Maria Kandyla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4886319/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Broadband wavelength-selective isotype heterojunction n+-ZnO/n-Si photodetector with variable polarity. Journal of Alloys and Compounds, 2022, 903, 163836.	5.5	12
2	Comparative Assessment and Experimental Validation of a Prototype Phase-Optical Time-Domain Reflectometer for Distributed Structural Health Monitoring. Journal of Sensors, 2022, 2022, 1-23.	1.1	3
3	Laser-structured ZnO/p-Si Photodetector with Enhanced and Broadband Responsivity. , 2021, , .		0
4	Laser-Microstructured ZnO/p-Si Photodetector with Enhanced and Broadband Responsivity across the Ultraviolet–Visible–Near-Infrared Range. ACS Applied Electronic Materials, 2020, 2, 2819-2828.	4.3	39
5	Functional surfaces of laser-microstructured silicon coated with thermoresponsive PS/PNIPAM polymer blends: Switching reversibly between hydrophilicity and hydrophobicity. Applied Surface Science, 2020, 527, 146841.	6.1	10
6	Effect of CdO ratios on the structural and optical properties of CdO–TiO2 nanocomposite thin films. Journal of Materials Science: Materials in Electronics, 2020, 31, 3387-3396.	2.2	8
7	A Low-Cost Phase-OTDR System for Structural Health Monitoring: Design and Instrumentation. Instruments, 2019, 3, 46.	1.8	24
8	Surface-Enhanced Raman Spectroscopy of Graphene Integrated in Plasmonic Silicon Platforms with Three-Dimensional Nanotopography. Journal of Physical Chemistry C, 2019, 123, 3076-3087.	3.1	16
9	Thin films of PS/PS―b â€pnipam and ps/pnipam polymer blends with tunable wettability. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 670-679.	2.1	14
10	Real-Time Observation of a Coherent Lattice Transformation into a High-Symmetry Phase. Physical Review X, 2018, 8, .	8.9	19
11	Photocatalytic Properties of Titanium Dioxide Thin Films Doped with Noble Metals (Ag, Au, Pd, and Pt). Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800023.	1.8	13
12	Pulsed laser deposition of ZnO thin films decorated with Au and Pd nanoparticles with enhanced acetone sensing performance. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	31
13	Effects of hydrogen pressure on hydrogenated amorphous silicon thin films prepared by low-temperature reactive pulsed laser deposition. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 14, 1600088.	0.8	1
14	Plasmon enhanced optical tweezers with gold-coated black silicon. Scientific Reports, 2016, 6, 26275.	3.3	34
15	Surface functionalization of sol–gel grown NiO thin films with palladium nanoparticles for hydrogen sensing. International Journal of Hydrogen Energy, 2016, 41, 3291-3298.	7.1	32
16	Carrier confinement and bond softening in photoexcited bismuth films. Physical Review B, 2015, 92, .	3.2	15
17	Extended two-temperature model for ultrafast thermal response of band gap materials upon impulsive optical excitation. Journal of Chemical Physics, 2015, 143, 194705.	3.0	30
18	Near-field enhanced optical tweezers utilizing femtosecond-laser nanostructured substrates. Applied Physics Letters, 2015, 107, .	3.3	19

Maria Kandyla

#	Article	IF	CITATIONS
19	Hydrogen sensing by sol–gel grown NiO and NiO:Li thin films. Journal of Alloys and Compounds, 2015, 626, 87-92.	5.5	52
20	Scalable fabrication of nanostructured p-Si/n-ZnO heterojunctions by femtosecond-laser processing. Materials Research Express, 2014, 1, 045902.	1.6	8
21	Dual echelon femtosecond single-shot spectroscopy. Review of Scientific Instruments, 2014, 85, 083115.	1.3	40
22	Nanocomposite NiO:Pd hydrogen sensors with sub-ppm detection limit and low operating temperature. Materials Letters, 2014, 119, 51-55.	2.6	29
23	Nanocomposite NiO:Au hydrogen sensors with high sensitivity and low operating temperature. Materials Research Bulletin, 2014, 49, 552-559.	5.2	15
24	Structural and optical properties of TiO2 thin films prepared by spin coating. Journal of Sol-Gel Science and Technology, 2014, 72, 421-427.	2.4	82
25	Parametric analysis of the steady state and dynamic performance of proton exchange membrane fuel cell models. Renewable Energy, 2014, 71, 23-31.	8.9	20
26	Direct laser printing of thin-film polyaniline devices. Applied Physics A: Materials Science and Processing, 2013, 110, 623-628.	2.3	9
27	Optimized hydrogen sensing properties of nanocomposite NiO:Au thin films grown by dual pulsed laser deposition. Sensors and Actuators B: Chemical, 2013, 176, 103-109.	7.8	25
28	Hydrogenated amorphous silicon films grown by pulsed laser deposition. , 2013, , .		0
29	Optimized hydrogen sensing properties of PLD-grown nanocomposite NiO:Au and NiO:Pd thin films at ppb-concentration levels. , 2013, , .		0
30	Optical tweezers with enhanced efficiency based on laser-structured substrates. Applied Physics Letters, 2012, 101, .	3.3	14
31	Hydrogen Sensing Properties of Thin NiO Films Deposited by RF Sputtering. Procedia Engineering, 2012, 47, 746-749.	1.2	21
32	Properties of pulsed laser deposited nanocomposite NiO:Au thin films for gas sensing applications. Applied Physics A: Materials Science and Processing, 2012, 107, 899-904.	2.3	17
33	Laser induced forward transfer of conducting polymers. Opto-electronics Review, 2010, 18, .	2.4	13
34	Laser studies of metallic artworks. Applied Physics A: Materials Science and Processing, 2010, 101, 349-355.	2.3	9
35	Comparative evaluation of ultrafast laser beam interaction with the silvering in late Roman coins. Proceedings of SPIE, 2009, , .	0.8	1
36	Ultrafast dynamics of bis (n-butylimido) perylene thin films excited by two-photon absorption. Applied Physics A: Materials Science and Processing, 2009, 96, 369-372.	2.3	2

Maria Kandyla

#	Article	IF	Citations
37	High-Density Regular Arrays of Nanometer-Scale Rods Formed on Silicon Surfaces via Femtosecond Laser Irradiation in Water. Nano Letters, 2008, 8, 2087-2091.	9.1	157
38	Ultrafast reflectivity dynamics in bis (n-butylimido) perylene thin films. , 2008, , .		0
39	Transient picometer atomic displacements in $\hat{I}\pm$ -Te photoexcited by femtosecond laser pulses. , 2007, , .		0
40	Publisher's Note: Femtosecond dynamics of the laser-induced solid-to-liquid phase transition in aluminum [Phys. Rev. B75, 214107 (2007)]. Physical Review B, 2007, 75, .	3.2	4
41	Turning Aluminum Liquid in Picoseconds. Optics and Photonics News, 2007, 18, 44.	0.5	6
42	Intraband and interband optical deformation potentials in femtosecond-laser-excitedαâ^'Te. Physical Review B, 2007, 75, .	3.2	41
43	Femtosecond dynamics of the laser-induced solid-to-liquid phase transition in aluminum. Physical Review B, 2007, 75, .	3.2	75
44	Optical control of coherent lattice vibrations in tellurium. Physical Review B, 2004, 70, .	3.2	30