
Bruce D Uhal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4885802/publications.pdf Version: 2024-02-01

RDUCE D HHAL

#	Article	IF	CITATIONS
1	Periodically aperiodic pattern of SARS-CoV-2 mutations underpins the uncertainty of its origin and evolution. Environmental Research, 2022, 204, 112092.	7.5	4
2	The importance of accessory protein variants in the pathogenicity of SARS-CoV-2. Archives of Biochemistry and Biophysics, 2022, 717, 109124.	3.0	20
3	Stem-Cell Therapy for Bronchopulmonary Dysplasia (BPD) in Newborns. Cells, 2022, 11, 1275.	4.1	18
4	Would New SARS-CoV-2 Variants Change the War against COVID-19?. Epidemiologia, 2022, 3, 229-237.	2.2	3
5	The structural basis of accelerated host cell entry by SARS oVâ€2â€. FEBS Journal, 2021, 288, 5010-5020.	4.7	129
6	Questions concerning the proximal origin of SARS oVâ€2. Journal of Medical Virology, 2021, 93, 1204-1206.	5.0	56
7	Subtyping Meconium Protease Activities Which Degrade Lung Protective Angiotensin Converting Enzyme-2 in Human Alveolar Epithelial Cells , 2021, , .		0
8	Interindividual immunogenic variants: Susceptibility to coronavirus, respiratory syncytial virus and influenza virus. Reviews in Medical Virology, 2021, 31, e2234.	8.3	12
9	Urgent Need for Field Surveys of Coronaviruses in Southeast Asia to Understand the SARS-CoV-2 Phylogeny and Risk Assessment for Future Outbreaks. Biomolecules, 2021, 11, 398.	4.0	3
10	COVID-19—A Theory of Autoimmunity Against ACE-2 Explained. Frontiers in Immunology, 2021, 12, 582166.	4.8	41
11	Carbon-Based Nanomaterials: Promising Antiviral Agents to Combat COVID-19 in the Microbial-Resistant Era. ACS Nano, 2021, 15, 8069-8086.	14.6	134
12	A unique view of SARS-CoV-2 through the lens of ORF8 protein. Computers in Biology and Medicine, 2021, 133, 104380.	7.0	48
13	Notable sequence homology of the ORF10 protein introspects the architecture of SARS-CoV-2. International Journal of Biological Macromolecules, 2021, 181, 801-809.	7.5	36
14	COVID-19 Vaccines and Thrombosis—Roadblock or Dead-End Street?. Biomolecules, 2021, 11, 1020.	4.0	28
15	SARS-CoV-2 Research Using Human Pluripotent Stem Cells and Organoids. Stem Cells Translational Medicine, 2021, 10, 1491-1499.	3.3	16
16	The mechanism behind flaring/triggering of autoimmunity disorders associated with COVID-19. Autoimmunity Reviews, 2021, 20, 102909.	5.8	7
17	Implications derived from S-protein variants of SARS-CoV-2 from six continents. International Journal of Biological Macromolecules, 2021, 191, 934-955.	7.5	10
18	Angiotensin Converting Enzyme-2 (ACE-2) role in disease and future in research. Journal of Lung, Pulmonary & Respiratory Research, 2021, 8, 54-60.	0.3	0

#	Article	IF	CITATIONS
19	Regulation of ACE-2 enzyme by hyperoxia in lung epithelial cells by post-translational modification. Journal of Lung, Pulmonary & Respiratory Research, 2021, 8, 47-52.	0.3	5
20	Angiotensin Converting Enzyme-2 (ACE-2) role in disease and future in research. Journal of Lung, Pulmonary & Respiratory Research, 2021, 8, 54-60.	0.3	3
21	Subtyping meconium protease activities which degrade lung protective angiotensin converting enzyme-2 in human lung cells. Journal of Lung, Pulmonary & Respiratory Research, 2021, 8, 113-118.	0.3	0
22	Regulation of ACE-2 enzyme by hyperoxia in lung epithelial cells by post-translational modification. Journal of Lung, Pulmonary & Respiratory Research, 2021, 8, 47-52.	0.3	1
23	The Importance of Research on the Origin of SARS-CoV-2. Viruses, 2020, 12, 1203.	3.3	27
24	Possible Transmission Flow of SARS-CoV-2 Based on ACE2 Features. Molecules, 2020, 25, 5906.	3.8	33
25	ACE2, Much More Than Just a Receptor for SARS-COV-2. Frontiers in Cellular and Infection Microbiology, 2020, 10, 317.	3.9	276
26	SARS-CoV-2 (COVID-19) structural and evolutionary dynamicome: Insights into functional evolution and human genomics. Journal of Biological Chemistry, 2020, 295, 11742-11753.	3.4	40
27	COVID-19-A theory of autoimmunity to ACE-2. MOJ Immunology, 2020, 7, 17-19.	11.0	21
28	Oxygen injury in neonates: which is worse? hyperoxia, hypoxia, or alternating hyperoxia/hypoxia. Journal of Lung, Pulmonary & Respiratory Research, 2020, 7, 4-13.	0.3	6
29	Mas Receptor Agonist AVE0991 increases surfactant protein expression under hyperoxic conditions in human lung epithelial cells. Journal of Lung, Pulmonary & Respiratory Research, 2020, 7, 85-91.	0.3	0
30	Mas Receptor Agonist AVE0991 increases surfactant protein expression under hyperoxic conditions in human lung epithelial cells. Journal of Lung, Pulmonary & Respiratory Research, 2020, 7, 85-91.	0.3	2
31	Degradation of Lung Protective Angiotensin Converting Enzyme-2 by Meconium in Human Alveolar Epithelial Cells: A Potential Pathogenic Mechanism in Meconium Aspiration Syndrome. Lung, 2019, 197, 227-233.	3.3	10
32	Activation of mas restores hyperoxia-induced loss of lung epithelial barrier function through inhibition of apoptosis. Journal of Lung, Pulmonary & Respiratory Research, 2019, 6, 58-62.	0.3	9
33	Activation of mas restores hyperoxia-induced loss of lung epithelial barrier function through inhibition of apoptosis. Journal of Lung, Pulmonary & Respiratory Research, 2019, 6, 58-62.	0.3	7
34	The renin angiotensin system in liver and lung: impact and therapeutic potential in organ fibrosis. Journal of Lung, Pulmonary & Respiratory Research, 2018, 5, .	0.3	14
35	Local activation of the pulmonary extravascular angiotensin system induces epithelial apoptosis and lung fibrosis. Journal of Lung, Pulmonary & Respiratory Research, 2018, 5, 192-200.	0.3	3
36	The renin angiotensin system in liver and lung: impact and therapeutic potential in organ fibrosis. Journal of Lung, Pulmonary & Respiratory Research, 2018, 5, .	0.3	18

#	Article	IF	CITATIONS
37	Protection of Meconium-Induced Lung Epithelial Injury by Protease Inhibitors. Journal of Lung, Pulmonary & Respiratory Research, 2017, 4, .	0.3	3
38	Prior hypoxia prevents downregulation of ACE-2 by hyperoxia in fetal human lung fibroblasts. Experimental Lung Research, 2016, 42, 121-130.	1.2	25
39	The unfolded protein response controls ER stress-induced apoptosis of lung epithelial cells through angiotensin generation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L846-L854.	2.9	24
40	Angiotensin-(1–7)/mas inhibits apoptosis in alveolar epithelial cells through upregulation of MAP kinase phosphatase-2. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L240-L248.	2.9	35
41	Bleomycin-Induced Neonatal Lung Injury Requires the Autocrine Pulmonary Angiotensin System. Jacobs Journal of Pulmonology, 2016, 2, .	0.0	0
42	Roles of the Angiotensin System in Neonatal Lung Injury and Disease. , 2016, 1, .		8
43	Hyperoxia downregulates angiotensin-converting enzyme-2 in human fetal lung fibroblasts. Pediatric Research, 2015, 77, 656-662.	2.3	45
44	Inhibition of Apoptosis by Angiotensin 1â€7/mas Pathway through MKPâ€2 Activation in Alveolar Epithelial Cells. FASEB Journal, 2015, 29, 569.14.	0.5	0
45	The Unfolded Protein Response Regulates Apoptosis of Alveolar Epithelial Cells (AECs) by Modulating Autocrine Angiotensin (ANG)II and ANG1â€7. FASEB Journal, 2015, 29, 1015.1.	0.5	1
46	Regulation of TGFâ€Î²1â€inducible angiotensinogen gene transcription in lung cells by core promoter SNPs (834.6). FASEB Journal, 2014, 28, 834.6.	0.5	0
47	Endoplasmic reticulum stress induces alveolar epithelial cell apoptosis through the activation of the unfolded protein response (1010.10). FASEB Journal, 2014, 28, 1010.10.	0.5	0
48	Ectodomain shedding in the downregulation of cellular ACEâ€2 by ER stress in lung cells (716.3). FASEB Journal, 2014, 28, 716.3.	0.5	0
49	Antiâ€apoptotic mechanism(s) of angiotensin 1â€7/mas in alveolar epithelial cell survival (1010.3). FASEB Journal, 2014, 28, 1010.3.	0.5	0
50	Molecular and cellular mechanisms of the inhibitory effects of ACE-2/ANG1-7/Mas axis on lung injury. Current Topics in Pharmacology, 2014, 18, 71-80.	0.0	9
51	The Witschi Hypothesis revisited after 35 years: genetic proof from SP-C BRICHOS domain mutations. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L906-L911.	2.9	28
52	Cell cycle dependence of ACE-2 explains downregulation in idiopathic pulmonary fibrosis. European Respiratory Journal, 2013, 42, 198-210.	6.7	62
53	Abrogation of ER stress-induced apoptosis of alveolar epithelial cells by angiotensin 1–7. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L33-L41.	2.9	42
54	Angiotensinogen Gene Transcription in Pulmonary Fibrosis. International Journal of Peptides, 2012, 2012, 2012, 1-8.	0.7	13

#	Article	IF	CITATIONS
55	Angiotensin signalling in pulmonary fibrosis. International Journal of Biochemistry and Cell Biology, 2012, 44, 465-468.	2.8	113
56	Regulation of alveolar epithelial cell survival by the ACE-2/angiotensin 1–7/ <i>Mas</i> axis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L269-L274.	2.9	115
57	A New Look at the Pathogenesis of the Meconium Aspiration Syndrome: A Role for Fetal Pancreatic Proteolytic Enzymes in Epithelial Cell Detachment. Pediatric Research, 2010, 68, 221-224.	2.3	19
58	Angiotensin converting enzyme-2 is protective but downregulated in human and experimental lung fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L178-L185.	2.9	172
59	Amiodarone Induces Angiotensinogen Gene Expression in Lung Alveolar Epithelial Cells through Activation Protein-1. Basic and Clinical Pharmacology and Toxicology, 2007, 100, 59-66.	2.5	28
60	Extravascular sources of lung angiotensin peptide synthesis in idiopathic pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L887-L895.	2.9	71
61	Potential Deployment of Angiotensin I Converting Enzyme Inhibitors and of Angiotensin II Type 1 and Type 2 Receptor Blockers in Cancer Chemotherapy. Anti-Cancer Agents in Medicinal Chemistry, 2006, 6, 451-460.	1.7	35
62	Intratracheal delivery of angiotensin II causes pulmonary collagen accumulation: A new model for studying lung fibrosis both ex vivo and in vivo. FASEB Journal, 2006, 20, A753.	0.5	0
63	Apoptosis of airway epithelial cells in response to meconium. Life Sciences, 2005, 76, 1849-1858.	4.3	32
64	Inhibition of Amiodarone-Induced Lung Fibrosis but not Alveolitis by Angiotensin System Antagonists. Basic and Clinical Pharmacology and Toxicology, 2003, 92, 81-87.	0.0	64
65	Apoptosis-Dependent Acute Lung Injury and Repair After Intratracheal Instillation of Noradrenaline in Rats. Experimental Physiology, 2003, 88, 269-275.	2.0	12
66	Bleomycin-induced apoptosis of alveolar epithelial cells requires angiotensin synthesis de novo. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L501-L507.	2.9	92
67	Apoptosis in Lung Fibrosis and Repair*. Chest, 2002, 122, 293S-298S.	0.8	66
68	Angiotensin receptor subtype AT1 mediates alveolar epithelial cell apoptosis in response to ANG II. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L713-L718.	2.9	104
69	Norepinephrine induces alveolar epithelial apoptosis mediated by α-, β-, and angiotensin receptor activation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L624-L630.	2.9	22
70	Fas and apoptosis in the alveolar epithelium: holes in the dike?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L326-L327.	2.9	2
71	Regulation of apoptosis by vasoactive peptides. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L749-L761.	2.9	50
72	Regulation of apoptosis by angiotensin II in the heart and lungs (Review). International Journal of Molecular Medicine, 2001, 7, 273-80.	4.0	46

#	Article	IF	CITATIONS
73	Fibroblasts from Idiopathic Pulmonary Fibrosis and Normal Lungs Differ in Growth Rate, Apoptosis, and Tissue Inhibitor of Metalloproteinases Expression. American Journal of Respiratory Cell and Molecular Biology, 2001, 24, 591-598.	2.9	327
74	Apoptosis of lung epithelial cells in response to TNF-? requires angiotensin II generation de novo. Journal of Cellular Physiology, 2000, 185, 253-259.	4.1	126
75	Cell death and lung cell histology in meconium aspirated newborn rabbit lung. European Journal of Pediatrics, 2000, 159, 819-826.	2.7	59
76	Abrogation of bleomycin-induced epithelial apoptosis and lung fibrosis by captopril or by a caspase inhibitor. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L143-L151.	2.9	221
77	Apoptosis in lung pathophysiology. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L423-L427.	2.9	112
78	Amiodarone induces apoptosis of human and rat alveolar epithelial cells in vitro. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L1039-L1044.	2.9	57
79	Effects of Amiodarone on Heart Cells. Circulation, 2000, 102, E170.	1.6	2
80	Fas-induced apoptosis of alveolar epithelial cells requires ANG II generation and receptor interaction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L1245-L1250.	2.9	91
81	Human lung myofibroblast-derived inducers of alveolar epithelial apoptosis identified as angiotensin peptides. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L1158-L1164.	2.9	92
82	Angiotensin II induces apoptosis in human and rat alveolar epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L885-L889.	2.9	158
83	Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L1192-L1199.	2.9	208
84	Cell size, cell cycle, and α-smooth muscle actin expression by primary human lung fibroblasts. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L998-L1005.	2.9	29
85	Captopril inhibits apoptosis in human lung epithelial cells: a potential antifibrotic mechanism. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L1013-L1017.	2.9	73