
J Andrew Berglund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4884270/publications.pdf Version: 2024-02-01

LANDREW REPCHIND

#	Article	IF	CITATIONS
1	Molecular characterization of myotonic dystrophy fibroblast cell lines for use in small molecule screening. IScience, 2022, 25, 104198.	4.1	6
2	RNA structure probing to characterize RNA–protein interactions on low abundance pre-mRNA in living cells. Rna, 2021, 27, 343-358.	3.5	6
3	Zebrafish <i>mbnl</i> mutants model physical and molecular phenotypes of myotonic dystrophy. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	7
4	CCG•CGG interruptions in highâ€penetrance SCA8 families increase RAN translation and protein toxicity. EMBO Molecular Medicine, 2021, 13, e14095.	6.9	12
5	Repeat length increases disease penetrance and severity in <i>C9orf72</i> ALS/FTD BAC transgenic mice. Human Molecular Genetics, 2021, 29, 3900-3918.	2.9	7
6	The potential of engineered eukaryotic RNAâ€binding proteins as molecular tools and therapeutics. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1573.	6.4	13
7	Drug Screen Tugs at Common Thread for Repeat Disorders. Trends in Pharmacological Sciences, 2020, 41, 71-73.	8.7	3
8	Asian Zika Virus Isolate Significantly Changes the Transcriptional Profile and Alternative RNA Splicing Events in a Neuroblastoma Cell Line. Viruses, 2020, 12, 510.	3.3	25
9	Repeat-associated RNA structure and aberrant splicing. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 194405.	1.9	23
10	Combination Treatment of Erythromycin and Furamidine Provides Additive and Synergistic Rescue of Mis-splicing in Myotonic Dystrophy Type 1 Models. ACS Pharmacology and Translational Science, 2019, 2, 247-263.	4.9	20
11	A CTG repeat-selective chemical screen identifies microtubule inhibitors as selective modulators of toxic CUG RNA levels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20991-21000.	7.1	20
12	Mitigating RNA Toxicity in Myotonic Dystrophy using Small Molecules. International Journal of Molecular Sciences, 2019, 20, 4017.	4.1	17
13	Transcriptome alterations in myotonic dystrophy skeletal muscle and heart. Human Molecular Genetics, 2019, 28, 1312-1321.	2.9	104
14	An engineered RNA binding protein with improved splicing regulation. Nucleic Acids Research, 2018, 46, 3152-3168.	14.5	15
15	Furamidine Rescues Myotonic Dystrophy Type I Associated Mis-Splicing through Multiple Mechanisms. ACS Chemical Biology, 2018, 13, 2708-2718.	3.4	26
16	Pseudouridine Modification Inhibits Muscleblind-like 1 (MBNL1) Binding to CCUG Repeats and Minimally Structured RNA through Reduced RNA Flexibility. Journal of Biological Chemistry, 2017, 292, 4350-4357.	3.4	43
17	Dose-Dependent Regulation of Alternative Splicing by MBNL Proteins Reveals Biomarkers for Myotonic Dystrophy. PLoS Genetics, 2016, 12, e1006316.	3.5	79
18	Conservation of context-dependent splicing activity in distant Muscleblind homologs. Nucleic Acids Research, 2016, 44, 8352-8362.	14.5	11

J ANDREW BERGLUND

#	Article	IF	CITATIONS
19	Actinomycin D Specifically Reduces Expanded CUG Repeat RNA in Myotonic Dystrophy Models. Cell Reports, 2015, 13, 2386-2394.	6.4	74
20	Synthesis of N -substituted aryl amidines by strong base activation of amines. Tetrahedron Letters, 2015, 56, 4109-4111.	1.4	14
21	Biological Efficacy and Toxicity of Diamidines in Myotonic Dystrophy Type 1 Models. Journal of Medicinal Chemistry, 2015, 58, 5770-5780.	6.4	31
22	Modifications to toxic CUG RNAs induce structural stability, rescue mis-splicing in a myotonic dystrophy cell model and reduce toxicity in a myotonic dystrophy zebrafish model. Nucleic Acids Research, 2014, 42, 12768-12778.	14.5	27
23	Reducing Levels of Toxic RNA with Small Molecules. ACS Chemical Biology, 2013, 8, 2528-2537.	3.4	71
24	Combinatorial Mutagenesis of MBNL1 Zinc Fingers Elucidates Distinct Classes of Regulatory Events. Molecular and Cellular Biology, 2012, 32, 4155-4167.	2.3	22
25	Utilizing the GAAA Tetraloop/Receptor To Facilitate Crystal Packing and Determination of the Structure of a CUG RNA Helix. Biochemistry, 2012, 51, 8330-8337.	2.5	36
26	The four Zn fingers of MBNL1 provide a flexible platform for recognition of its RNA binding elements. BMC Molecular Biology, 2011, 12, 20.	3.0	35
27	Autoregulated Splicing of muscleblind-like 1 (MBNL1) Pre-mRNA. Journal of Biological Chemistry, 2011, 286, 34224-34233.	3.4	62
28	Role of RNA structure in regulating pre-mRNA splicing. Trends in Biochemical Sciences, 2010, 35, 169-178.	7.5	273
29	MBNL1 binds GC motifs embedded in pyrimidines to regulate alternative splicing. Nucleic Acids Research, 2010, 38, 2467-2484.	14.5	127
30	The protein factors MBNL1 and U2AF65 bind alternative RNA structures to regulate splicing. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9203-9208.	7.1	128
31	Pentamidine reverses the splicing defects associated with myotonic dystrophy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18551-18556.	7.1	234
32	Transposition of two amino acids changes a promiscuous RNA binding protein into a sequence-specific RNA binding protein. Rna, 2008, 14, 78-88.	3.5	9
33	MBNL binds similar RNA structures in the CUG repeats of myotonic dystrophy and its pre-mRNA substrate cardiac troponin T. Rna, 2007, 13, 2238-2251.	3.5	153
34	The structural basis of myotonic dystrophy from the crystal structure of CUG repeats. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16626-16631.	7.1	161
35	Expanding the Structural Repertoire of G-Quadruplexes. Structure, 2003, 11, 1315-1316.	3.3	0
36	The structure of an RNA dodecamer shows how tandem U–U base pairs increase the range of stable RNA structures and the diversity of recognition sites. Structure, 1996, 4, 917-930.	3.3	93