
Leonard H Van Den Berg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4887028/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systematic identification of trans eQTLs as putative drivers of known disease associations. Nature Genetics, 2013, 45, 1238-1243.	21.4	1,544
2	Amyotrophic lateral sclerosis. Nature Reviews Disease Primers, 2017, 3, 17071.	30.5	885
3	Amyotrophic lateral sclerosis. Lancet, The, 2017, 390, 2084-2098.	13.7	867
4	Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science, 2015, 347, 1436-1441.	12.6	823
5	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	8.1	517
6	Clinical diagnosis and management of amyotrophic lateral sclerosis. Nature Reviews Neurology, 2011, 7, 639-649.	10.1	503
7	Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1043-1048.	21.4	494
8	Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nature Medicine, 2018, 24, 313-325.	30.7	445
9	Microglia innately develop within cerebral organoids. Nature Communications, 2018, 9, 4167.	12.8	405
10	Disease variants alter transcription factor levels and methylation of their binding sites. Nature Genetics, 2017, 49, 131-138.	21.4	390
11	Identification of context-dependent expression quantitative trait loci in whole blood. Nature Genetics, 2017, 49, 139-145.	21.4	363
12	Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model. Lancet Neurology, The, 2018, 17, 423-433.	10.2	342
13	Exome-wide Rare Variant Analysis Identifies TUBA4A Mutations Associated with Familial ALS. Neuron, 2014, 84, 324-331.	8.1	308
14	Analysis of amyotrophic lateral sclerosis as a multistep process: a population-based modelling study. Lancet Neurology, The, 2014, 13, 1108-1113.	10.2	302
15	Amyotrophic lateral sclerosis: moving towards a new classification system. Lancet Neurology, The, 2016, 15, 1182-1194.	10.2	301
16	Detection of long repeat expansions from PCR-free whole-genome sequence data. Genome Research, 2017, 27, 1895-1903.	5.5	277
17	Multidisciplinary ALS care improves quality of life in patients with ALS. Neurology, 2005, 65, 1264-1267.	1.1	273
18	Population based epidemiology of amyotrophic lateral sclerosis using capture-recapture methodology. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1165-1170.	1.9	273

#	Article	IF	CITATIONS
19	A proposal for new diagnostic criteria for ALS. Clinical Neurophysiology, 2020, 131, 1975-1978.	1.5	268
20	A randomized sequential trial of creatine in amyotrophic lateral sclerosis. Annals of Neurology, 2003, 53, 437-445.	5.3	260
21	Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nature Reviews Neurology, 2017, 13, 96-104.	10.1	245
22	Population genetic differentiation of height and body mass index across Europe. Nature Genetics, 2015, 47, 1357-1362.	21.4	227
23	<scp>C</scp> 9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits. Annals of Neurology, 2015, 78, 426-438.	5.3	225
24	Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nature Genetics, 2021, 53, 1636-1648.	21.4	223
25	NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1037-1042.	21.4	218
26	Dexpramipexole versus placebo for patients with amyotrophic lateral sclerosis (EMPOWER): a randomised, double-blind, phase 3 trial. Lancet Neurology, The, 2013, 12, 1059-1067.	10.2	216
27	Hypermetabolism in ALS is associated with greater functional decline and shorter survival. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1016-1023.	1.9	177
28	TDP-43 proteinopathies: a new wave of neurodegenerative diseases. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 86-95.	1.9	174
29	Multifocal motor neuropathy: Diagnostic criteria that predict the response to immunoglobulin treatment. Annals of Neurology, 2000, 48, 919-926.	5.3	164
30	Genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors. Nature Genetics, 2020, 52, 1303-1313.	21.4	163
31	A natural history study of late onset spinal muscular atrophy types 3b and 4. Journal of Neurology, 2008, 255, 1400-1404.	3.6	158
32	Blood lipids influence DNA methylation in circulating cells. Genome Biology, 2016, 17, 138.	8.8	154
33	The role of <i>TREM2</i> R47H as a risk factor for Alzheimer's disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson's disease. Alzheimer's and Dementia, 2015, 11, 1407-1416.	0.8	152
34	Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nature Reviews Neurology, 2021, 17, 104-118.	10.1	152
35	Deciphering amyotrophic lateral sclerosis: What phenotype, neuropathology and genetics are telling us about pathogenesis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 5-18.	1.7	142
36	Diagnostic value of sonography in treatment-naive chronic inflammatory neuropathies. Neurology, 2017, 88, 143-151.	1.1	135

#	Article	IF	CITATIONS
37	Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis. NeuroImage: Clinical, 2017, 13, 361-369.	2.7	135
38	Muscle strength and motor function throughout life in a crossâ€sectional cohort of 180 patients with spinal muscular atrophy types 1c–4. European Journal of Neurology, 2018, 25, 512-518.	3.3	126
39	Age-related accrual of methylomic variability is linked to fundamental ageing mechanisms. Genome Biology, 2016, 17, 191.	8.8	120
40	A blinded international study on the reliability of genetic testing for GGGGCC-repeat expansions in <i>C9orf72</i> reveals marked differences in results among 14 laboratories. Journal of Medical Genetics, 2014, 51, 419-424.	3.2	118
41	Primary lateral sclerosis: consensus diagnostic criteria. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 373-377.	1.9	118
42	Cell Specific eQTL Analysis without Sorting Cells. PLoS Genetics, 2015, 11, e1005223.	3.5	115
43	Genetic correlation between amyotrophic lateral sclerosis and schizophrenia. Nature Communications, 2017, 8, 14774.	12.8	114
44	Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways. Acta Neuropathologica, 2016, 132, 175-196.	7.7	113
45	Homozygous deletion of the survival motor neuron 2 gene is a prognostic factor in sporadic ALS. Neurology, 2001, 56, 749-752.	1.1	111
46	Randomized sequential trial of valproic acid in amyotrophic lateral sclerosis. Annals of Neurology, 2009, 66, 227-234.	5.3	111
47	Revised Airlie House consensus guidelines for design and implementation of ALS clinical trials. Neurology, 2019, 92, e1610-e1623.	1.1	105
48	Full ablation of C9orf72 in mice causes immune system-related pathology and neoplastic events but no motor neuron defects. Acta Neuropathologica, 2016, 132, 145-147.	7.7	104
49	Negative selection in humans and fruit flies involves synergistic epistasis. Science, 2017, 356, 539-542.	12.6	103
50	Genomic signals of migration and continuity in Britain before the Anglo-Saxons. Nature Communications, 2016, 7, 10326.	12.8	100
51	Incidence of polyneuropathy in Utrecht, the Netherlands. Neurology, 2015, 84, 259-264.	1.1	95
52	Safety and efficacy of olesoxime in patients with type 2 or non-ambulatory type 3 spinal muscular atrophy: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurology, The, 2017, 16, 513-522.	10.2	95
53	<i>SMN</i> genotypes producing less SMN protein increase susceptibility to and severity of sporadic ALS. Neurology, 2005, 65, 820-825.	1.1	94
54	Cortical thickness in ALS: towards a marker for upper motor neuron involvement. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 288-294.	1.9	94

#	Article	IF	CITATIONS
55	Association of motor milestones, SMN2 copy and outcome in spinal muscular atrophy types 0–4. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 365-367.	1.9	94
56	Cross-ethnic meta-analysis identifies association of the GPX3-TNIP1 locus with amyotrophic lateral sclerosis. Nature Communications, 2017, 8, 611.	12.8	93
57	The ALS-FTD-Q. Neurology, 2012, 79, 1377-1383.	1.1	91
58	The changing picture of amyotrophic lateral sclerosis: lessons from European registers. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 557-563.	1.9	89
59	The Combined Assessment of Function and Survival (CAFS): A new endpoint for ALS clinical trials. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 162-168.	1.7	88
60	Effect of Presymptomatic Body Mass Index and Consumption of Fat and Alcohol on Amyotrophic Lateral Sclerosis. JAMA Neurology, 2015, 72, 1155.	9.0	87
61	ATXN2 trinucleotide repeat length correlates with risk of ALS. Neurobiology of Aging, 2017, 51, 178.e9.	3.1	86
62	Associations of autozygosity with a broad range of human phenotypes. Nature Communications, 2019, 10, 4957.	12.8	84
63	Joint sequencing of human and pathogen genomes reveals the genetics of pneumococcal meningitis. Nature Communications, 2019, 10, 2176.	12.8	83
64	Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome. Circulation, 2020, 142, 324-338.	1.6	83
65	Meta-analysis of pharmacogenetic interactions in amyotrophic lateral sclerosis clinical trials. Neurology, 2017, 89, 1915-1922.	1.1	82
66	Caregiver burden in amyotrophic lateral sclerosis: A systematic review. Palliative Medicine, 2018, 32, 231-245.	3.1	82
67	Subcortical structures in amyotrophic lateral sclerosis. Neurobiology of Aging, 2015, 36, 1075-1082.	3.1	78
68	Shared vulnerability for connectome alterations across psychiatric and neurological brain disorders. Nature Human Behaviour, 2019, 3, 988-998.	12.0	75
69	Genetic variants associated with longitudinal changes in brain structure across the lifespan. Nature Neuroscience, 2022, 25, 421-432.	14.8	75
70	Lithium lacks effect on survival in amyotrophic lateral sclerosis: a phase IIb randomised sequential trial. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 557-564.	1.9	74
71	Simulating disease propagation across white matter connectome reveals anatomical substrate for neuropathology staging in amyotrophic lateral sclerosis. NeuroImage, 2016, 124, 762-769.	4.2	74
72	Widespread structural brain involvement in ALS is not limited to the <i>C9orf72</i> repeat expansion. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1354-1360.	1.9	69

#	Article	IF	CITATIONS
73	Cardiac pathology in spinal muscular atrophy: a systematic review. Orphanet Journal of Rare Diseases, 2017, 12, 67.	2.7	67
74	Brain morphologic changes in asymptomatic <i>C9orf72</i> repeat expansion carriers. Neurology, 2015, 85, 1780-1788.	1.1	66
75	Refining eligibility criteria for amyotrophic lateral sclerosis clinical trials. Neurology, 2019, 92, .	1.1	66
76	Kuramoto model simulation of neural hubs and dynamic synchrony in the human cerebral connectome. BMC Neuroscience, 2015, 16, 54.	1.9	65
77	KIF1A variants are a frequent cause of autosomal dominant hereditary spastic paraplegia. European Journal of Human Genetics, 2020, 28, 40-49.	2.8	65
78	Large-scale SOD1 mutation screening provides evidence for genetic heterogeneity in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 562-566.	1.9	64
79	Safety and tolerability of Triumeq in amyotrophic lateral sclerosis: the Lighthouse trial. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 595-604.	1.7	63
80	Safety and efficacy of ozanezumab in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurology, The, 2017, 16, 208-216.	10.2	62
81	Monitoring disease progression with plasma creatinine in amyotrophic lateral sclerosis clinical trials. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 156-161.	1.9	62
82	Edaravone: a new treatment for ALS on the horizon?. Lancet Neurology, The, 2017, 16, 490-491.	10.2	61
83	The project MinE databrowser: bringing large-scale whole-genome sequencing in ALS to researchers and the public. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 432-440.	1.7	60
84	Addressing heterogeneity in amyotrophic lateral sclerosis CLINICAL TRIALS. Muscle and Nerve, 2020, 62, 156-166.	2.2	60
85	Associations between psychological factors and health-related quality of life and global quality of life in patients with ALS: a systematic review. Health and Quality of Life Outcomes, 2016, 14, 107.	2.4	58
86	Association of a Locus in the <i>CAMTA1</i> Gene With Survival in Patients With Sporadic Amyotrophic Lateral Sclerosis. JAMA Neurology, 2016, 73, 812.	9.0	57
87	Natural history of lung function in spinal muscular atrophy. Orphanet Journal of Rare Diseases, 2020, 15, 88.	2.7	56
88	The current use of telehealth in ALS care and the barriers to and facilitators of implementation: a systematic review. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 167-182.	1.7	55
89	Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nature Genetics, 2022, 54, 232-239.	21.4	55
90	<i>SMN1</i> gene duplications are associated with sporadic ALS. Neurology, 2012, 78, 776-780.	1.1	54

#	Article	IF	CITATIONS
91	Long-Term Air Pollution Exposure and Amyotrophic Lateral Sclerosis in Netherlands: A Population-based Case–control Study. Environmental Health Perspectives, 2017, 125, 097023.	6.0	54
92	Population-based analysis of survival in spinal muscular atrophy. Neurology, 2020, 94, e1634-e1644.	1.1	54
93	Autoantibody pathogenicity in a multifocal motor neuropathy induced pluripotent stem cell–derived model. Annals of Neurology, 2016, 80, 71-88.	5.3	53
94	A comparative study of brachial plexus sonography and magnetic resonance imaging in chronic inflammatory demyelinating neuropathy and multifocal motor neuropathy. European Journal of Neurology, 2017, 24, 1307-1313.	3.3	51
95	Connectomeâ€Based Propagation Model in Amyotrophic Lateral Sclerosis. Annals of Neurology, 2020, 87, 725-738.	5.3	51
96	Distinctive patterns of sonographic nerve enlargement in Charcot–Marie–Tooth type 1A and hereditary neuropathy with pressure palsies. Clinical Neurophysiology, 2015, 126, 1413-1420.	1.5	49
97	Meta-analysis of genome-wide DNA methylation identifies shared associations across neurodegenerative disorders. Genome Biology, 2021, 22, 90.	8.8	49
98	A case-control study of hormonal exposures as etiologic factors for ALS in women. Neurology, 2017, 89, 1283-1290.	1.1	48
99	Multifocal motor neuropathy: controversies and priorities. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 140-148.	1.9	48
100	The frontotemporal syndrome of ALS is associated with poor survival. Journal of Neurology, 2016, 263, 2476-2483.	3.6	46
101	Multimodal longitudinal study of structural brain involvement in amyotrophic lateral sclerosis. Neurology, 2020, 94, e2592-e2604.	1.1	46
102	Prognostic value of weight loss in patients with amyotrophic lateral sclerosis: a population-based study. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 867-875.	1.9	46
103	Association of Variants in the <i>SPTLC1</i> Gene With Juvenile Amyotrophic Lateral Sclerosis. JAMA Neurology, 2021, 78, 1236.	9.0	46
104	Multicentre, cross-cultural, population-based, case–control study of physical activity as risk factor for amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 797-803.	1.9	45
105	Cognitive and behavioural changes in PLS and PMA:challenging the concept of restricted phenotypes. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 141-147.	1.9	45
106	Natural course of scoliosis and lifetime risk of scoliosis surgery in spinal muscular atrophy. Neurology, 2019, 93, e149-e158.	1.1	45
107	Use of Multimodal Imaging and Clinical Biomarkers in Presymptomatic Carriers of <i>C9orf72</i> Repeat Expansion. JAMA Neurology, 2020, 77, 1008.	9.0	45
108	Respiratory measures in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 321-330.	1.7	44

#	Article	IF	CITATIONS
109	Muscle strength and motor function in adolescents and adults with spinal muscular atrophy. Neurology, 2020, 95, e1988-e1998.	1.1	44
110	Association of maternal prenatal smoking GFI1-locus and cardio-metabolic phenotypes in 18,212 adults. EBioMedicine, 2018, 38, 206-216.	6.1	43
111	A Phase 2, Double-Blind, Randomized, Dose-Ranging Trial Of <i>Reldesemtiv</i> In Patients With ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 287-299.	1.7	42
112	Serotonin 2B receptor slows disease progression and prevents degeneration of spinal cord mononuclear phagocytes in amyotrophic lateral sclerosis. Acta Neuropathologica, 2016, 131, 465-480.	7.7	41
113	Assessment of the factorial validity and reliability of the ALSFRS-R: a revision of its measurement model. Journal of Neurology, 2017, 264, 1413-1420.	3.6	41
114	July 2017 ENCALS statement on edaravone. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 471-474.	1.7	41
115	Development and assessment of the inter-rater and intra-rater reproducibility of a self-administration version of the ALSFRS-R. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 75-81.	1.9	41
116	Pharmacokinetics of intravenous immunoglobulin in multifocal motor neuropathy. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 1145-1148.	1.9	40
117	MRI of the brachial plexus in polyneuropathy associated with monoclonal gammopathy. Muscle and Nerve, 2001, 24, 1312-1318.	2.2	39
118	Accelerometry for remote monitoring of physical activity in amyotrophic lateral sclerosis: a longitudinal cohort study. Journal of Neurology, 2019, 266, 2387-2395.	3.6	39
119	Raschâ€built Overall Disability Scale for Multifocal motor neuropathy (<scp>MMNâ€RODS</scp> [©]). Journal of the Peripheral Nervous System, 2015, 20, 296-305.	3.1	38
120	Loss of appetite is associated with a loss of weight and fat mass in patients with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 497-505.	1.7	38
121	Nerve ultrasound improves detection of treatment-responsive chronic inflammatory neuropathies. Neurology, 2020, 94, e1470-e1479.	1.1	38
122	Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS. Science Translational Medicine, 2022, 14, eabj0264.	12.4	38
123	Bulbar muscle MRI changes in patients with SMA with reduced mouth opening and dysphagia. Neurology, 2014, 83, 1060-1066.	1.1	37
124	Factors related to caregiver strain in ALS: a longitudinal study. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 775-781.	1.9	37
125	MRI shows thickening and altered diffusion in the median and ulnar nerves in multifocal motor neuropathy. European Radiology, 2017, 27, 2216-2224.	4.5	37
126	Whole blood transcriptome analysis in amyotrophic lateral sclerosis: A biomarker study. PLoS ONE, 2018, 13, e0198874.	2.5	37

#	Article	IF	CITATIONS
127	Human genetics and neuropathology suggest a link between miR-218 and amyotrophic lateral sclerosis pathophysiology. Science Translational Medicine, 2019, 11, .	12.4	37
128	Cognitive behavioural therapy and quality of life in psychologically distressed patients with amyotrophic lateral sclerosis and their caregivers: Results of a prematurely stopped randomized controlled trial. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 309-315.	1.7	36
129	Acute Effects of Riluzole and Retigabine on Axonal Excitability in Patients With Amyotrophic Lateral Sclerosis: A Randomized, Doubleâ€Blind, Placeboâ€Controlled, Crossover Trial. Clinical Pharmacology and Therapeutics, 2018, 104, 1136-1145.	4.7	36
130	Correlates of health related quality of life in adult patients with spinal muscular atrophy. Muscle and Nerve, 2016, 54, 850-855.	2.2	35
131	Associations between lifestyle and amyotrophic lateral sclerosis stratified by C9orf72 genotype: a longitudinal, population-based, case-control study. Lancet Neurology, The, 2021, 20, 373-384.	10.2	35
132	Patterns of symptom development in patients with motor neuron disease. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 21-28.	1.7	34
133	Taking a risk: a therapeutic focus on ataxin-2 in amyotrophic lateral sclerosis?. Trends in Molecular Medicine, 2014, 20, 25-35.	6.7	33
134	C9orf72 expansion differentially affects males with spinal onset amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 281.1-281.	1.9	33
135	"ALS reversalsâ€+ demographics, disease characteristics, treatments, and co-morbidities. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 495-499.	1.7	33
136	<i>ATXN1</i> repeat expansions confer risk for amyotrophic lateral sclerosis and contribute to TDP-43 mislocalization. Brain Communications, 2020, 2, fcaa064.	3.3	33
137	A Comparative Study of SMN Protein and mRNA in Blood and Fibroblasts in Patients with Spinal Muscular Atrophy and Healthy Controls. PLoS ONE, 2016, 11, e0167087.	2.5	32
138	Comparative study of peripheral nerve Mri and ultrasound in multifocal motor neuropathy and amyotrophic lateral sclerosis. Muscle and Nerve, 2016, 54, 1133-1135.	2.2	32
139	Nerve ultrasound. Neurology, 2019, 92, .	1.1	32
140	Nerve ultrasound for diagnosing chronic inflammatory neuropathy. Neurology, 2020, 95, e1745-e1753.	1.1	32
141	Intragenic and structural variation in the SMN locus and clinical variability in spinal muscular atrophy. Brain Communications, 2020, 2, fcaa075.	3.3	32
142	A case series of PLS patients with frontotemporal dementia and overview of the literature. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 534-548.	1.7	31
143	Understanding the use of NIV in ALS: results of an international ALS specialist survey. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 331-341.	1.7	31
144	Protocol for a phase II, monocentre, double-blind, placebo-controlled, cross-over trial to assess efficacy of pyridostigmine in patients with spinal muscular atrophy types 2–4 (SPACE trial). BMJ Open, 2018, 8, e019932.	1.9	31

#	Article	IF	CITATIONS
145	Validated inference of smoking habits from blood with a finite DNA methylation marker set. European Journal of Epidemiology, 2019, 34, 1055-1074.	5.7	31
146	Impairment measures versus inflammatory <scp>RODS</scp> in <scp>GBS</scp> and <scp>CIDP</scp> : a responsiveness comparison. Journal of the Peripheral Nervous System, 2015, 20, 289-295.	3.1	30
147	Nerve sonography to detect peripheral nerve involvement in vasculitis syndromes. Neurology: Clinical Practice, 2016, 6, 293-303.	1.6	30
148	An old friend who has overstayed their welcome: the ALSFRS-R total score as primary endpoint for ALS clinical trials. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 300-307.	1.7	30
149	Telehealth as part of specialized ALS care: feasibility and user experiences with "ALS home-monitoring and coachingâ€: Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 183-192.	1.7	30
150	Comparing methods to combine functional loss and mortality in clinical trials for amyotrophic lateral sclerosis. Clinical Epidemiology, 2018, Volume 10, 333-341.	3.0	29
151	Nerve ultrasound can identify treatmentâ€responsive chronic neuropathies without electrodiagnostic features of demyelination. Muscle and Nerve, 2019, 60, 415-419.	2.2	29
152	Prospective natural history study of <i>C9orf72</i> ALS clinical characteristics and biomarkers. Neurology, 2019, 93, e1605-e1617.	1.1	29
153	Progression of cognitive and behavioural impairment in early amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 779-780.	1.9	29
154	Blood Metal Levels and Amyotrophic Lateral Sclerosis Risk: A Prospective Cohort. Annals of Neurology, 2021, 89, 125-133.	5.3	29
155	Effects of aerobic exercise therapy and cognitive behavioural therapy on functioning and quality of life in amyotrophic lateral sclerosis: protocol of the FACTS-2-ALS trial. BMC Neurology, 2011, 11, 70.	1.8	28
156	Comparing the <scp>NIS</scp> vs. <scp>MRC</scp> and <scp>INCAT</scp> sensory scale through Rasch analyses. Journal of the Peripheral Nervous System, 2015, 20, 277-288.	3.1	27
157	Genome-wide identification of genes regulating DNA methylation using genetic anchors for causal inference. Genome Biology, 2020, 21, 220.	8.8	27
158	Inhibition of HERV-K (HML-2) in amyotrophic lateral sclerosis patients on antiretroviral therapy. Journal of the Neurological Sciences, 2021, 423, 117358.	0.6	27
159	No mutations in hnRNPA1 and hnRNPA2B1 in Dutch patients with amyotrophic lateral sclerosis, frontotemporal dementia, and inclusion body myopathy. Neurobiology of Aging, 2014, 35, 1956.e9-1956.e11.	3.1	26
160	Association between alcohol exposure and the risk of amyotrophic lateral sclerosis in the Euro-MOTOR study. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 11-19.	1.9	26
161	Association of NIPA1 repeat expansions with amyotrophic lateral sclerosis in a large international cohort. Neurobiology of Aging, 2019, 74, 234.e9-234.e15.	3.1	26
162	Support needs of caregivers of patients with amyotrophic lateral sclerosis: A qualitative study. Palliative and Supportive Care, 2019, 17, 195-201.	1.0	26

#	Article	IF	CITATIONS
163	Drug treatment for spinal muscular atrophy types II and III. The Cochrane Library, 2020, 1, CD006282.	2.8	26
164	Blended psychosocial support for partners of patients with ALS and PMA: results of a randomized controlled trial. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 344-354.	1.7	26
165	Resting-state EEG reveals four subphenotypes of amyotrophic lateral sclerosis. Brain, 2022, 145, 621-631.	7.6	26
166	Complement activity is associated with disease severity in multifocal motor neuropathy. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e119.	6.0	25
167	Proteomic profiling of the spinal cord in ALS: decreased ATP5D levels suggest synaptic dysfunction in ALS pathogenesis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 210-220.	1.7	25
168	Myasthenia gravis with muscle specific kinase antibodies mimicking amyotrophic lateral sclerosis. Neuromuscular Disorders, 2016, 26, 350-353.	0.6	24
169	No evidence for shared genetic basis of common variants in multiple sclerosis and amyotrophic lateral sclerosis. Human Molecular Genetics, 2014, 23, 1916-1922.	2.9	23
170	Evaluation of genetic risk loci for intracranial aneurysms in sporadic arteriovenous malformations of the brain. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 524-529.	1.9	23
171	Bulbar Problems Self-Reported by Children and Adults with Spinal Muscular Atrophy. Journal of Neuromuscular Diseases, 2019, 6, 361-368.	2.6	23
172	The Distinct Traits of the UNC13A Polymorphism in Amyotrophic Lateral Sclerosis. Annals of Neurology, 2020, 88, 796-806.	5.3	23
173	Assessment of motor unit loss in patients with spinal muscular atrophy. Clinical Neurophysiology, 2020, 131, 1280-1286.	1.5	23
174	Structural variation analysis of 6,500 whole genome sequences in amyotrophic lateral sclerosis. Npj Genomic Medicine, 2022, 7, 8.	3.8	23
175	Rare genetic variation in UNC13A may modify survival in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 593-599.	1.7	22
176	Reconsidering the causality of TIA1 mutations in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 1-3.	1.7	22
177	Amyotrophic lateral sclerosis as a multi-step process: an Australia population study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 532-537.	1.7	22
178	User perspectives on a psychosocial blended support program for partners of patients with amyotrophic lateral sclerosis and progressive muscular atrophy: a qualitative study. BMC Psychology, 2019, 7, 35.	2.1	22
179	Evidence for a multimodal effect of riluzole in patients with ALS?. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1183-1184.	1.9	22
180	Social participation of adult patients with spinal muscular atrophy: Frequency, restrictions, satisfaction, and correlates. Muscle and Nerve, 2018, 58, 805-811.	2.2	21

#	Article	IF	CITATIONS
181	Dutch population structure across space, time and GWAS design. Nature Communications, 2020, 11, 4556.	12.8	21
182	The importance of offering early genetic testing in everyone with amyotrophic lateral sclerosis. Brain, 2022, 145, 1207-1210.	7.6	21
183	Large-scale screening in sporadic amyotrophic lateral sclerosis identifies genetic modifiers in C9orf72 repeat carriers. Neurobiology of Aging, 2016, 39, 220.e9-220.e15.	3.1	20
184	Associations of Electric Shock and Extremely Low-Frequency Magnetic Field Exposure With the Risk of Amyotrophic Lateral Sclerosis. American Journal of Epidemiology, 2019, 188, 796-805.	3.4	20
185	Effect modification of the association between total cigarette smoking and ALS risk by intensity, duration and time-since-quitting: Euro-MOTOR. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 33-39.	1.9	20
186	TRICALS: creating a highway toward a cure. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 496-501.	1.7	20
187	Clonality of anti-GM1 IgM antibodies in multifocal motor neuropathy and the Guillain-Barré syndrome. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 502-504.	1.9	19
188	A neuropsychological and behavioral study of PLS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 376-384.	1.7	19
189	Aerobic Exercise Therapy in Ambulatory Patients With ALS: A Randomized Controlled Trial. Neurorehabilitation and Neural Repair, 2019, 33, 153-164.	2.9	19
190	Innovating Clinical Trials for Amyotrophic Lateral Sclerosis. Neurology, 2021, 97, 528-536.	1.1	19
191	Incidence, Prevalence, and Geographical Clustering of Motor Neuron Disease in the Netherlands. Neurology, 2021, 96, .	1.1	19
192	Cross-sectional and longitudinal assessment of the upper cervical spinal cord in motor neuron disease. NeuroImage: Clinical, 2019, 24, 101984.	2.7	18
193	Participation restrictions in ambulatory amyotrophic lateral sclerosis patients: Physical and psychological factors. Muscle and Nerve, 2017, 56, 912-918.	2.2	17
194	A continuous repetitive task to detect fatigability in spinal muscular atrophy. Orphanet Journal of Rare Diseases, 2018, 13, 160.	2.7	17
195	Sensorimotor ECoG Signal Features for BCI Control: A Comparison Between People With Locked-In Syndrome and Able-Bodied Controls. Frontiers in Neuroscience, 2019, 13, 1058.	2.8	17
196	Multicentre, population-based, case–control study of particulates, combustion products and amyotrophic lateral sclerosis risk. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 854-860.	1.9	17
197	Oral levosimendan in amyotrophic lateral sclerosis: a phase II multicentre, randomised, double-blind, placebo-controlled trial. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1165-1170.	1.9	17
198	Derivation of norms for the Dutch version of the Edinburgh cognitive and behavioral ALS screen. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 19-27.	1.7	17

#	Article	IF	CITATIONS
199	Current trends in the clinical trial landscape for amyotrophic lateral sclerosis. Current Opinion in Neurology, 2020, 33, 655-661.	3.6	17
200	Analysis of the KIFAP3 gene in amyotrophic lateral sclerosis: a multicenter survival study. Neurobiology of Aging, 2014, 35, 2420.e13-2420.e14.	3.1	16
201	Fc receptor IIIA genotype is associated with rituximab response in antimyelin-associated glycoprotein neuropathy. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 918-920.	1.9	16
202	Critical issues in ALS case-control studies: the case of the Euro-MOTOR study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 411-418.	1.7	16
203	Exome array analysis of rare and low frequency variants in amyotrophic lateral sclerosis. Scientific Reports, 2019, 9, 5931.	3.3	16
204	5′ValCAC tRNA fragment generated as part of a protective angiogenin response provides prognostic value in amyotrophic lateral sclerosis. Brain Communications, 2020, 2, fcaa138.	3.3	16
205	Facial Onset Sensory and Motor Neuronopathy. Neurology: Clinical Practice, 2021, 11, 147-157.	1.6	16
206	A Road Map for Remote Digital Health Technology for Motor Neuron Disease. Journal of Medical Internet Research, 2021, 23, e28766.	4.3	16
207	Whole-genome sequencing reveals that variants in the Interleukin 18 Receptor Accessory Protein 3′UTR protect against ALS. Nature Neuroscience, 2022, 25, 433-445.	14.8	16
208	Residential exposure to extremely low frequency electromagnetic fields and the risk of ALS. Neurology, 2014, 83, 1767-1769.	1.1	15
209	Neuropathy associated with immunoglobulin M monoclonal gammopathy: A combined sonographic and nerve conduction study. Muscle and Nerve, 2019, 60, 263-270.	2.2	15
210	10Kin1day: A Bottom-Up Neuroimaging Initiative. Frontiers in Neurology, 2019, 10, 425.	2.4	15
211	Informal Caregivers in Amyotrophic Lateral Sclerosis: A Multi-Centre, Exploratory Study of Burden and Difficulties. Brain Sciences, 2021, 11, 1094.	2.3	15
212	Common Genetic Variants Contribute to Risk of Transposition of the Great Arteries. Circulation Research, 2022, 130, 166-180.	4.5	15
213	A mapping review of international guidance on the management and care of amyotrophic lateral sclerosis (ALS). Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 325-336.	1.7	14
214	Exploring the fitness hypothesis in ALS: a population-based case-control study of parental cause of death and lifespan. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 550-556.	1.9	14
215	Critical design considerations for time-to-event endpoints in amyotrophic lateral sclerosis clinical trials. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, jnnp-2019-320998.	1.9	14
216	Pharmacogenetic interactions in amyotrophic lateral sclerosis: a step closer to a cure?. Pharmacogenomics Journal, 2020, 20, 220-226.	2.0	14

#	Article	IF	CITATIONS
217	<i>SCFD1</i> expression quantitative trait loci in amyotrophic lateral sclerosis are differentially expressed. Brain Communications, 2021, 3, fcab236.	3.3	14
218	The verbal fluency index: Dutch normative data for cognitive testing in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 388-391.	1.7	13
219	Susceptibility loci for sporadic brain arteriovenous malformation; a replication study and meta-analysis. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 693-696.	1.9	13
220	No association between <i>Borrelia burgdorferi</i> antibodies and amyotrophic lateral sclerosis in a case–control study. European Journal of Neurology, 2017, 24, 227-230.	3.3	13
221	The role of de novo mutations in the development of amyotrophic lateral sclerosis. Human Mutation, 2017, 38, 1534-1541.	2.5	13
222	Clinical outcomes in multifocal motor neuropathy. Neurology, 2020, 95, e1979-e1987.	1.1	13
223	Analysis of FUS, PFN2, TDP-43, and PLS3 as potential disease severity modifiers in spinal muscular atrophy. Neurology: Genetics, 2020, 6, e386.	1.9	13
224	Cross-reactive probes on Illumina DNA methylation arrays: a large study on ALS shows that a cautionary approach is warranted in interpreting epigenome-wide association studies. NAR Genomics and Bioinformatics, 2020, 2, Iqaa105.	3.2	13
225	ls it accurate to classify ALS as a neuromuscular disorder?. Expert Review of Neurotherapeutics, 2020, 20, 895-906.	2.8	12
226	Discussing personalized prognosis in amyotrophic lateral sclerosis: development of a communication guide. BMC Neurology, 2020, 20, 446.	1.8	12
227	The Beginning of Genomic Therapies for ALS. New England Journal of Medicine, 2020, 383, 180-181.	27.0	12
228	Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1. Genome Medicine, 2022, 14, 7.	8.2	12
229	Sequential designs for clinical trials in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders: Official Publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases, 2004, 5, 202-207.	1.2	11
230	Are CHCHD10 mutations indeed associated with familial amyotrophic lateral sclerosis?. Brain, 2014, 137, e313-e313.	7.6	11
231	Serum angiogenin levels are elevated in ALS, but not Parkinson's disease: TableÂ1. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 1439-1440.	1.9	11
232	A blended psychosocial support program for partners of patients with amyotrophic lateral sclerosis and progressive muscular atrophy: protocol of a randomized controlled trial. BMC Psychology, 2018, 6, 20.	2.1	11
233	Psychological distress and coping styles of caregivers of patients with amyotrophic lateral sclerosis: a longitudinal study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 235-241.	1.7	11
234	Drug treatment for spinal muscular atrophy type I. The Cochrane Library, 2019, 12, CD006281.	2.8	11

#	Article	IF	CITATIONS
235	Using patient-reported symptoms of dyspnea for screening reduced respiratory function in patients with motor neuron diseases. Journal of Neurology, 2020, 267, 3310-3318.	3.6	11
236	Therapy of amyotrophic lateral sclerosis remains a challenge. Lancet Neurology, The, 2014, 13, 1062-1063.	10.2	10
237	The Effect of <scp><i>SMN</i></scp> Gene Dosage on <scp>ALS</scp> Risk and Disease Severity. Annals of Neurology, 2021, 89, 686-697.	5.3	10
238	Venous creatinine as a biomarker for loss of fatâ€free mass and disease progression in patients with amyotrophic lateral sclerosis. European Journal of Neurology, 2021, 28, 3615-3625.	3.3	10
239	Alternative trial design in amyotrophic lateral sclerosis saves time and patients. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2007, 8, 266-269.	2.1	9
240	A replication study of genetic risk loci for ischemic stroke in a Dutch population: a case-control study. Scientific Reports, 2017, 7, 12175.	3.3	9
241	High-resolution ultrasound in patients with Wartenberg's migrant sensory neuritis, a case-control study. Clinical Neurophysiology, 2018, 129, 232-237.	1.5	9
242	Genotype-phenotype correlations of <i>KIF5A</i> stalk domain variants. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 561-570.	1.7	9
243	Safety and efficacy of oral levosimendan in people with amyotrophic lateral sclerosis (the REFALS) Tj ETQq1 1 0.7 821-831.	'84314 rgl 10.2	3T /Overlock 9
244	The Diagnostic Utility of Determining Anti-GM1: GalC Complex Antibodies in Multifocal Motor Neuropathy: A Validation Study. Journal of Neuromuscular Diseases, 2015, 2, 157-165.	2.6	8
245	Cytokine profiles in multifocal motor neuropathy and progressive muscular atrophy. Journal of Neuroimmunology, 2015, 286, 1-4.	2.3	8
246	Increasing the efficiency of clinical trials in neurodegenerative disorders using group sequential trial designs. Journal of Clinical Epidemiology, 2018, 98, 80-88.	5.0	8
247	Warming nerves for excitability testing. Muscle and Nerve, 2019, 60, 279-285.	2.2	8
248	Long-Term Exposure to Ultrafine Particles and Particulate Matter Constituents and the Risk of Amyotrophic Lateral Sclerosis. Environmental Health Perspectives, 2021, 129, 97702.	6.0	8
249	Portable fixed dynamometry: towards remote muscle strength measurements in patients with motor neuron disease. Journal of Neurology, 2021, 268, 1738-1746.	3.6	8
250	Sensitivity of brain MRI and neurological examination for detection of upper motor neurone degeneration in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 1.1-11.	1.9	8
251	Composite endpoint for ALS clinical trials based on patient preference: Patient-Ranked Order of Function (PROOF). Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 539-546.	1.9	8
252	Using the ALSFRS-R in multicentre clinical trials for amyotrophic lateral sclerosis: potential limitations in current standard operating procedures. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 500-507.	1.7	8

#	Article	IF	CITATIONS
253	Sodium-potassium pump assessment by submaximal electrical nerve stimulation. Clinical Neurophysiology, 2018, 129, 809-814.	1.5	7
254	Magnetic resonance imaging of the cervical spinal cord in spinal muscular atrophy. NeuroImage: Clinical, 2019, 24, 102002.	2.7	7
255	Statins do not increase risk of polyneuropathy. Neurology, 2019, 92, e2136-e2144.	1.1	7
256	Psychological distress in partners of patients with amyotrophic lateral sclerosis and progressive muscular atrophy: what's the role of care demands and perceived control?. Psychology, Health and Medicine, 2020, 25, 319-330.	2.4	7
257	Validating biomarkers and models for epigenetic inference of alcohol consumption from blood. Clinical Epigenetics, 2021, 13, 198.	4.1	7
258	Chronic obstructive pulmonary disease is not a risk factor for polyneuropathy: A prospective controlled study. Chronic Respiratory Disease, 2017, 14, 327-333.	2.4	6
259	Validity of the shuttle walk test as a functional assessment of walking ability in individuals with polyneuropathy. Disability and Rehabilitation, 2017, 39, 2112-2118.	1.8	6
260	The life expectancy of Stephen Hawking, according to the ENCALS model. Lancet Neurology, The, 2018, 17, 662-663.	10.2	6
261	Two heads are better than one: benefits of joint models for ALS trials. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1071-1072.	1.9	6
262	Preface: promoting research in PLS: current knowledge and future challenges. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 1-2.	1.7	6
263	Clinical relevance of testing for metabolic vitamin B12 deficiency in patients with polyneuropathy. Nutritional Neuroscience, 2022, 25, 2536-2546.	3.1	6
264	Immunoglobulin for multifocal motor neuropathy. The Cochrane Library, 2022, 2022, CD004429.	2.8	6
265	Home-monitoring of vital capacity in people with a motor neuron disease. Journal of Neurology, 2022, 269, 3713-3722.	3.6	6
266	Excitability of motor and sensory axons in multifocal motor neuropathy. Clinical Neurophysiology, 2020, 131, 2641-2650.	1.5	5
267	Associations between illness cognitions and health-related quality of life in the first year after diagnosis of amyotrophic lateral sclerosis. Journal of Psychosomatic Research, 2020, 132, 109974.	2.6	5
268	Impact of stimulus duration on motor unit thresholds and alternation in compound muscle action potential scans. Clinical Neurophysiology, 2021, 132, 323-331.	1.5	5
269	Prognostic value of nerve ultrasonography: A prospective multicenter study on the natural history of chronic inflammatory neuropathies. European Journal of Neurology, 2021, 28, 2327-2338.	3.3	5
270	Anti-C2 Antibody ARGX-117 Inhibits Complement in a Disease Model for Multifocal Motor Neuropathy. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	5

#	Article	IF	CITATIONS
271	Functional Loss and Mortality in Randomized Clinical Trials for Amyotrophic Lateral Sclerosis: To Combine, or Not to Combine—That is the Estimand. Clinical Pharmacology and Therapeutics, 2022, 111, 817-825.	4.7	5
272	No association between gluten sensitivity and amyotrophic lateral sclerosis. Journal of Neurology, 2017, 264, 694-700.	3.6	4
273	The role of nutrition as risk factor for polyneuropathy: a caseâ€control study. Journal of the Peripheral Nervous System, 2017, 22, 455-459.	3.1	4
274	Human immune globulin 10% with recombinant human hyaluronidase in multifocal motor neuropathy. Journal of Neurology, 2019, 266, 2734-2742.	3.6	4
275	Implications of spirometric reference values for amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 473-480.	1.7	4
276	A placebo-controlled trial to investigate the safety and efficacy of Penicillin G/Hydrocortisone in patients with ALS (PHALS trial). Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 584-592.	1.7	4
277	Reconsidering the revised amyotrophic lateral sclerosis functional rating scale for ALS clinical trials. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 569-570.	1.9	4
278	Discussing Personalized Prognosis Empowers Patients with Amyotrophic Lateral Sclerosis to Regain Control over Their Future: A Qualitative Study. Brain Sciences, 2021, 11, 1597.	2.3	4
279	In pursuit of the normal progressor: the holy grail for ALS clinical trial design?. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 1-2.	1.7	3
280	Motor unit integrity in multifocal motor neuropathy: A systematic evaluation with <scp>CMAP</scp> scans. Muscle and Nerve, 2022, 65, 317-325.	2.2	3
281	Cortical and subcortical changes in resting-state neuronal activity and connectivity in early symptomatic ALS and advanced frontotemporal dementia. NeuroImage: Clinical, 2022, 34, 102965.	2.7	3
282	Clinical trials in pediatric ALS: a TRICALS feasibility study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 481-488.	1.7	3
283	The â"«strand-Ryhming Test is not a Feasible Measure in Ambulatory Patients withÂAmyotrophic Lateral Sclerosis. Journal of Neuromuscular Diseases, 2016, 3, 539-544.	2.6	2
284	Simulating perinodal changes observed in immune-mediated neuropathies: impact on conduction in a model of myelinated motor and sensory axons. Journal of Neurophysiology, 2019, 122, 1036-1049.	1.8	2
285	A case of ALS with posterior cortical atrophy. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 506-510.	1.7	2
286	Current practices and barriers in gastrostomy indication in amyotrophic lateral sclerosis: a survey of ALS care teams in The Netherlands. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 242-251.	1.7	2
287	Correlations between measures of ALS respiratory function: is there an alternative to FVC?. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 495-504.	1.7	2
288	Joint modeling of endpoints can be used to answer various research questions in randomized clinical trials. Journal of Clinical Epidemiology, 2022, 147, 32-39.	5.0	2

#	Article	IF	CITATIONS
289	Chapter 12 Multifocal and other motor neuropathies. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 82, 229-245.	1.8	1
290	Angiogenin, a piece of the complex puzzle of neurodegeneration. Annals of Neurology, 2012, 71, 727-728.	5.3	1
291	Comment: Plateaus and reversals in ALS disease course or limitations of trial design?. Neurology, 2016, 86, 811-811.	1.1	1
292	Neuro-imaging in amyotrophic lateral sclerosis: Should we shift towards the periphery?. Clinical Neurophysiology, 2020, 131, 2286-2288.	1.5	1
293	Pattern of muscle strength improvement after intravenous immunoglobulin therapy in multifocal motor neuropathy. Muscle and Nerve, 2021, 63, 678-682.	2.2	1
294	High-resolution mapping identifies HLA class II associations with multifocal motor neuropathy. Neurobiology of Aging, 2021, 101, 79-84.	3.1	1
295	Multifocal motor neuropathy: Diagnostic criteria that predict the response to immunoglobulin treatment. Annals of Neurology, 2000, 48, 919-926.	5.3	1
296	Burden and benefit—A mixed methods study of informal Amyotrophic Lateral Sclerosis caregivers in Ireland and the Netherlands. International Journal of Geriatric Psychiatry, 2022, 37, .	2.7	1
297	Microhemorrhages: Undetectable but clinically meaningful the question persists. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 233-234.	2.1	Ο
298	O45-3â€Occupational risk factors for motor neurone disease: a new zealand population-based case-control study. , 2016, , .		0
299	P203â€Occupational exposure to ELF-MF and electric shocks and motor neurone disease. , 2016, , .		Ο
300	0411â€Exposure to diesel engine exhaust and the risk of als. , 2017, , .		0
301	0325â€Future directions for occupational epidemiological research on neurodegenerative disorders. , 2017, , .		0
302	O6E.6â€Occupational exposures and ALS: international collaborations and new ways to identify risk factors. Occupational and Environmental Medicine, 2019, 76, A61.1-A61.	2.8	0
303	Participation and autonomy in the first 10 months after diagnosis of ALS: a longitudinal study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 1-9.	1.7	Ο
304	SMN1 Duplications Are Associated With Progressive Muscular Atrophy, but Not With Multifocal Motor Neuropathy and Primary Lateral Sclerosis. Neurology: Genetics, 2021, 7, e598.	1.9	0