	1.8	11
384	The Large Observatory for X-ray Timing (LOFT). Experimental Astronomy, 2012, 34, 415-444.	3.7	168
385	Preparation of PVP (Polyvinyl Pyrrolidone)/Ba-Sr Hexaferrites via Gel to Crystalline Method. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 1390-1397.	0.6	6
386	Synthesis and characterization of poly(1-vinyltriazole)-grafted superparamagnetic iron oxide nanoparticles. Synthetic Metals, 2012, 162, 590-597.	3.9	21
387	Surface spin disorder and spin-glass-like behaviour in manganese-substituted cobalt ferrite nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	87
388	Preparation of high quality, single domain BaFe12O19 particles by the citrate sol–gel combustion route with an initial Fe/Ba molar ratio of 4. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 949-955.	3.5	34
389	Synthesis, magnetic and electrical characteristics of poly(2-thiophen-3-yl-malonic acid)/Fe3O4 nanocomposite. Journal of Alloys and Compounds, 2012, 514, 45-53.	5.5	29
390	Structural and Magnetic Properties of Triethylene Glycol Stabilized Monodisperse Fe3O4 Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2415-2420.	1.8	15
391	Synthesis and characterization of Piperidine-4-carboxylic acid functionalized Fe3O4 nanoparticles as a magnetic catalyst for Knoevenagel reaction. Materials Research Bulletin, 2012, 47, 2480-2486.	5. 2	65
392	Synthesis and conductivity studies of piperidine-4-carboxylic acid functionalized Fe3O4 nanoparticles. Materials Research Bulletin, 2012, 47, 2193-2199.	5.2	18
393	Synthesis and characterization of NiFe2O4–Pd magnetically recyclable catalyst for hydrogenation reaction. Materials Research Bulletin, 2012, 47, 4316-4321.	5. 2	38
394	A novel amperometric phenol biosensor based on immobilized HRP on poly(glycidylmethacrylate)-grafted iron oxide nanoparticles for the determination of phenol derivatives. Sensors and Actuators B: Chemical, 2012, 173, 396-405.	7.8	52
395	Lowâ€ŧemperature synthesis of singleâ€domain Srâ€hexaferrite particles by solidâ€state reaction route. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2002-2013.	1.8	30
396	Synthesis and Characterization of Dendrimer-Encapsulated Iron and Iron-Oxide Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2012, 25, 1541-1549.	1.8	35

#	Article	IF	CITATIONS
397	Poly(vinyl phosphonic acid) (PVPA)–BaFe12O19 Nanocomposite. Journal of Superconductivity and Novel Magnetism, 2012, 25, 1185-1193.	1.8	14
398	A Green Chemical Synthesis and Characterization of Mn3O4 nanoparticles. Journal of Superconductivity and Novel Magnetism, 2012, 25, 1535-1539.	1.8	15
399	Triethylene Glycol Stabilized CoFe2O4 Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2012, 25, 1879-1892.	1.8	20
400	Polyol Approach for the Synthesis of Water Soluble Mn3O4 Nanoparticles Using PEG. Journal of Superconductivity and Novel Magnetism, 2012, 25, 1929-1935.	1.8	6
401	Effect of Fuel on the Synthesis and Properties of Poly(methyl methacrylate) Modified SrFe12O19 Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2012, 25, 1957-1963.	1.8	20
402	Synthesis and Characterization of PEG-Sr Hexaferrite by Sol–Gel Conversion. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2003-2008.	1.8	18
403	Hydrothermal Synthesis of SrFe12O19 and Its Characterization. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2081-2085.	1.8	33
404	Synthesis and characterization of polyvinylimidazole-grafted superparamagnetic iron oxide nanoparticles (Si-PVIm-grafted SPION). Journal of Nanoparticle Research, 2012, 14, 1.	1.9	3
405	RXTEâ€,timing analysis of the anomalous X-ray pulsar 1E 2259+586. Monthly Notices of the Royal Astronomical Society, 2012, 419, 3109-3114.	4.4	22
406	Synthesis, structural and electrical properties of triethylene glycol (TREG) stabilized Mn0.2Co0.8Fe2O4 NPs. Materials Research Bulletin, 2012, 47, 537-543.	5.2	35
407	Amperometric hydrogen peroxide biosensor based on cobalt ferrite–chitosan nanocomposite. Materials Science and Engineering C, 2012, 32, 269-275.	7.3	51
408	A comprehensive study of RXTE and INTEGRAL observations of the X-ray pulsar 4U 1907+09. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2079-2087.	4.4	18
409	Hydrothermal Synthesis and Characterization of PEG-Mn3O4 Nanocomposite. Nano-Micro Letters, 2011, 3, 25-33.	27.0	26
410	Effect of Hydrolyzing Agents on the Properties of Poly (Ethylene Glycol)-Fe3O4 Nanocomposite. Nano-Micro Letters, 2011, 3, 79-85.	27.0	30
411	Development of an Amperometric Hydrogen Peroxide Biosensor based on the Immobilization of Horseradish Peroxidase onto Nickel Ferrite Nanoparticle-Chitosan Composite. Nano-Micro Letters, 2011, 3, 91-98.	27.0	35
412	Conductivity Study of Polyaniline-Cobalt Ferrite (PANI-CoFe2O4) Nanocomposite. Nano-Micro Letters, 2011, 3, 99-107.	27.0	75
413	The Effect of Condensation on the Morphology and Magnetic Properties of Modified Barium Hexaferrite (BaFe12O19). Nano-Micro Letters, 2011, 3, 108-114.	27.0	18
414	Synthesis and characterization of l-carnosine coated iron oxide nanoparticles. Journal of Alloys and Compounds, 2011, 509, 2555-2561.	5.5	67

#	Article	IF	CITATIONS
415	Fabrication and characterization of dendrimer-encapsulated monometallic Co nanoparticles. Journal of Alloys and Compounds, 2011, 509, 5341-5348.	5.5	16
416	Synthesis, dielectric and magnetic characteristics of poly(1-vinyl-1,2,4-triazole) (PVTri)–barium hexaferrite composite. Journal of Alloys and Compounds, 2011, 509, 8199-8206.	5 . 5	27
417	Synthesis and characteristics of poly(3-pyrrol-1-ylpropanoic acid) (PPyAA)–Fe3O4 nanocomposite. Journal of Alloys and Compounds, 2011, 509, 8460-8468.	5 . 5	38
418	Synthesis and characterization of polypropiolate sodium (PPNa)–Fe3O4 nanocomposite. Journal of Alloys and Compounds, 2011, 509, 8825-8831.	5 . 5	21
419	Synthesis and characterization of dl-thioctic acid (DLTA)–Fe3O4 nanocomposite. Journal of Alloys and Compounds, 2011, 509, 9218-9225.	5 . 5	68
420	Preparation and characterization of polyaniline (PANI)–Mn3O4 nanocomposite. Physica B: Condensed Matter, 2011, 406, 1114-1120.	2.7	41
421	Viscous timescale in high mass X-ray binaries. Astronomy and Astrophysics, 2011, 529, A7.	5.1	7
422	Timing and X-ray spectral features of Swift J1626.6â^'5156. Monthly Notices of the Royal Astronomical Society, 2011, 415, 1523-1526.	4.4	13
423	A simple approach for the synthesis of Co3O4 nanocrystals. Inorganic Materials, 2011, 47, 426-430.	0.8	11
424	Synthesis and magnetic properties of a porphine-based photosynthesizer with magnetic nano-carriers. Polyhedron, 2011, 30, 2843-2848.	2.2	10
425	Synthesis, conductivity and magnetic properties of poly(N-pyrrole phosphonic acid)–Fe3O4 nanocomposite. Materials Chemistry and Physics, 2011, 131, 284-291.	4.0	25
426	Magnetic and dielectric properties of Mn0.2Ni0.8Fe2O4 nanoparticles synthesized by PEG-assisted hydrothermal method. Journal of Nanoparticle Research, 2011, 13, 2235-2244.	1.9	124
427	Synthesis and characterization of poly(1-vinyl-1,2,4-triazole) (PVTri)–barium hexaferrite nanocomposite. Physica B: Condensed Matter, 2011, 406, 2298-2302.	2.7	20
428	Inorganic–organic polymer electrolytes based on poly(vinyl alcohol) and borane/poly(ethylene) Tj ETQq0 0 0 rg	;BT,/Overlc	ock 10 Tf 50 2
429	Magnetic and dielectric characterization of alginic acid–Fe3O4 nanocomposite. Polyhedron, 2011, 30, 322-328.	2.2	28
430	Synthesis and characterization of poly(vinyl phosphonic acid) (PVPA)–Fe3O4 nanocomposite. Polyhedron, 2011, 30, 419-426.	2.2	48
431	Synthesis and characterization of poly(3-thiophene acetic acid)/Fe3O4 nanocomposite. Polyhedron, 2011, 30, 1120-1126.	2.2	38
432	Synthesis and characterization of poly(3-thiophenyl acetic acid) (P3TAA)–BaFe12O19 nanocomposite. Polyhedron, 2011, 30, 1349-1359.	2.2	33

#	Article	IF	Citations
433	Pulse Profiles of Swift J1626.6+5156., 2011,,.		O
434	PEG-Assisted Synthesis of Mn ₃ O ₄ Nanoparticles: A Structural and Magnetic Study. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 768-773.	0.6	9
435	Recent Spin Rate Measurements of 4U 1907+09., 2011, , .		0
436	The Effect of Condensation on the Morphology and Magnetic Properties of Modified Barium Hexaferrite (BaFe12O19)., 2011, 3, 108.		1
437	Development of an Amperometric Hydrogen Peroxide Biosensor based on the Immobilization of Horseradish Peroxidase onto Nickel Ferrite Nanoparticle-Chitosan Composite., 2011, 3, 91.		3
438	Hydrothermal Synthesis and Characterization of PEG-Mn3O4 Nanocomposite. Nano-Micro Letters, 2011, 3, 25.	27.0	6
439	THE ORBITAL PERIOD OF SWIFT J1626.6–5156. Astrophysical Journal, 2010, 711, 1306-1309.	4.5	14
440	The effect of neutralizing agent on the synthesis and characterization of Mn3O4 nanoparticles. Russian Journal of Inorganic Chemistry, 2010, 55, 1947-1952.	1.3	7
441	Sonochemical synthesis and chracterization of Mn3O4 nanoparticles. Open Chemistry, 2010, 8, 633-638.	1.9	20
442	Synthesis, structural and conductivity characterization of alginic acid–Fe3O4 nanocomposite. Journal of Nanoparticle Research, 2010, 12, 3039-3048.	1.9	78
443	Covalent immobilization of invertase on PAMAM-dendrimer modified superparamagnetic iron oxide nanoparticles. Journal of Nanoparticle Research, 2010, 12, 3057-3067.	1.9	73
444	Synthesis, conductivity and dielectric characterization of salicylic acid–Fe3O4 nanocomposite. Materials Chemistry and Physics, 2010, 123, 184-190.	4.0	111
445	CTAB-Mn3O4 nanocomposites: Synthesis, NMR and low temperature EPR studies. Polyhedron, 2010, 29, 1375-1380.	2.2	29
446	Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave-assisted combustion route. Journal of Magnetism and Magnetic Materials, 2010, 322, 866-871.	2.3	117
447	Dielectric and proton conductivity studies in organic electrolytes based on 2-perfluoroalkyl-ethyl-azides. Current Applied Physics, 2010, 10, 133-137.	2.4	4
448	Analysis of <i>RXTE </i> -PCA Observations of SMC X-1. Monthly Notices of the Royal Astronomical Society, 2010, 403, 378-386.	4.4	14
449	Synthesis and conductivity evaluation of PVTri–Fe3O4 nanocomposite. Journal of Non-Crystalline Solids, 2010, 356, 484-489.	3.1	50
450	Synthesis and characterization of polypyrrole–BaFe12O19 nanocomposite. Journal of Alloys and Compounds, 2010, 493, 481-485.	5 . 5	41

#	Article	IF	Citations
451	Synthesis and characterization of CuFe2O4 nanorods synthesized by polyol route. Journal of Alloys and Compounds, 2010, 493, 493-498.	5.5	74
452	Polyol synthesis of (polyvinylpyrrolidone) PVP–Mn3O4 nanocomposite. Journal of Alloys and Compounds, 2010, 502, 199-205.	5.5	55
453	Synthesis of protoporphyrin coated superparamagnetic iron oxide nanoparticles via dopamine anchor. Journal of Alloys and Compounds, 2010, 502, 439-444.	5.5	42
454	l-Histidine coated iron oxide nanoparticles: Synthesis, structural and conductivity characterization. Journal of Alloys and Compounds, 2010, 505, 172-178.	5.5	89
455	Optical and X-ray outbursts of Be/X-ray binary system SAX J2103.5+4545. Astronomy and Astrophysics, 2009, 508, 895-900.	5.1	8
456	Proton conductivity survey of the acid doped copolymers based on 4â€vinylbenzylboronic acid and 4(5)â€vinylimidazole. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1267-1274.	2.1	11
457	Recent torque reversal of $4U\hat{a} \in f$ 1907+09. Monthly Notices of the Royal Astronomical Society, 2009, 395, 1015-1020.	4.4	15
458	<i>RXTE</i> -PCA observations of XMMU J054134.7â^'682550. Monthly Notices of the Royal Astronomical Society, 2009, 395, 1662-1668.	4.4	8
459	Ovalbumin mediated synthesis of Mn3O4. Polyhedron, 2009, 28, 2119-2122.	2.2	30
460	Structural and magnetic properties of CoxZn1â^'xFe2O4 nanocrystals synthesized by microwave method. Polyhedron, 2009, 28, 2887-2892.	2.2	217
461	Synthesis and magnetic characterization of Zn0.6Ni0.4Fe2O4 nanoparticles via a polyethylene glycol-assisted hydrothermal route. Journal of Magnetism and Magnetic Materials, 2009, 321, 157-162.	2.3	119
462	Reflux synthesis of Co3O4 nanoparticles and its magnetic characterization. Journal of Magnetism and Magnetic Materials, 2009, 321, 2145-2149.	2.3	110
463	Synthesis and characterization of CoxZn1â^'xFe2O4 magnetic nanoparticles via a PEG-assisted route. Journal of Magnetism and Magnetic Materials, 2009, 321, 2170-2177.	2.3	190
464	Synthesis of Co3O4 nanoparticles by oxidation-reduction method and its magnetic characterization. Open Chemistry, 2009, 7, 410-414.	1.9	15
465	A green chemical route for the synthesis of Mn3O4 nanoparticles. Open Chemistry, 2009, 7, 555-559.	1.9	19
466	Characterization of NiFe2O4 nanoparticles synthesized by various methods. Chemical Papers, 2009, 63,	2.2	65
467	Synthesis of Fe3O4 nanoparticles at 100°C and its magnetic characterization. Journal of Alloys and Compounds, 2009, 472, 18-23.	5.5	237
468	Cation distribution and magnetic properties of Zn doped NiFe2O4 nanoparticles synthesized by PEG-assisted hydrothermal route. Journal of Alloys and Compounds, 2009, 479, 49-55.	5.5	223

#	Article	IF	CITATIONS
469	l-lysine coated iron oxide nanoparticles: Synthesis, structural and conductivity characterization. Journal of Alloys and Compounds, 2009, 484, 371-376.	5.5	129
470	Microwave synthesis and characterization of Zn-doped nickel ferrite nanoparticles. Journal of Alloys and Compounds, 2009, 486, 325-329.	5.5	175
471	Synthesis and NMR studies of the polymer membranes based on poly(4-vinylbenzylboronic acid) and phosphoric acid. Polymer, 2008, 49, 3859-3864.	3.8	26
472	A novel synthetic route to Mn3O4 nanoparticles and their magnetic evaluation. Physica B: Condensed Matter, 2008, 403, 3760-3764.	2.7	96
473	Microwave-induced combustion synthesis and characterization of NixCo1â^'xFe2O4 nanocrystals (x =) Tj ETQq1 1	0.784314	t ggBT /Ove
474	2-pyrrolidone - capped Mn3O4 nanocrystals. Open Chemistry, 2008, 6, 465-469.	1.9	17
475	X-ray powder diffraction, FTIR, and raman study of strontium boroarsenate, SrBAsO5. Russian Journal of Inorganic Chemistry, 2008, 53, 1009-1012.	1.3	2
476	Synthesis and characterization of ZnFe2O4 magnetic nanoparticles via a PEG-assisted route. Journal of Alloys and Compounds, 2008, 462, 209-213.	5.5	129
477	CTAB-assisted hydrothermal synthesis of NiFe2O4 and its magnetic characterization. Journal of Alloys and Compounds, 2008, 464, 514-518.	5.5	155
478	Recent RXTE/ASM and ROTSEIIId observations of EXO 2030+375 (V2246 Cygni). Astronomy and Astrophysics, 2008, 479, 301-306.	5.1	6
479	Optical observations of the Be/X-ray transient system KS 1947+300. Astronomische Nachrichten, 2007, 328, 142-145.	1.2	2
480	Timing studies on RXTE observations of SAX J2103.5+4545. Monthly Notices of the Royal Astronomical Society, 2007, 374, 1108-1114.	4.4	30
481	Benzimidazole tethered proton conducting organic electrolytes. Materials Chemistry and Physics, 2007, 105, 240-244.	4.0	10
482	Microwave-assisted combustion synthesis of CoFe2O4 with urea, and its magnetic characterization. Scripta Materialia, 2007, 57, 441-444.	5.2	156
483	Low temperature synthesis and characterization of Mn3O4 nanoparticles. Open Chemistry, 2007, 5, 169-176.	1.9	23
484	Synthesis and magnetic properties of octahedral ferrite NiχCo1â^χ Fe2O4 nanocrystals. Open Chemistry, 2007, 5, 570-580.	1.9	54
485	Synthesis, characterization and magnetic investigation of (NH4)0.5Mn1.25(H2O)2[BP2O8]·0.5H2O. Open Chemistry, 2007, 5, 536-545.	1.9	3
486	An investigation of the proton conductivities of hydrated poly(vinyl alcohol)/boric acid complex electrolytes. Ionics, 2007, 13, 263-266.	2.4	30

#	Article	IF	CITATIONS
487	Optical variabilities in the Be/X-ray binary system. Astronomy and Astrophysics, 2007, 470, 1023-1029.	5.1	7
488	Recent timing studies on RXTE observations of 4UÂ1538-52. Astronomy and Astrophysics, 2006, 453, 1037-1040.	5.1	13
489	Evidence of a change in the long-term spin-down rate of the X-ray pulsar 4U 1907+09. Monthly Notices of the Royal Astronomical Society, 2006, 369, 1760-1764.	4.4	14
490	Pulsar braking indices, glitches and energy dissipation in neutron stars. Monthly Notices of the Royal Astronomical Society, 2006, 372, 489-496.	4.4	46
491	ROTSE Observations of the Young Cluster IC 348. Astronomical Journal, 2005, 130, 2766-2777.	4.7	19
492	Proton conduction in adipic acid/benzimidazole hybrid electrolytes. Physica B: Condensed Matter, 2005, 364, 279-284.	2.7	28
493	X-ray spectral evolution of Her X-1 in a low state and the following short high state. Monthly Notices of the Royal Astronomical Society, 2005, 361, 1393-1398.	4.4	13
494	X-ray outburst of 4U 0115+634 and ROTSE observations of its optical counterpart V635 Cas. Astronomy and Astrophysics, 2005, 439, 1131-1134.	5.1	7
495	Discussion on the Structure of Boron Containing Apatite. Key Engineering Materials, 2004, 264-268, 2017-2022.	0.4	3
496	Synthesis and characterisation of 1,3-bis(2-benzimidazyl)-2-thiapropane, 1,5-bis(2-benzimidazyl)-3-thiapentane ligands and their PdCl2complexes. Transition Metal Chemistry, 2004, 29, 159-163.	1.4	8
497	Discovery of a Soft Spectral Component and Transient 22.7 Second Quasiâ€periodic Oscillations of SAX J2103.5+4545. Astrophysical Journal, 2004, 616, 463-468.	4.5	24
498	Measurements of isomeric cross sections for (n,2n) reaction on 140Ce, 142Nd and 144Sm isotopes around 14 MeV. Annals of Nuclear Energy, 2003, 30, 1539-1547.	1.8	15
499	Einstein spaces in warped geometries in five dimensions. Physical Review D, 2003, 68, .	4.7	8
500	Xâ€Ray Spectra and Pulse Frequency Changes in SAX J2103.5+4545. Astrophysical Journal, 2002, 569, 903-910.	4.5	41
501	The steady spin-down rate of 4U 1907+09. Monthly Notices of the Royal Astronomical Society, 2001, 327, 1269-1272.	4.4	19
502	Synthesis of Strontium Borophosphate, SrBPO5 by Solid State and Hydrothermal Methods and Characterisation. Crystal Research and Technology, 2000, 35, 247-254.	1.3	26
503	Short-term pulse frequency fluctuations of OAO 1657-415 from RXTE observations. Monthly Notices of the Royal Astronomical Society, 2000, 313, 637-640.	4.4	14
504	X-ray powder diffraction and IR study of NaMg(H2O)2[BP2O8]·H2O and NH4Mg(H2O)2[BP2O8]·H2O. Journal of Materials Science, 2000, 35, 4621-4626.	3.7	23

#	Article	IF	CITATIONS
505	Melatonin Modulates Mesenteric Blood Flow and TNFalpha Concentrations after Lipopolysaccharide Challenge. The European Journal of Surgery, 2000, 166, 722-727.	0.9	25
506	An Experimental Study of the Adhesive Potential of Different Meshes. The European Journal of Surgery, 2000, 166, 490-494.	0.9	14
507	Adrenalin tolerance does not prevent bacterial translocation in a murine burn model. International Surgery, 2000, 85, 18-22.	0.1	2
508	The timing noise of PSR 0823+26, 1706-16, 1749-28, 2021+51 and the anomalous braking indices. Monthly Notices of the Royal Astronomical Society, 1999, 306, 207-212.	4.4	25
509	Spin down and oscillations in 4U 1907+09: a retrograde disk?. Nuclear Physics, Section B, Proceedings Supplements, 1999, 69, 224-227.	0.4	2
510	Solid-State Synthesis, X-ray Powder Investigation and IR Study of α-Mg3[BPO7]. Journal of the European Ceramic Society, 1998, 18, 2241-2246.	5.7	22
511	Recent Xâ€Ray Measurements of the Accretionâ€powered Pulsar 4U 1907+09. Astrophysical Journal, 1998, 496, 386-394.	4.5	55
512	Dipping Activity in the X-Ray Pulsar 4U 1907+09. Astrophysical Journal, 1997, 479, L47-L50.	4.5	28
513	Effects of Polyglycolic Acid and Polypropylene Meshes on Postoperative Adhesion Formation in Mice. World Journal of Surgery, 1997, 21, 579-583.	1.6	36
514	Ozone concentrations at a rural mountain site of Northwestern Turkey. Water, Air, and Soil Pollution, 1996, 91, 219-232.	2.4	1
515	Pulse Arrival Time Glitches in GRO J1744â^'28. Astrophysical Journal, 1996, 470, L109-L112.	4.5	21
516	Distribution of aortic mechanical prosthetic valve closure sound model parameters on the surface of the chest. IEEE Transactions on Biomedical Engineering, 1995, 42, 358-370.	4.2	25
517	Expectancy of large pulsar glitches: a comparison of models with the observed glitch sample. Monthly Notices of the Royal Astronomical Society, 1994, 269, 849-856.	4.4	30
518	Measurement of NOx, SO2, SPM, and O3at a High Altitude Station in Northwestern Turkey. Israel Journal of Chemistry, 1994, 34, 403-409.	2.3	3
519	The noise in the 35-d cycle of Her X-1. Monthly Notices of the Royal Astronomical Society, 1993, 265, 347-350.	4.4	7
520	Comparative time domain modelling of natural heart valve and mechanical heart valve sounds. , 1988, , .		0
521	Study on the generation of closing sound from metallic prosthetic heart valve implants. , 0, , .		3
522	Energy Distribution Of The Resonance Components Of Pcg Signals On The Surface Of The Chest., 0,,.		3

#	Article	IF	CITATIONS
523	Use Of Signal Averaging In Analysis Of The Digital Phonocardiograms. , 0, , .		O
524	Adsorption of industrial Acid Red 114 onto Fe3O4@Histidine magnetic nanocomposite., 0, 60, 262-268.		2
525	Effect of Er3+ and Y3+ ions co-substitution on conductivity and dielectric features of Mn-Zn nanosized spinel ferrites. Journal of Materials Science: Materials in Electronics, 0, , 1.	2.2	O