Luis Caraballo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4887107/publications.pdf

Version: 2024-02-01

105 4,512 35
papers citations h-index

109 109 109 5035 all docs citations times ranked citing authors

63

g-index

#	Article	IF	CITATIONS
1	Structural and allergenic properties of the fatty acid binding protein from shrimp <i>Litopenaeus vannamei</i> . Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1534-1544.	5.7	9
2	ARIA digital anamorphosis: Digital transformation of health and care in airway diseases from research to practice. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 168-190.	5.7	46
3	Helminth-derived cystatins: the immunomodulatory properties of an <i>Ascaris lumbricoides</i> cystatin. Parasitology, 2021, 148, 1744-1756.	1.5	7
4	Perinatal and Early-Life Nutrition, Epigenetics, and Allergy. Nutrients, 2021, 13, 724.	4.1	82
5	Are the Terms Major and Minor Allergens Useful for Precision Allergology?. Frontiers in Immunology, 2021, 12, 651500.	4.8	30
6	Allergological Importance of Invertebrate Glutathione Transferases in Tropical Environments. Frontiers in Allergy, 2021, 2, 695262.	2.8	4
7	Genotyping of Ascaris spp. infecting humans and pigs in Italy, Slovakia and Colombia. Infection, Genetics and Evolution, 2021, 94, 104997.	2.3	2
8	Costâ€effectiveness of the subcutaneous house dust mite allergen immunotherapy plus pharmacotherapy for allergic asthma: A mathematical model. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2229-2233.	5.7	8
9	Editorial: Allergens and Allergic Sensitization in Asia and the Tropics. Frontiers in Allergy, 2021, 2, 808044.	2.8	O
10	Next-generation Allergic Rhinitis and Its Impact on Asthma (ARIA) guidelines for allergic rhinitis based on Grading of Recommendations Assessment, Development and Evaluation (GRADE) and real-world evidence. Journal of Allergy and Clinical Immunology, 2020, 145, 70-80.e3.	2.9	272
11	IgE Levels to Ascaris and House Dust Mite Allergens Are Associated With Increased Histone Acetylation at Key Type-2 Immune Genes. Frontiers in Immunology, 2020, 11, 756.	4.8	10
12	The allergenic activity and clinical impact of individual IgE-antibody binding molecules from indoor allergen sources. World Allergy Organization Journal, 2020, 13, 100118.	3 . 5	38
13	A WAO â€" ARIA â€" GA2LEN consensus document on molecular-based allergy diagnosis (PAMD@): Update 2020. World Allergy Organization Journal, 2020, 13, 100091.	3.5	76
14	Serum amyloid A is a soluble pattern recognition receptor that drives type 2 immunity. Nature Immunology, 2020, 21, 756-765.	14.5	63
15	Personalized medicine for asthma in tropical regions. Current Opinion in Allergy and Clinical Immunology, 2020, 20, 268-273.	2.3	2
16	Identification and Physicochemical Characterization of a New Allergen from Ascaris lumbricoides. International Journal of Molecular Sciences, 2020, 21, 9761.	4.1	5
17	Ascaris lumbricoides Cystatin Prevents Development of Allergic Airway Inflammation in a Mouse Model. Frontiers in Immunology, 2019, 10, 2280.	4.8	24
18	Next-generation care pathways for allergic rhinitis and asthma multimorbidity: a model for multimorbid non-communicable diseasesâ€"Meeting Report (Part 1). Journal of Thoracic Disease, 2019, 11, 3633-3642.	1.4	11

#	Article	IF	Citations
19	Next-generation care pathways for allergic rhinitis and asthma multimorbidity: a model for multimorbid non-communicable diseases—Meeting Report (Part 2). Journal of Thoracic Disease, 2019, 11, 4072-4084.	1.4	15
20	An Engineered Hybrid Protein from Dermatophagoides pteronyssinus Allergens Shows Hypoallergenicity. International Journal of Molecular Sciences, 2019, 20, 3025.	4.1	12
21	House Dust Mite Allergy Under Changing Environments. Allergy, Asthma and Immunology Research, 2019, 11, 450.	2.9	94
22	Evaluation of the allergenic activity of the Glutathione Transferase from Blomia tropicalis (Blo t 8) in a mouse model of airway inflammation. Journal of Allergy and Clinical Immunology, 2019, 143, AB187.	2.9	2
23	Identification of B Cell Epitopes of Blo t 13 Allergen and Cross-Reactivity with Human Adipocytes and Heart Fatty Acid Binding Proteins. International Journal of Molecular Sciences, 2019, 20, 6107.	4.1	11
24	Hygienic conditions influence sensitization to <i>Blomia tropicalis</i> allergenic components: Results from the FRAAT birth cohort. Pediatric Allergy and Immunology, 2019, 30, 172-178.	2.6	17
25	Ascariasis as a model to study the helminth/allergy relationships. Parasite Immunology, 2019, 41, e12595.	1.5	19
26	Description of a New Allergenic Member of the Glutathione Transferase (GST) Family from Ascaris with Omega-Class Features. Journal of Allergy and Clinical Immunology, 2018, 141, AB176.	2.9	2
27	Characterization of a hybrid protein designed with segments of allergens from Blomia tropicalis and Dermatophagoides pteronyssinus. Immunology Letters, 2018, 196, 103-112.	2.5	10
28	Ascaris Suum Infection Downregulates Inflammatory Pathways in the Pig Intestine In Vivo and in Human Dendritic Cells In Vitro. Journal of Infectious Diseases, 2018, 217, 310-319.	4.0	32
29	The tropics, helminth infections and hygiene hypotheses. Expert Review of Clinical Immunology, 2018, 14, 99-102.	3.0	21
30	Parasite allergens. Molecular Immunology, 2018, 100, 113-119.	2.2	23
31	Health care costs and resource utilization for different asthma severity stages in Colombia: a claims data analysis. World Allergy Organization Journal, 2018, 11, 26.	3.5	40
32	Gut microbiota components are associated with fixed airway obstruction in asthmatic patients living in the tropics. Scientific Reports, 2018, 8, 9582.	3.3	16
33	Ascaris lumbricoides infection induces both, reduction and increase of asthma symptoms in a rural community. Acta Tropica, 2018, 187, 1-4.	2.0	25
34	Mite allergens. Expert Review of Clinical Immunology, 2017, 13, 297-299.	3.0	10
35	Allergens involved in the cross-reactivity of Aedes aegypti with other arthropods. Annals of Allergy, Asthma and Immunology, 2017, 118, 710-718.	1.0	14
36	A recombinant cystatin from <i>Ascaris lumbricoides</i> attenuates inflammation of DSSâ€induced colitis. Parasite Immunology, 2017, 39, e12425.	1.5	36

#	Article	IF	CITATIONS
37	International consensus (ICON) on: clinical consequences of mite hypersensitivity, a global problem. World Allergy Organization Journal, 2017, 10, 14.	3.5	80
38	Severe asthma and quality of life. World Allergy Organization Journal, 2017, 10, 28.	3.5	63
39	Proanthocyanidins inhibit Ascaris suum glutathione-S-transferase activity and increase susceptibility of larvae to levamisole in vitro. Parasitology International, 2016, 65, 336-339.	1.3	12
40	Particularities of allergy in the Tropics. World Allergy Organization Journal, 2016, 9, 20.	3.5	101
41	Reply to  Comments on IgE responses to <i>Ascaris</i> and mite tropomyosins are risk factors for asthma'. Clinical and Experimental Allergy, 2016, 46, 181-181.	2.9	0
42	EAACI Molecular Allergology User's Guide. Pediatric Allergy and Immunology, 2016, 27, 1-250.	2.6	642
43	A continuum of admixture in the Western Hemisphere revealed by the African Diaspora genome. Nature Communications, 2016, 7, 12522.	12.8	136
44	Risk and safety requirements for diagnostic and therapeutic procedures in allergology: World Allergy Organization Statement. World Allergy Organization Journal, 2016, 9, 33.	3.5	87
45	Identification and Characterization of IgE-Binding Tropomyosins in <i>Aedes aegypti</i> . International Archives of Allergy and Immunology, 2016, 170, 46-56.	2.1	19
46	Genetic Variants in CHIA and CHI3L1 Are Associated with the IgE Response to the Ascaris Resistance Marker ABA-1 and the Birch Pollen Allergen Bet v 1. PLoS ONE, 2016, 11, e0167453.	2.5	12
47	lgE responses to <i>Ascaris</i> and mite tropomyosins are risk factors for asthma. Clinical and Experimental Allergy, 2015, 45, 1189-1200.	2.9	62
48	The IgE response to Ascaris molecular components is associated with clinical indicators of asthma severity. World Allergy Organization Journal, 2015, 8, 8.	3.5	52
49	Human Ascariasis Increases the Allergic Response and Allergic Symptoms. Current Tropical Medicine Reports, 2015, 2, 224-232.	3.7	12
50	Analysis of glutathione S-transferase allergen cross-reactivity in a North American population: RelevanceAfor molecular diagnosis. Journal of Allergy and Clinical Immunology, 2015, 136, 1369-1377.	2.9	52
51	Mites and Allergy. Chemical Immunology and Allergy, 2014, 100, 234-242.	1.7	58
52	The Influence of Chitin on the Immune Response to the House Dust Mite Allergen Blo t 12. International Archives of Allergy and Immunology, 2014, 163, 119-129.	2.1	30
53	The strength of the antibody response to the nematode Ascaris lumbricoides inversely correlates with levels of B-Cell Activating Factor (BAFF). BMC Immunology, 2014, 15, 22.	2.2	6
54	The biodiversity hypothesis and allergic disease: world allergy organization position statement. World Allergy Organization Journal, 2013, 6, 3.	3.5	282

#	Article	IF	CITATIONS
55	African Ancestry is a Risk Factor for Asthma and High Total IgE Levels in African Admixed Populations. Genetic Epidemiology, 2013, 37, 393-401.	1.3	46
56	Ascaris and Allergy. , 2013, , 21-50.		6
57	Early life <scp>I</scp> g <scp>E</scp> responses in children living in the tropics: A prospective analysis. Pediatric Allergy and Immunology, 2013, 24, 788-797.	2.6	29
58	Proteomic and Immunochemical Characterization of Glutathione Transferase as a New Allergen of the Nematode Ascaris lumbricoides. PLoS ONE, 2013, 8, e78353.	2.5	57
59	Prevalence of asthma and other allergic conditions in Colombia 2009–2010: a cross-sectional study. BMC Pulmonary Medicine, 2012, 12, 17.	2.0	133
60	Particular characteristics of allergic symptoms in tropical environments: follow up to 24 months in the FRAAT birth cohort study. BMC Pulmonary Medicine, 2012, 12, 13.	2.0	43
61	The evolution of the Th2 immune responses and its relationships with parasitic diseases and allergy. Biomedica, 2011, 32, .	0.7	2
62	Allergy in the tropics the impact of cross-reactivity between mites and ascaris. Frontiers in Bioscience - Elite, 2011, E3, 51-64.	1.8	26
63	New Allergens of Relevance in Tropical Regions: The Impact of Ascaris lumbricoides Infections. World Allergy Organization Journal, 2011, 4, 77-84.	3.5	24
64	lgE crossâ€reactivity between <i>Ascaris lumbricoides</i> and mite allergens: possible influences on allergic sensitization and asthma. Parasite Immunology, 2011, 33, 309-321.	1.5	57
65	Allergenicity of <i>Ascaris lumbricoides</i> Tropomyosin and IgE Sensitization among Asthmatic Patients in a Tropical Environment. International Archives of Allergy and Immunology, 2011, 154, 195-206.	2.1	58
66	The C-509T Promoter Polymorphism of the Transforming Growth Factor Beta-1 Gene Is Associated with Levels of Total and Specific IgE in a Colombian Population. International Archives of Allergy and Immunology, 2010, 151, 237-246.	2.1	5
67	A Six-SNP Haplotype of <i>ADAM33 </i> Is Associated with Asthma in a Population of Cartagena, Colombia. International Archives of Allergy and Immunology, 2010, 152, 32-40.	2.1	34
68	Increased total and mite-specific immunoglobulin E in patients with aspirin-induced urticaria and angioedema. Journal of Investigational Allergology and Clinical Immunology, 2010, 20, 139-45.	1.3	25
69	African ancestry is associated with risk of asthma and high total serum IgE in a population from the Caribbean Coast of Colombia. Human Genetics, 2009, 125, 565-579.	3.8	62
70	Immunological characterization of a Blo t 12 isoallergen: identification of immunoglobulin E epitopes. Clinical and Experimental Allergy, 2009, 39, 608-616.	2.9	30
71	Association of <i>Gâ€proteinâ€coupled receptor 154</i> with asthma and total IgE in a population of the Caribbean coast of Colombia. Clinical and Experimental Allergy, 2009, 39, 1558-1568.	2.9	23
72	Association between total immunoglobulin E and antibody responses to naturally acquired <i>Ascaris lumbricoides</i> infection and polymorphisms of immune system-related <i>LIG4</i> , <i>TNFSF13B</i> and <i>IRS2</i> genes. Clinical and Experimental Immunology, 2009, 157, 282-290.	2.6	49

#	Article	IF	CITATIONS
73	lgE crossâ€reactivity between <i>Ascaris</i> and domestic mite allergens: the role of tropomyosin and the nematode polyprotein ABAâ€1. Allergy: European Journal of Allergy and Clinical Immunology, 2009, 64, 1635-1643.	5 . 7	96
74	The A-444C polymorphism in the leukotriene C4 synthase gene is associated with aspirin-induced urticaria. Journal of Investigational Allergology and Clinical Immunology, 2009, 19, 375-82.	1.3	34
75	Genetic Data Analysis of Nine STRs in Two Caribbean Colombian Populations: César and Guajira. Journal of Forensic Sciences, 2008, 53, 254-255.	1.6	0
76	Gene Encoding Duffy Antigen/Receptor for Chemokines Is Associated with Asthma and IgE in Three Populations. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 1017-1022.	5.6	51
77	The A-444C polymorphism of leukotriene C4 synthase gene is associated with IgE antibodies to Dermatophagoides pteronyssinus in a Colombian population. Journal of Allergy and Clinical Immunology, 2007, 119, 505-507.	2.9	23
78	The Prevalence of IgE Antibodies to Ascaris in Asthmatic Patients Living in a Tropical Environment. Journal of Allergy and Clinical Immunology, 2007, 119, S210.	2.9	3
79	A NOS1 Gene Polymorphism Associated with Asthma and Specific Immunoglobulin E Response to Mite Allergens in a Colombian Population. International Archives of Allergy and Immunology, 2007, 144, 105-113.	2.1	25
80	Y chromosome STR haplotypes in the Caribbean city of Cartagena (Colombia). Forensic Science International, 2007, 167, 62-69.	2.2	20
81	Analysis of STR loci in Cartagena, a Caribbean city of Colombia. Forensic Science International, 2006, 160, 221-223.	2.2	3
82	Autosomic STR population data in two Caribbean samples from Colombia. Forensic Science International, 2005, 152, 79-81.	2.2	4
83	Allergenic composition of the miteSuidasia medanensisand cross-reactivity withBlomia tropicalis. Allergy: European Journal of Allergy and Clinical Immunology, 2005, 60, 41-47.	5.7	21
84	Importance of including Blomia tropicalis in the routine diagnosis of Venezuelan patients with persistent allergic symptoms. Allergy: European Journal of Allergy and Clinical Immunology, 2004, 59, 753-757.	5.7	26
85	A novel promoter polymorphism in the gene encoding complement component 5 receptor 1 on chromosome $19q13.3$ is not associated with asthma and atopy in three independent populations. Clinical and Experimental Allergy, 2004, 34, 736-744.	2.9	13
86	Asthma and other allergic conditions in Colombia: a study in 6 cities. Annals of Allergy, Asthma and Immunology, 2004, 93, 568-574.	1.0	82
87	Blo t 13 allergen from Blomia tropicalis shows high frequency of IgE binding in allergic cuban patients and cross-reactivity with Dermatophagoides siboney extract. Journal of Allergy and Clinical Immunology, 2003, 111 , 5325 .	2.9	2
88	Monoclonal Antibodies against Blo t 13, a Recombinant Allergen from <i>Blomia tropicalis</i> . International Archives of Allergy and Immunology, 2002, 129, 212-218.	2.1	9
89	Life-cycle of Suidasia medanensis (=pontifica) (Acari: Suidasiidae) under laboratory conditions in a tropical environment. Experimental and Applied Acarology, 2001, 25, 751-755.	1.6	12
90	Structural and Ligand Binding Analysis of Recombinant Blo t 13 Allergen from Blomia tropicalis Mite, a Fatty Acid Binding Protein. International Archives of Allergy and Immunology, 1999, 119, 181-184.	2.1	31

#	Article	IF	CITATIONS
91	HLA-B27 subtypes in patients with ankylosing spondylitis (As) in Colombia. Revista De Investigacion Clinica, 1999, 51, 221-6.	0.4	8
92	Asthma Mortality in Colombia. Annals of Allergy, Asthma and Immunology, 1998, 80, 55-60.	1.0	23
93	Analysis of the Cross–Reactivity between BtM and Der p 5, Two Group 5 Recombinant Allergens from Blomia tropicalis and Dermatophagoides pteronyssinus. International Archives of Allergy and Immunology, 1998, 117, 38-45.	2.1	28
94	Sensitization to mite allergens and acute asthma in a tropical environment. Journal of Investigational Allergology and Clinical Immunology, 1998, 8, 281-4.	1.3	43
95	Cloning and IgE Binding of a Recombinant Allergen from the Mite <i>Blomia tropicalis</i> , Homologous with Fatty Acid-Binding Proteins. International Archives of Allergy and Immunology, 1997, 112, 341-347.	2.1	62
96	Cloning and expression of complementary DNA coding for an allergen with common antibody-binding specificities with three allergens of the house dust mite Blomia tropicalisâ~†, â~†â~†, â~, â~ â~ Journal of Allergy Clinical Immunology, 1996, 98, 573-579.	y a r 9 d	27
97	Sequential determinations of. Journal of Allergy and Clinical Immunology, 1996, 97, 689-691.	2.9	30
98	Nucleotide sequence analysis of a complementary DNA coding for a Blomia tropicalis allergen. Journal of Allergy and Clinical Immunology, 1996, 98, 932-937.	2.9	45
99	Sequential determinations of Dermatophagoides spp. allergens in a tropical city. Journal of Investigational Allergology and Clinical Immunology, 1996, 6, 98-102.	1.3	11
100	Identification of allergens from the miteBlomia tropicalis. Clinical and Experimental Allergy, 1994, 24, 1056-1060.	2.9	52
101	Sensitization to <i>Chortoglyphus arcuatus</i> and <i>Aleuroglyphus ovatus</i> in <i>Dermatophagoides</i> spp. allergic individuals. Clinical and Experimental Allergy, 1993, 23, 117-123.	2.9	33
102	Mite fauna, Der p I, Der f I and Blomia tropicalis allergen levels in a tropical environment. Clinical and Experimental Allergy, 1993, 23, 292-297.	2.9	112
103	Mite allergy in the tropics: sensitization to six domestic mite species in Cartagena, Colombia. Journal of Investigational Allergology and Clinical Immunology, 1993, 3, 198-204.	1.3	27
104	Cutaneous sensitivity to six mite species in asthmatic patients from five Latin American countries. Journal of Investigational Allergology and Clinical Immunology, 1993, 3, 245-9.	1.3	29
105	Prevalence of asthma in a tropical city of Colombia. Annals of Allergy, 1992, 68, 525-9.	0.5	19