René Hübner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4885444/publications.pdf

Version: 2024-02-01

257 papers

5,887 citations

76326 40 h-index 62 g-index

262 all docs 262 docs citations

times ranked

262

7305 citing authors

#	Article	IF	CITATIONS
1	Role of the metal supply pathway on silicon patterning by oblique ion beam sputtering. Applied Surface Science, 2022, 580, 152267.	6.1	6
2	Extraordinary anisotropic magnetoresistance in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>CaMn</mml:mi><mml:msub><mm mathvariant="normal">O<mml:mn>3</mml:mn></mm></mml:msub><mml:mo>/</mml:mo>Calr mathvariant="normal">O<mml:mn>3</mml:mn></mml:mrow></mml:math>		า เกม :msub> <
3	heterostructures. Physical Review B, 2022, 105, . Mid- and far-infrared localized surface plasmon resonances in chalcogen-hyperdoped silicon. Nanoscale, 2022, 14, 2826-2836.	5.6	9
4	Endocytosis is a significant contributor to uranium(VI) uptake in tobacco (Nicotiana tabacum) BY-2 cells in phosphate-deficient culture. Science of the Total Environment, 2022, 823, 153700.	8.0	9
5	Tunable metal hydroxide–organic frameworks for catalysing oxygen evolution. Nature Materials, 2022, 21, 673-680.	27.5	123
6	Defect Nanostructure and its Impact on Magnetism of α â€Cr ₂ O ₃ Thin Films. Small, 2022, 18, e2201228.	10.0	13
7	Self-Supported Three-Dimensional Quantum Dot Aerogels as a Promising Photocatalyst for CO ₂ Reduction. Chemistry of Materials, 2022, 34, 2687-2695.	6.7	12
8	Deposition of silicon oxide films on silicon using HelixJet - an atmospheric-pressure plasma jet process below 100°C. Thin Solid Films, 2022, 753, 139257.	1.8	2
9	Expanding the Range: AuCu Metal Aerogels from H2O and EtOH. Catalysts, 2022, 12, 441.	3.5	3
10	Controllable electrostatic manipulation of structure building blocks in noble metal aerogels. Materials Advances, 2022, 3, 5760-5771.	5.4	6
11	Focussing and defocussing effects at radio frequency glow discharge optical emission spectroscopy analyses of thin films with partly nonconductive components. International Journal of Materials Research, 2022, 96, 983-987.	0.3	2
12	Magnetism and Magnetoelectricity of Textured Polycrystalline Bulk Cr ₂ O ₃ Sintered in Conditions Far out of Equilibrium. ACS Applied Electronic Materials, 2022, 4, 2943-2952.	4.3	5
13	Peptidoglycan as major binding motif for Uranium bioassociation on Magnetospirillum magneticum AMB-1 in contaminated waters. Journal of Hazardous Materials, 2022, 437, 129376.	12.4	3
14	Artificially sporulated Escherichia coli cells as a robust cell factory for interfacial biocatalysis. Nature Communications, 2022, 13, .	12.8	22
15	A comprehensive study on the interaction of Eu(III) and U(VI) with plant cells (Daucus carota) in suspension. Journal of Hazardous Materials, 2022, 439, 129520.	12.4	6
16	CO ₂ Electroreduction on Unsupported PdPt Aerogels: Effects of Alloying and Surface Composition on Product Selectivity. ACS Applied Energy Materials, 2022, 5, 8460-8471.	5.1	16
17	Effect of nanoscale surface topography on the adsorption of globular proteins. Applied Surface Science, 2021, 535, 147671.	6.1	21
18	A Roadmap for 3D Metal Aerogels: Materials Design and Application Attempts. Matter, 2021, 4, 54-94.	10.0	60

#	Article	IF	CITATIONS
19	Mechanosynthesis of polymer-stabilized lead bromide perovskites: insight into the formation and phase conversion of nanoparticles. Nano Research, 2021, 14, 1078-1086.	10.4	8
20	Nanoparticle-Stabilized Perforated Lamellar Morphology in Block Copolymer/Quantum Dot Hybrids. Macromolecules, 2021, 54, 1216-1223.	4.8	8
21	Rapid synthesis of gold–palladium core–shell aerogels for selective and robust electrochemical CO ₂ reduction. Journal of Materials Chemistry A, 2021, 9, 17189-17197.	10.3	32
22	Insight into the structure–property relationship of UO ₂ nanoparticles. Inorganic Chemistry Frontiers, 2021, 8, 1102-1110.	6.0	12
23	$\hat{l}\pm v\hat{l}^2$ 3-Specific Gold Nanoparticles for Fluorescence Imaging of Tumor Angiogenesis. Nanomaterials, 2021, 11, 138.	4.1	7
24	Dependence of the damage in optical metal/dielectric coatings on the energy of ions in irradiation experiments for space qualification. Scientific Reports, 2021, 11, 3429.	3.3	12
25	Local and nonlocal spin Seebeck effect in lateral Pt–Cr2O3–Pt devices at low temperatures. APL Materials, 2021, 9, .	5.1	13
26	Stress-controlled zero-field spin splitting in silicon carbide. Applied Physics Letters, 2021, 118, .	3.3	12
27	Stress distribution at the AlN/SiC heterointerface probed by Raman spectroscopy. Journal of Applied Physics, 2021, 129, .	2.5	7
28	Phase Selection in Mn–Si Alloys by Fast Solidâ€State Reaction with Enhanced Skyrmion Stability. Advanced Functional Materials, 2021, 31, 2009723.	14.9	9
29	Efficient and low-voltage vertical organic permeable base light-emitting transistors. Nature Materials, 2021, 20, 1007-1014.	27.5	36
30	A Robust PtNi Nanoframe/Nâ€Doped Graphene Aerogel Electrocatalyst with Both High Activity and Stability. Angewandte Chemie - International Edition, 2021, 60, 9590-9597.	13.8	88
31	A Robust PtNi Nanoframe/Nâ€Doped Graphene Aerogel Electrocatalyst with Both High Activity and Stability. Angewandte Chemie, 2021, 133, 9676-9683.	2.0	9
32	Bioassociation of U(VI) and Eu(III) by Plant (<i>Brassica napus</i>) Suspension Cell Culturesâ€"A Spectroscopic Investigation. Environmental Science & Environmental Science	10.0	10
33	Simultaneous Ligand and Cation Exchange of Colloidal CdSe Nanoplatelets toward PbSe Nanoplatelets for Application in Photodetectors. Journal of Physical Chemistry Letters, 2021, 12, 5214-5220.	4.6	13
34	Enhanced Photoluminescence of Gold Nanoparticleâ€Quantum Dot Hybrids Confined in Hairy Polymer Nanofibers. ChemNanoMat, 2021, 7, 831-841.	2.8	5
35	Impact of the Microbial Origin and Active Microenvironment on the Shape of Biogenic Elemental Selenium Nanomaterials. Environmental Science & Elemental Science & Elem	10.0	1
36	Uranium(VI) bioassociation by different fungi – a comparative study into molecular processes. Journal of Hazardous Materials, 2021, 411, 125068.	12.4	14

#	Article	IF	Citations
37	Sizeâ€Tunable Gold Aerogels: A Durable and Misfocusâ€Tolerant 3D Substrate for Multiplex SERS Detection. Advanced Optical Materials, 2021, 9, 2100352.	7.3	24
38	Tungsten Oxide/Reduced Graphene Oxide Aerogel with Lowâ€Content Platinum as Highâ€Performance Electrocatalyst for Hydrogen Evolution Reaction. Small, 2021, 17, e2102159.	10.0	24
39	Integrated complementary inverters and ring oscillators based on vertical-channel dual-base organic thin-film transistors. Nature Electronics, 2021, 4, 588-594.	26.0	28
40	Fluorination of graphene leads to susceptibility for nanopore formation by highly charged ion impact. Physical Review Materials, 2021, 5, .	2.4	7
41	B20-type FeGe on Ge(1 0 0) prepared by pulsed laser melting. Journal of Magnetism and Magnetic Materials, 2021, 532, 167981.	2.3	1
42	Formation, structure, and optical properties of copper chromite thin films for high-temperature solar absorbers. Materialia, 2021, 18, 101156.	2.7	4
43	B20–MnSi films grown on Si(100) substrates with magnetic skyrmion signature. Materials Today Physics, 2021, 21, 100541.	6.0	2
44	Effects of hydrogen absorption on magnetism in Ni80Fe20/Y/Pd trilayers. Physical Review B, 2021, 104, .	3.2	2
45	Near-Infrared-Emitting Cd <i> <i> <i> <i> <i> < i > 4 </i></i></i></i></i>	6.7	11
46	Phase evolution of Te-hyperdoped Si upon furnace annealing. Applied Surface Science, 2021, 567, 150755.	6.1	6
47	Metal-induced progressive alteration of conducting states in memristors for implementing an efficient analog memory: a DFT-supported experimental approach. Journal of Materials Chemistry C, 2021, 9, 3136-3144.	5.5	2
48	Chlorine doping of MoSe ₂ flakes by ion implantation. Nanoscale, 2021, 13, 5834-5846.	5.6	21
49	Siliconâ€Based Intermediateâ€Band Infrared Photodetector Realized by Te Hyperdoping. Advanced Optical Materials, 2021, 9, 2001546.	7. 3	19
50	Substitutional synthesis of sub-nanometer InGaN/GaN quantum wells with high indium content. Scientific Reports, 2021, 11, 20606.	3.3	9
51	Electrical Characterization of Germanium Nanowires Using a Symmetric Hall Bar Configuration: Size and Shape Dependence. Nanomaterials, 2021, 11, 2917.	4.1	5
52	High electron mobility in strained GaAs nanowires. Nature Communications, 2021, 12, 6642.	12.8	28
53	Structural Templating of an Organic Solar Cell Absorber by Ellagic Acid To Tune Its Aggregation, Molecular Orientation, and Optical Properties. ACS Applied Energy Materials, 2021, 4, 14273-14286.	5.1	3
54	Controlled Silicidation of Silicon Nanowires Using Flash Lamp Annealing. Langmuir, 2021, , .	3.5	4

#	Article	IF	CITATIONS
55	Effect of Temperature and Cell Viability on Uranium Biomineralization by the Uranium Mine Isolate Penicillium simplicissimum. Frontiers in Microbiology, 2021, 12, 802926.	3.5	6
56	Bacillus safensis JG-B5T affects the fate of selenium by extracellular production of colloidally less stable selenium nanoparticles. Journal of Hazardous Materials, 2020, 384, 121146.	12.4	31
57	Engineering Selfâ€Supported Noble Metal Foams Toward Electrocatalysis and Beyond. Advanced Energy Materials, 2020, 10, 1901945.	19.5	89
58	Directionality of metal-induced crystallization and layer exchange in amorphous carbon/nickel thin film stacks. Carbon, 2020, 159, 656-667.	10.3	7
59	Highly ordered silicide ripple patterns induced by medium-energy ion irradiation. Physical Review B, 2020, 102, .	3.2	6
60	Higher-order ferromagnetic resonances in out-of-plane saturated Co/Au magnetic multilayers. Physical Review B, 2020, 102, .	3.2	10
61	Tailoring Particleâ€Enzyme Nanoconjugates for Biocatalysis at the Organicâ€Organic Interface. ChemSusChem, 2020, 13, 6523-6527.	6.8	9
62	Disturbance-Promoted Unconventional and Rapid Fabrication of Self-Healable Noble Metal Gels for (Photo-)Electrocatalysis. Matter, 2020, 2, 908-920.	10.0	49
63	RÃ1⁄4cktitelbild: Freeze–Thawâ€Promoted Fabrication of Clean and Hierarchically Structured Nobleâ€Metal Aerogels for Electrocatalysis and Photoelectrocatalysis (Angew. Chem. 21/2020). Angewandte Chemie, 2020, 132, 8379-8379.	2.0	0
64	Highâ€Performance Bismuthâ€Doped Nickel Aerogel Electrocatalyst for the Methanol Oxidation Reaction. Angewandte Chemie, 2020, 132, 13995-14003.	2.0	22
65	Unraveling Structure and Device Operation of Organic Permeable Base Transistors. Advanced Electronic Materials, 2020, 6, 2000230.	5.1	11
66	Increasing the Diversity and Understanding of Semiconductor Nanoplatelets by Colloidal Atomic Layer Deposition. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000282.	2.4	5
67	Subâ€10 nm Radiolabeled Barium Sulfate Nanoparticles as Carriers for Theranostic Applications and Targeted Alpha Therapy. ChemistryOpen, 2020, 9, 797-805.	1.9	16
68	Freeze–Thawâ€Promoted Fabrication of Clean and Hierarchically Structured Nobleâ€Metal Aerogels for Electrocatalysis and Photoelectrocatalysis. Angewandte Chemie - International Edition, 2020, 59, 8293-8300.	13.8	56
69	Freeze–Thawâ€Promoted Fabrication of Clean and Hierarchically Structured Nobleâ€Metal Aerogels for Electrocatalysis and Photoelectrocatalysis. Angewandte Chemie, 2020, 132, 8370-8377.	2.0	13
70	Unveiling reductant chemistry in fabricating noble metal aerogels for superior oxygen evolutionÂand ethanol oxidation. Nature Communications, 2020, 11, 1590.	12.8	106
71	Towards Scalable Reconfigurable Field Effect Transistor using Flash Lamp Annealing. , 2020, , .		2
72	General Colloidal Synthesis of Transition-Metal Disulfide Nanomaterials as Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 13148-13155.	8.0	25

#	Article	IF	Citations
73	Hollow Au@TiO ₂ porous electrospun nanofibers for catalytic applications. RSC Advances, 2020, 10, 6592-6602.	3.6	12
74	Engineering Multimetallic Aerogels for pHâ€Universal HER and ORR Electrocatalysis. Advanced Energy Materials, 2020, 10, 1903857.	19.5	83
75	Technetium retention by gamma alumina nanoparticles and the effect of sorbed Fe2+. Journal of Hazardous Materials, 2020, 388, 122066.	12.4	14
76	Promoting the Electrocatalytic Performance of Noble Metal Aerogels by Ligandâ€Directed Modulation. Angewandte Chemie - International Edition, 2020, 59, 5706-5711.	13.8	58
77	Formation of Thin NiGe Films by Magnetron Sputtering and Flash Lamp Annealing. Nanomaterials, 2020, 10, 648.	4.1	3
78	Highâ€Performance Bismuthâ€Doped Nickel Aerogel Electrocatalyst for the Methanol Oxidation Reaction. Angewandte Chemie - International Edition, 2020, 59, 13891-13899.	13.8	179
79	Electron Concentration Limit in Ge Doped by Ion Implantation and Flash Lamp Annealing. Materials, 2020, 13, 1408.	2.9	6
80	The role of boron on exchange coupling in NiFe/Ru1 \hat{a}° <i>>x</i> B <i>x</i> /FeCo trilayer structures. Journal of Applied Physics, 2020, 127, .	2.5	2
81	Promoting the Electrocatalytic Performance of Noble Metal Aerogels by Ligandâ€Directed Modulation. Angewandte Chemie, 2020, 132, 5755-5760.	2.0	14
82	Tunable Magnetic Vortex Dynamics in Ion-Implanted Permalloy Disks. ACS Applied Materials & Samp; Interfaces, 2020, 12, 27812-27818.	8.0	8
83	Low damping and microstructural perfection of sub-40nm-thin yttrium iron garnet films grown by liquid phase epitaxy. Physical Review Materials, 2020, 4, .	2.4	49
84	All-THz pump-probe spectroscopy of the intersubband AC-Stark effect in a wide GaAs quantum well. Optics Express, 2020, 28, 25358.	3.4	2
85	Dissolution of donor-vacancy clusters in heavily doped n-type germanium. New Journal of Physics, 2020, 22, 123036.	2.9	4
86	Emerging Noble Metal Aerogels: State of the Art and a Look Forward. Matter, 2019, 1, 39-56.	10.0	84
87	Phase Selectivity in Cr and N Co-Doped TiO2 Films by Modulated Sputter Growth and Post-Deposition Flash-Lamp-Annealing. Coatings, 2019, 9, 448.	2.6	3
88	Nanoscale n++-p junction formation in GeOI probed by tip-enhanced Raman spectroscopy and conductive atomic force microscopy. Journal of Applied Physics, 2019, 125, 245703.	2.5	5
89	Diffusion of Phosphorus and Boron from Atomic Layer Deposition Oxides into Silicon. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900306.	1.8	4
90	Ligand-Exchange-Mediated Fabrication of Gold Aerogels Containing Different Au(I) Content with Peroxidase-like Behavior. Chemistry of Materials, 2019, 31, 10094-10099.	6.7	26

#	Article	IF	CITATIONS
91	Effective Hexagonal Boron Nitride Passivation of Few-Layered InSe and GaSe to Enhance Their Electronic and Optical Properties. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43480-43487.	8.0	44
92	Pump – probe THz spectroscopy study of electronic properties of semiconductor nanowires. , 2019, , .		1
93	Reconfigurable Spin-Wave Nonreciprocity Induced by Dipolar Interaction in a Coupled Ferromagnetic Bilayer. Physical Review Applied, 2019, 12, .	3.8	77
94	Enzymes Immobilized on Carbon Nitride (C 3 N 4) Cooperating with Metal Nanoparticles for Cascade Catalysis. Advanced Materials Interfaces, 2019, 6, 1801664.	3.7	25
95	Nanomagnetism of Magnetoelectric Granular Thin-Film Antiferromagnets. Nano Letters, 2019, 19, 1682-1687.	9.1	45
96	Observation of multiple magnetic phases and complex nanostructures in Co implanted amorphous carbon films. Journal of Physics and Chemistry of Solids, 2019, 127, 158-163.	4.0	6
97	Specific ion effects directed noble metal aerogels: Versatile manipulation for electrocatalysis and beyond. Science Advances, 2019, 5, eaaw4590.	10.3	87
98	Colloidal Mercury-Doped CdSe Nanoplatelets with Dual Fluorescence. Chemistry of Materials, 2019, 31, 5065-5074.	6.7	29
99	Widely tunable GaAs bandgap via strain engineering in core/shell nanowires with large lattice mismatch. Nature Communications, 2019, 10, 2793.	12.8	78
100	â€ ⁻ Boxâ€Profile' Ion Implants as Geochemical Reference Materials for Electron Probe Microanalysis and Secondary Ion Mass Spectrometry. Geostandards and Geoanalytical Research, 2019, 43, 531-541.	3.1	5
101	Preparation of non-oxidized Ge quantum dot lattices in amorphous Al ₂ O ₃ , Si ₃ N ₄ and SiC matrices. Nanotechnology, 2019, 30, 335601.	2.6	14
102	Silver Particles with Rhombicuboctahedral Shape and Effective Isotropic Interactions with Light. Chemistry of Materials, 2019, 31, 2822-2827.	6.7	9
103	Vertical Organic Thinâ€Film Transistors with an Anodized Permeable Base for Very Low Leakage Current. Advanced Materials, 2019, 31, e1900917.	21.0	21
104	Structure-property relationship of Co2MnSi thin films in response to He+-irradiation. Scientific Reports, 2019, 9, 2766.	3.3	5
105	Effect of insertion layer on electrode properties in magnetic tunnel junctions with a zero-moment half-metal. Scientific Reports, 2019, 9, 4020.	3.3	5
106	Facile preparation of radium-doped, functionalized nanoparticles as carriers for targeted alpha therapy. Inorganic Chemistry Frontiers, 2019, 6, 1341-1349.	6.0	26
107	A material experiment for small satellites to characterise the behaviour of carbon nanotubes in space $\hat{a}\in$ development and ground validation. Advances in Space Research, 2019, 63, 2312-2321.	2.6	4
108	Nonlinear plasmonic response of doped nanowires observed by infrared nanospectroscopy. Nanotechnology, 2019, 30, 084003.	2.6	10

#	Article	IF	CITATIONS
109	Ultra-fast annealing manipulated spinodal nano-decomposition in Mn-implanted Ge. Nanotechnology, 2019, 30, 054001.	2.6	6
110	Thermal stability of Te-hyperdoped Si: Atomic-scale correlation of the structural, electrical, and optical properties. Physical Review Materials, 2019, 3, .	2.4	13
111	Superconductivity in single-crystalline aluminum- and gallium-hyperdoped germanium. Physical Review Materials, 2019, 3, .	2.4	7
112	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -type codoping effect in (Ga,Mn)As: Mn lattice location versus magnetic properties. Physical Review Materials, 2019, 3, .	2.4	2
113	Electronic phase separation in insulating (Ga, Mn) As with low compensation: super-paramagnetism and hopping conduction. Journal of Physics Condensed Matter, 2018, 30, 095801.	1.8	5
114	Magnetic properties of Co/Ni grain boundaries after annealing. AIP Advances, 2018, 8, 056318.	1.3	2
115	Facile preparation of multifunctionalisable â€~stealth' upconverting nanoparticles for biomedical applications. Dalton Transactions, 2018, 47, 8595-8604.	3.3	26
116	Laser-Rewriteable Ferromagnetism at Thin-Film Surfaces. ACS Applied Materials & Distribution (1988) 10, 15232-15239.	8.0	32
117	CMOSâ€Compatible Controlled Hyperdoping of Silicon Nanowires. Advanced Materials Interfaces, 2018, 5, 1800101.	3.7	11
118	Rapid Synthesis of Subâ€10â€nm Hexagonal NaYF ₄ â€Based Upconverting Nanoparticles using Therminol [®] â€66. ChemistryOpen, 2018, 7, 159-168.	1.9	18
119	Kernâ€Schaleâ€Strukturierung rein metallischer Aerogele für eine hocheffiziente Nutzung von Platin für die Sauerstoffreduktion. Angewandte Chemie, 2018, 130, 3014-3018.	2.0	7
120	Coreâ€"Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2018, 57, 2963-2966.	13.8	154
121	Plasmonic nanoparticles embedded in single crystals synthesized by gold ion implantation for enhanced optical nonlinearity and efficient Q-switched lasing. Nanoscale, 2018, 10, 4228-4236.	5.6	53
122	On the insulator-to-metal transition in titanium-implanted silicon. Scientific Reports, 2018, 8, 4164.	3.3	17
123	Biotransformation and detoxification of selenite by microbial biogenesis of selenium-sulfur nanoparticles. Journal of Hazardous Materials, 2018, 344, 749-757.	12.4	62
124	Pt and Au bimetallic and monometallic nanostructured amperometric sensors for direct detection of hydrogen peroxide: Influences of bimetallic effect and silica support. Sensors and Actuators B: Chemical, 2018, 255, 1325-1334.	7.8	65
125	Ultra-dense planar metallic nanowire arrays with extremely large anisotropic optical and magnetic properties. Nano Research, 2018, 11, 3519-3528.	10.4	18
126	Microstructure and charge trapping in ZrO2- and Si3N4-based superlattice layer systems with Ge nanoparticles. Thin Solid Films, 2018, 645, 124-128.	1.8	3

#	Article	IF	Citations
127	Mechanical Properties of Metal Oxide Aerogels. Chemistry of Materials, 2018, 30, 145-152.	6.7	49
128	The role of incidence angle in the morphology evolution of Ge surfaces irradiated by medium-energy Au ions. Journal of Physics Condensed Matter, 2018, 30, 324001.	1.8	5
129	display="inline" overflow="scroll"> <mmi:mi>Ge</mmi:mi> - <mmi:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Sn</mml:mi> Alloys via <mml:math <="" display="inline" td="" xmlns:mml="http://www.w3.org/1998/Math/Math/ML"><td>3.8</td><td>17</td></mml:math></mmi:math>	3.8	17
130	Epitaxial Mn5Ge3 (100) layer on Ge (100) substrates obtained by flash lamp annealing. Applied Physics Letters, 2018, 113, .	3.3	14
131	Site-controlled formation of single Si nanocrystals in a buried SiO ₂ matrix using ion beam mixing. Beilstein Journal of Nanotechnology, 2018, 9, 2883-2892.	2.8	14
132	Carbon doping controlled thermoluminescent defect centers in nanoporous alumina for ion beam dosimetry. Journal of Applied Physics, 2018, 124, 134902.	2.5	5
133	Alkyl Branching Position in Diketopyrrolopyrrole Polymers: Interplay between Fibrillar Morphology and Crystallinity and Their Effect on Photogeneration and Recombination in Bulk-Heterojunction Solar Cells. Chemistry of Materials, 2018, 30, 6801-6809.	6.7	13
134	Metabolism-dependent bioaccumulation of uranium by Rhodosporidium toruloides isolated from the flooding water of a former uranium mine. PLoS ONE, 2018, 13, e0201903.	2.5	26
135	Surface-Functionalized Mesoporous Nanoparticles as Heterogeneous Supports To Transfer Bifunctional Catalysts into Organic Solvents for Tandem Catalysis. ACS Applied Nano Materials, 2018, 1, 6378-6386.	5.0	28
136	Morphological and Functional Modifications of Optical Thin Films for Space Applications Irradiated with Low-Energy Helium Ions. ACS Applied Materials & Interfaces, 2018, 10, 34781-34791.	8.0	17
137	Percolated Si:SiO2 Nanocomposites: Oven- vs. Millisecond Laser-Induced Crystallization of SiOx Thin Films. Nanomaterials, 2018, 8, 525.	4.1	6
138	Formation of n- and p-type regions in individual Si/SiO ₂ core/shell nanowires by ion beam doping. Nanotechnology, 2018, 29, 474001.	2.6	6
139	Extended infrared Photoresponse in		

#	Article	IF	Citations
145	Nematicity of correlated systems driven by anisotropic chemical phase separation. Physical Review Materials, $2018, 2, .$	2.4	9
146	Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films. Nuclear Instruments & Methods in Physics Research B, 2017, 394, 6-11.	1.4	7
147	Multimetallic Hierarchical Aerogels: Shape Engineering of the Building Blocks for Efficient Electrocatalysis. Advanced Materials, 2017, 29, 1605254.	21.0	98
148	Effect of Acid Washing on the Oxygen Reduction Reaction Activity of Pt-Cu Aerogel Catalysts. Electrochimica Acta, 2017, 233, 210-217.	5.2	24
149	Shape change of biogenic elemental selenium nanomaterials from nanospheres to nanorods decreases their colloidal stability. Environmental Science: Nano, 2017, 4, 1054-1063.	4.3	33
150	Strain and particle size analysis in ion beam synthesized SiC nanoparticles using Raman scattering studies. Crystal Research and Technology, 2017, 52, 1600391.	1.3	3
151	Self-assembly of magnetic nanoclusters in diamond-like carbon by diffusion processes enhanced by collision cascades. Applied Physics Letters, $2017,110,.$	3.3	10
152	Discrete Single Crystalline Titanium Oxide Nanoparticle Formation from a Two-Dimensional Nanowelded Network. Crystal Growth and Design, 2017, 17, 2660-2666.	3.0	16
153	Giant Enhancement of Nonlinear Optical Response in Nd:YAG Single Crystals by Embedded Silver Nanoparticles. ACS Omega, 2017, 2, 1279-1286.	3.5	32
154	Room-temperature short-wavelength infrared Si photodetector. Scientific Reports, 2017, 7, 43688.	3.3	79
155	Purely antiferromagnetic magnetoelectric random access memory. Nature Communications, 2017, 8, 13985.	12.8	217
156	In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon. Nature Photonics, 2017, 11, 639-645.	31.4	101
157	Role of internal demagnetizing field for the dynamics of a surface-modulated magnonic crystal. Physical Review B, 2017, 95, .	3.2	20
158	Tri(pyrazolyl)phosphane als Vorstufen für die Synthese von stark emittierenden InP/ZnSâ€Quantenpunkten. Angewandte Chemie, 2017, 129, 14932-14937.	2.0	2
159	Versatile Tri(pyrazolyl)phosphanes as Phosphorus Precursors for the Synthesis of Highly Emitting InP/ZnS Quantum Dots. Angewandte Chemie - International Edition, 2017, 56, 14737-14742.	13.8	24
160	Decoupling the Two Roles of Ga Droplets in the Self-Catalyzed Growth of GaAs Nanowires on SiO _{<i>x</i>>/SiU<5000 SiO<5000 SiO<500 Sio<500}	3.0	26
161	<i>In situ</i> ohmic contact formation for n-type Ge via non-equilibrium processing. Semiconductor Science and Technology, 2017, 32, 115006.	2.0	10
162	Positioning of cobalt atoms in amorphous carbon films by pre-selecting the hydrogen concentration. Nuclear Instruments & Methods in Physics Research B, 2017, 409, 116-120.	1.4	3

#	Article	IF	CITATIONS
163	Ferromagnetic resonance of MBE-grown FeRh thin films through the metamagnetic phase transition. Physica Status Solidi (B): Basic Research, 2017, 254, 1700145.	1.5	10
164	Qualification tests of optical coatings in space environment., 2017,,.		0
165	Phase Transitions in C:Ni Nanocomposite Templates during Diameterâ€Selective CVD Synthesis of SWCNTs. Physica Status Solidi (B): Basic Research, 2017, 254, 1700228.	1.5	1
166	Formation of In <i></i> <fi>Ga_{1â^'<i>x</i>}As nanocrystals in thin Si layers by ion implantation and flash lamp annealing. New Journal of Physics, 2017, 19, 063019.</fi>	2.9	3
167	Magnetic properties of Co/Ni multilayer structures for use in STT-RAM. Journal Physics D: Applied Physics, 2017, 50, 505003.	2.8	16
168	Roughness-induced domain structure in perpendicular Co/Ni multilayers. Journal of Magnetism and Magnetic Materials, 2017, 441, 283-289.	2.3	8
169	Origin of perpendicular magnetic anisotropy in Co/Ni multilayers. Physical Review B, 2017, 96, .	3.2	37
170	Local Formation of InAs Nanocrystals in Si by Masked Ion Implantation and Flash Lamp Annealing. Physica Status Solidi C: Current Topics in Solid State Physics, 2017, 14, 1700188.	0.8	3
171	Disentangling magnetic order on nanostructured surfaces. Physical Review Materials, 2017, 1, .	2.4	5
172	Towards diluted magnetism in TaAs. Physical Review Materials, 2017, 1, .	2.4	3
173	Interplay between localization and magnetism in (Ga,Mn)As and (In,Mn)As. Physical Review Materials, 2017, 1, .	2.4	28
174	Ge/Si core/shell quantum dots in alumina: tuning the optical absorption by the core and shell size. Nanophotonics, 2017, 6, 1055-1062.	6.0	22
175	TEM investigation of barrierâ€like anodic oxide films on aluminum. Surface and Interface Analysis, 2016, 48, 906-912.	1.8	4
176	Parameter-free determination of the exchange constant in thin films using magnonic patterning. Applied Physics Letters, 2016, 108, .	3.3	11
177	Anisotropic metal growth on phospholipid nanodiscs via lipid bilayer expansion. Scientific Reports, 2016, 6, 26718.	3.3	7
178	Higher Cd adsorption on biogenic elemental selenium nanoparticles. Environmental Chemistry Letters, 2016, 14, 381-386.	16.2	40
179	Self-Supporting Hierarchical Porous PtAg Alloy Nanotubular Aerogels as Highly Active and Durable Electrocatalysts. Chemistry of Materials, 2016, 28, 6477-6483.	6.7	81
180	Neptunium ^V Retention by Siderite under Anoxic Conditions: Precipitation of NpO ₂ –Like Nanoparticles and of Np ^{IV} Pentacarbonate. Environmental Science & Environment	10.0	13

#	Article	IF	CITATIONS
181	Spin transport in tantalum studied using magnetic single and double layers. Physical Review B, 2016, 94, .	3.2	40
182	Zwitterionic Polymerâ€Coated Ultrasmall Superparamagnetic Iron Oxide Nanoparticles with Low Protein Interaction and High Biocompatibility. ChemNanoMat, 2016, 2, 959-971.	2.8	23
183	Carbon : nickel nanocomposite templates – predefined stable catalysts for diameter-controlled growth of single-walled carbon nanotubes. Nanoscale, 2016, 8, 14888-14897.	5.6	10
184	Controllable growth of vertically aligned graphene on C-face SiC. Scientific Reports, 2016, 6, 34814.	3.3	0
185	<i>In situ</i> bow change of Al-alloy MEMS micromirrors during 248-nm laser irradiation. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2016, 15, 035502.	0.9	7
186	Suppressing the cellular breakdown in silicon supersaturated with titanium. Journal Physics D: Applied Physics, 2016, 49, 245104.	2.8	15
187	Electrochemical behavior of nanocrystalline Ta/TaN multilayer on 316L stainless steel: Novel bipolar plates for proton exchange membrane fuel-cells. Journal of Power Sources, 2016, 322, 1-9.	7.8	74
188	Droplet-Confined Alternate Pulsed Epitaxy of GaAs Nanowires on Si Substrates down to CMOS-Compatible Temperatures. Nano Letters, 2016, 16, 4032-4039.	9.1	20
189	Ferromagnetic Mn-Implanted GaP: Microstructures vs Magnetic Properties. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3912-3918.	8.0	15
190	Nickel-enhanced graphitic ordering of carbon ad-atoms during physical vapor deposition. Carbon, 2016, 100, 656-663.	10.3	19
191	Bonding structure and morphology of chromium oxide films grown by pulsed-DC reactive magnetron sputter deposition. Journal of Alloys and Compounds, 2016, 672, 529-535.	5 . 5	17
192	Multiscale Self-Assembly of Silicon Quantum Dots into an Anisotropic Three-Dimensional Random Network. Nano Letters, 2016, 16, 1942-1948.	9.1	9
193	Polycrystalline ZnTe thin film on silicon synthesized by pulsed laser deposition and subsequent pulsed laser melting. Materials Research Express, 2016, 3, 036403.	1.6	8
194	Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition. Nuclear Instruments & Methods in Physics Research B, 2016, 371, 230-234.	1.4	7
195	Preferential adsorption of Cu in a multi-metal mixture onto biogenic elemental selenium nanoparticles. Chemical Engineering Journal, 2016, 284, 917-925.	12.7	62
196	Ill–V nanocrystal formation in ion-implanted Ge and Si via liquid phase epitaxy during short-time flash lamp annealing. Materials Science in Semiconductor Processing, 2016, 42, 166-169.	4.0	5
197	Band-gap narrowing in Mn-doped GaAs probed by room-temperature photoluminescence. Physical Review B, 2015, 92, .	3.2	13
198	Defect-induced magnetism in SiC: Interplay between ferromagnetism and paramagnetism. Physical Review B, 2015, 92, .	3.2	31

#	Article	IF	Citations
199	Direct Depth- and Lateral-Imaging of Nanoscale Magnets Generated by Ion Impact. Scientific Reports, 2015, 5, 16786.	3.3	35
200	Threshold and efficiency for perforation of $1\mathrm{nm}$ thick carbon nanomembranes with slow highly charged ions. 2D Materials, 2015, 2, 035009.	4.4	21
201	High Energy Radial Deposition of Diamond-Like Carbon Coatings. Coatings, 2015, 5, 326-337.	2.6	11
202	Effect of Deposition Conditions and Annealing Temperature on Tunnel Magnetoresistance and the Structure of MgO-Based Double-Barrier Magnetic Tunnel Junctions. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	1
203	Composition and bandgap control of Al $<$ sub $>$ x $<$ /sub $>$ Ga $<$ sub $>$ 1 \hat{a} ° $x<$ /sub $>$ N films synthesized by plasma-assisted pulsed laser deposition. Journal of Materials Chemistry C, 2015, 3, 5307-5315.	5.5	10
204	Formation of Neptunium(IV)–Silica Colloids at Near-Neutral and Slightly Alkaline pH. Environmental Science & Environmental	10.0	17
205	Intrinsic formation of nanocrystalline neptunium dioxide under neutral aqueous conditions relevant to deep geological repositories. Chemical Communications, 2015, 51, 1301-1304.	4.1	16
206	Production of three-dimensional quantum dot lattice of Ge/Si core–shell quantum dots and Si/Ge layers in an alumina glass matrix. Nanotechnology, 2015, 26, 065602.	2.6	16
207	Negative Magneto- and Electroresistance of Silicon Films with Superconducting Nanoprecipitates: The Role of Inelastic Cotunneling. Journal of Low Temperature Physics, 2015, 180, 342-355.	1.4	3
208	The local environment of cobalt in amorphous, polycrystalline and epitaxial anatase TiO2:Co films produced by cobalt ion implantation. Journal of Applied Physics, 2015, 117, 183901.	2.5	16
209	A comprehensive study of the magnetic, structural, and transport properties of the III-V ferromagnetic semiconductor InMnP. Journal of Applied Physics, 2015, 117, .	2.5	5
210	Formation of shallow boron emitters in crystalline silicon using flash lamp annealing: Role of excess silicon interstitials. Applied Physics Letters, 2015, 107, 022105.	3.3	7
211	Liquid phase epitaxy of binary III–V nanocrystals in thin Si layers triggered by ion implantation and flash lamp annealing. Journal of Applied Physics, 2015, 117, 175307.	2.5	7
212	Faceted nanostructure arrays with extreme regularity by self-assembly of vacancies. Nanoscale, 2015, 7, 18928-18935.	5.6	45
213	Extracellular Polymeric Substances Govern the Surface Charge of Biogenic Elemental Selenium Nanoparticles. Environmental Science & Environmental Scien	10.0	158
214	Adsorption of zinc by biogenic elemental selenium nanoparticles. Chemical Engineering Journal, 2015, 260, 855-863.	12.7	119
215	High-fluence Ga-implanted silicon—The effect of annealing and cover layers. Journal of Applied Physics, 2014, 116, 024502.	2.5	7
216	Formation of regularly arranged large grain silicon islands by using embedded micro mirrors in the flash crystallization of amorphous silicon. Journal of Applied Physics, 2014, 115, 034301.	2.5	5

#	Article	IF	Citations
217	Hydrogen engineering via plasma immersion ion implantation and flash lamp annealing in silicon-based solar cell substrates. Journal of Applied Physics, 2014, 115, 064505.	2.5	14
218	III-V/Si on silicon-on-insulator platform for hybrid nanoelectronics. Journal of Applied Physics, 2014, $115, \dots$	2.5	12
219	Silicide induced ion beam patterning of Si(001). Nanotechnology, 2014, 25, 115303.	2.6	40
220	Self-assembled growth of Ni nanoparticles in amorphous alumina matrix. Journal of Nanoparticle Research, 2014, $16,1.$	1.9	7
221	Ultra-smooth diamond-like carbon coatings with high elasticity deposited at low temperature by direct ion beam deposition. Surface and Coatings Technology, 2014, 258, 956-962.	4.8	19
222	Exploiting Memristive BiFeO ₃ Bilayer Structures for Compact Sequential Logics. Advanced Functional Materials, 2014, 24, 3357-3365.	14.9	116
223	Selenium(IV) Uptake by Maghemite (γ-Fe ₂ O ₃). Environmental Science & Environment	10.0	86
224	The origin of conductivity in ion-irradiated diamond-like carbon – Phase transformation and atomic ordering. Carbon, 2014, 80, 677-690.	10.3	36
225	Ion beam shaping of embedded metal nanoparticles by Si+ ion irradiation. Applied Physics A: Materials Science and Processing, 2014, 116, 1595-1603.	2.3	2
226	Printing Nearly-Discrete Magnetic Patterns Using Chemical Disorder Induced Ferromagnetism. Nano Letters, 2014, 14, 435-441.	9.1	79
227	Near surface silicide formation after off-normal Fe-implantation of Si(001) surfaces. Journal of Applied Physics, 2014, 116, 024301.	2.5	16
228	X-ray absorption near-edge structure of hexagonal ternary phases in sputter-deposited TiAlN films. Journal of Alloys and Compounds, 2013, 561, 87-94.	5.5	26
229	Sponge-like Si-SiO ₂ nanocompositeâ€"Morphology studies of spinodally decomposed silicon-rich oxide. Applied Physics Letters, 2013, 103, 131911.	3.3	10
230	Millisecond flash lamp annealing for LaLuO3 and LaScO3 high-k dielectrics. Microelectronic Engineering, 2013, 109, 381-384.	2.4	7
231	Silicon nanodot formation and selfâ€ordering under bombardment with heavy Bi ₃ ions. Physica Status Solidi - Rapid Research Letters, 2013, 7, 501-505.	2.4	9
232	Enhanced growth and Cu diffusion barrier properties of thermal ALD TaNC films in Cu/low-k interconnects. Microelectronic Engineering, 2013, 110, 29-34.	2.4	5
233	Forming-Free Resistive Switching in Multiferroic BiFeO ₃ thin Films with Enhanced Nanoscale Shunts. ACS Applied Materials & Samp; Interfaces, 2013, 5, 12764-12771.	8.0	50
234	Laser induced sponge-like Si in Si-rich oxides for photovoltaics. Optics Express, 2013, 21, 24368.	3.4	1

#	Article	IF	Citations
235	Silicon films with gallium-rich nanoinclusions: from superconductor to insulator. New Journal of Physics, 2013, 15, 083022.	2.9	15
236	Release of helium from vacancy defects in yttria-stabilized zirconia under irradiation. Physical Review B, 2012, 86, .	3.2	19
237	Nanometer deformation of elastically anisotropic materials studied by nanoindentation. Philosophical Magazine, 2012, 92, 3142-3157.	1.6	8
238	Crystallographic characterization of catastrophic shear in submicron nickel at low temperatures. Journal of Physics: Conference Series, 2010, 240, 012150.	0.4	3
239	Challenges to quantitative energy-dispersive X-ray spectrometry and its application to graded embedded silicon–germanium for high-performance complementary metal oxide semiconductor devices. Thin Solid Films, 2010, 519, 203-209.	1.8	5
240	Phase characterization of Sm–Lu mixed oxide powders prepared by sintering and radio frequency plasma spraying. Zeitschrift Für Kristallographie, 2009, 224, 198-206.	1.1	1
241	Effect of a Ta-Si-N diffusion barrier on the texture formation in thin Cu films. Journal of Applied Physics, 2007, 101, 093512.	2.5	8
242	Effect of nitrogen content on the degradation mechanisms of thin Ta–Si–N diffusion barriers for Cu metallization. Thin Solid Films, 2006, 500, 259-267.	1.8	23
243	Thin tantalum–silicon–oxygen/tantalum–silicon–nitrogen films as high-efficiency humidity diffusion barriers for solar cell encapsulation. Thin Solid Films, 2006, 515, 1612-1617.	1.8	11
244	Thermal Behavior of Graded Ta-Si/Ta-Si-N Diffusion Barriers for Cu Metallization. AIP Conference Proceedings, 2006, , .	0.4	1
245	Void formation in the Cu layer during thermal treatment of SiNx/Cu/Ta73Si27/SiO2/Si systems. Crystal Research and Technology, 2005, 40, 135-142.	1.3	10
246	Investigation of a Ta–Si–O/Ta–Si–N bilayer system for embedded SAW finger structures. Microelectronic Engineering, 2005, 82, 301-306.	2.4	5
247	Advanced Barriers for Copper Interconnects. , 2005, , 283-295.		1
248	Focussing and defocussing effects at radio frequency glow discharge optical emission spectroscopy analyses of thin films with partly nonconductive components. International Journal of Materials Research, 2005, 96, 983-987.	0.8	1
249	Comparison of the annealing behavior of thin Ta films deposited onto Si and SiO2 substrates. Analytical and Bioanalytical Chemistry, 2004, 379, 568-75.	3.7	12
250	Quantitative ARXPS investigation of systems with ultrathin aluminium oxide layers. Surface and Interface Analysis, 2004, 36, 1600-1608.	1.8	30
251	Degradation mechanisms of Ta and Ta–Si diffusion barriers during thermal stressing. Thin Solid Films, 2004, 458, 237-245.	1.8	19
252	Influence of nitrogen content on the crystallization behavior of thin Ta–Si–N diffusion barriers. Thin Solid Films, 2004, 468, 183-192.	1.8	40

#	Article	IF	CITATIONS
253	Structure and thermal stability of graded Ta–TaN diffusion barriers between Cu and SiO2. Thin Solid Films, 2003, 437, 248-256.	1.8	64
254	Crystallisation of caesium borosilicate glasses with approximate boroleucite composition. Zeitschrift Fur Kristallographie - Crystalline Materials, 2002, 217, 223-232.	0.8	20
255	Effect of annealing on the microstructure of ultrathin tungsten nitride diffusion barriers for copper metallization. Microelectronic Engineering, 2002, 64, 269-277.	2.4	12
256	Cation Exchange on Colloidal Copper Selenide Nanosheets: A Route to Two-Dimensional Metal Selenide Nanomaterials. Journal of Materials Chemistry C, 0, , .	5 . 5	6
257	Pickering interfacial catalysts for asymmetric organocatalysis Catalysis Science and Technology, 0, , .	4.1	1