
Stephane Roux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4884229/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid Gadolinium Oxide Nanoparticles:Â Multimodal Contrast Agents for in Vivo Imaging. Journal of the American Chemical Society, 2007, 129, 5076-5084.	13.7	721
2	Gadolinium Chelate Coated Gold Nanoparticles As Contrast Agents for Both X-ray Computed Tomography and Magnetic Resonance Imaging. Journal of the American Chemical Society, 2008, 130, 5908-5915.	13.7	488
3	Iron Oxide Monocrystalline Nanoflowers for Highly Efficient Magnetic Hyperthermia. Journal of Physical Chemistry C, 2012, 116, 15702-15712.	3.1	240
4	Toward an Image-Guided Microbeam Radiation Therapy Using Gadolinium-Based Nanoparticles. ACS Nano, 2011, 5, 9566-9574.	14.6	212
5	Nanosized Hybrid Particles with Double Luminescence for Biological Labeling. Chemistry of Materials, 2005, 17, 1673-1682.	6.7	188
6	Synthesis, Characterization of Dihydrolipoic Acid Capped Gold Nanoparticles, and Functionalization by the Electroluminescent Luminol. Langmuir, 2005, 21, 2526-2536.	3.5	156
7	Ultrasmall Rigid Particles as Multimodal Probes for Medical Applications. Angewandte Chemie - International Edition, 2011, 50, 12299-12303.	13.8	156
8	Control of the in vivo Biodistribution of Hybrid Nanoparticles with Different Poly(ethylene glycol) Coatings. Small, 2009, 5, 2565-2575.	10.0	125
9	Trimodal Gadolinium-Gold Microcapsules Containing Pancreatic Islet Cells Restore Normoglycemia in Diabetic Mice and Can Be Tracked by Using US, CT, and Positive-Contrast MR Imaging. Radiology, 2011, 260, 790-798.	7.3	124
10	The biodistribution of gold nanoparticles designed for renal clearance. Nanoscale, 2013, 5, 5930.	5.6	121
11	A Topâ€Down Synthesis Route to Ultrasmall Multifunctional Gdâ€Based Silica Nanoparticles for Theranostic Applications. Chemistry - A European Journal, 2013, 19, 6122-6136.	3.3	115
12	The In Vivo Radiosensitizing Effect of Gold Nanoparticles Based MRI Contrast Agents. Small, 2014, 10, 1116-1124.	10.0	111
13	Biodistribution Study of Nanometric Hybrid Gadolinium Oxide Particles as a Multimodal SPECT/MR/Optical Imaging and Theragnostic Agent. Bioconjugate Chemistry, 2011, 22, 1145-1152.	3.6	95
14	Advantages of gadolinium based ultrasmall nanoparticles vs molecular gadolinium chelates for radiotherapy guided by MRI for glioma treatment. Cancer Nanotechnology, 2014, 5, 4.	3.7	93
15	AGulX [®] from bench to bedside—Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine. British Journal of Radiology, 2019, 92, 20180365.	2.2	86
16	Gadolinium-based nanoparticles for theranostic MRI-radiosensitization. Nanomedicine, 2015, 10, 1801-1815.	3.3	85
17	Internalization pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles. Biomaterials, 2013, 34, 181-195.	11.4	83
18	Hybrid gadolinium oxide nanoparticles combining imaging and therapy. Journal of Materials	6.7	72

Chemistry, 2009, 19, 2328.

STEPHANE ROUX

#	Article	IF	CITATIONS
19	Photothermal Depletion of Cancer-Associated Fibroblasts Normalizes Tumor Stiffness in Desmoplastic Cholangiocarcinoma. ACS Nano, 2020, 14, 5738-5753.	14.6	54
20	Functionalization of Small Rigid Platforms with Cyclic RGD Peptides for Targeting Tumors Overexpressing α _v l² ₃ -Integrins. Bioconjugate Chemistry, 2013, 24, 1584-1597.	3.6	49
21	Biodistribution of ultra small gadolinium-based nanoparticles as theranostic agent: Application to brain tumors. Journal of Biomaterials Applications, 2013, 28, 385-394.	2.4	42
22	The High Radiosensitizing Efficiency of a Trace of Gadolinium-Based Nanoparticles in Tumors. Scientific Reports, 2016, 6, 29678.	3.3	40
23	Preclinical evaluation of gold-DTDTPA nanoparticles as theranostic agents in prostate cancer radiotherapy. Nanomedicine, 2016, 11, 2035-2047.	3.3	40
24	A Proof-of-Concept Study on the Therapeutic Potential of Au Nanoparticles Radiolabeled with the Alpha-Emitter Actinium-225. Pharmaceutics, 2020, 12, 188.	4.5	40
25	Functionalization of Luminescent Aminated Particles for Facile Bioconjugation. ACS Nano, 2008, 2, 2273-2282.	14.6	36
26	Luminescence enhancement by energy transfer in core-shell structures. Chemical Physics Letters, 2006, 429, 157-160.	2.6	35
27	Challenges and Contradictions of Metal Nano-Particle Applications for Radio-Sensitivity Enhancement in Cancer Therapy. International Journal of Molecular Sciences, 2019, 20, 588.	4.1	35
28	Gold nanoparticles designed for combining dual modality imaging and radiotherapy. Gold Bulletin, 2008, 41, 90-97.	2.7	34
29	Quantitative Comparison of the Light-to-Heat Conversion Efficiency in Nanomaterials Suitable for Photothermal Therapy. ACS Applied Materials & Interfaces, 2022, 14, 33555-33566.	8.0	32
30	Surface-initiated polymerization from poly(ethylene terephthalate). Journal of Polymer Science Part A, 2003, 41, 1347-1359.	2.3	31
31	Functionalized silica-based nanoparticles for photodynamic therapy. Nanomedicine, 2011, 6, 995-1009.	3.3	30
32	Optimization of the synthesis of nanostructured Tb3+-doped Gd2O3 by in-situ luminescence following up. Journal of Colloid and Interface Science, 2009, 333, 684-689.	9.4	28
33	Fabry-Perot type sensor with surface plasmon resonance. Applied Physics Letters, 2006, 89, 223904.	3.3	27
34	Core/shell nanoparticles for multiple biological detection with enhanced sensitivity and kinetics. Nanotechnology, 2008, 19, 485103.	2.6	26
35	Sulfur K-edge XANES study of dihydrolipoic acid capped gold nanoparticles: dihydrolipoic acid is bound by both sulfur ends. Chemical Communications, 2005, , 369-371.	4.1	25

36 Masthead: (Small 6/2014). Small, 2014, 10, n/a-n/a.

10.0 25

STEPHANE ROUX

#	Article	IF	CITATIONS
37	Fluorescence correlation spectroscopy near individual gold nanoparticle. Chemical Physics Letters, 2011, 503, 256-261.	2.6	24
38	Multifunctional nanoparticles: from the detection of biomolecules to the therapy. International Journal of Nanotechnology, 2010, 7, 781.	0.2	23
39	One-Pot Synthesis of Hybrid Multifunctional Silica Nanoparticles with Tunable Coating by Click Chemistry in Reverse W/O Microemulsion. Langmuir, 2012, 28, 209-218.	3.5	23
40	Nanosystems for medical applications : biological detection, drug delivery, diagnosis and therapy. European Journal of Control, 2006, 31, 351-367.	2.6	23
41	Design of a new bilayer polypyrrole–xerogel hybrid coating for corrosion protection. Journal of Materials Chemistry, 2001, 11, 3360-3366.	6.7	22
42	Ultrasmall theranostic gadolinium-based nanoparticles improve high-grade rat glioma survival. Journal of Clinical Neuroscience, 2019, 67, 215-219.	1.5	22
43	Titanate Nanotubes Engineered with Gold Nanoparticles and Docetaxel to Enhance Radiotherapy on Xenografted Prostate Tumors. Cancers, 2019, 11, 1962.	3.7	22
44	Uptake and excretion dynamics of gold nanoparticles in cancer cells and fibroblasts. Nanotechnology, 2020, 31, 135102.	2.6	21
45	How surface-enhanced chemiluminescence depends on the distance from a corrugated metal film. Applied Physics Letters, 2006, 89, 223128.	3.3	20
46	Surface Initiated Polymerization of Styrene from a Carboxylic Acid Functionalized Polypyrrole Coated Electrode. Langmuir, 2003, 19, 306-313.	3.5	17
47	Influence of the nanoscale structure of gold thin films upon peroxidase-induced chemiluminescence. Applied Physics Letters, 2006, 88, 023903.	3.3	17
48	Functionalization of theranostic AGuIX® nanoparticles for PET/MRI/optical imaging. RSC Advances, 2019, 9, 24811-24815.	3.6	16
49	Fluorescent Radiosensitizing Gold Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 4618.	4.1	16
50	Functionalization of polypyrroles with acids and \hat{l}^2 -diketones as complexing groups. Part 1: electrochemical synthesis and properties. New Journal of Chemistry, 2000, 24, 877-884.	2.8	15
51	Automated Oligonucleotide Solid-Phase Synthesis on Nanosized Silica Particles Using Nano-on-Micro Assembled Particle Supports. Langmuir, 2010, 26, 4941-4950.	3.5	15
52	A 5-(difluorenyl)-1,10-phenanthroline-based Ru(<scp>ii</scp>) complex as a coating agent for potential multifunctional gold nanoparticles. Physical Chemistry Chemical Physics, 2014, 16, 14826-14833.	2.8	14
53	Minor changes in the macrocyclic ligands but major consequences on the efficiency of gold nanoparticles designed for radiosensitization. Nanoscale, 2016, 8, 12054-12065.	5.6	14
54	The contribution of hydrogen peroxide to the radiosensitizing effect of gold nanoparticles. Colloids and Surfaces B: Biointerfaces, 2019, 175, 606-613.	5.0	14

STEPHANE ROUX

#	Article	IF	CITATIONS
55	Thermodynamic stability and kinetic inertness of a Gd–DTPA bisamide complex grafted onto gold nanoparticles. Contrast Media and Molecular Imaging, 2015, 10, 179-187.	0.8	12
56	Quality control of gold nanoparticles as pharmaceutical ingredients. International Journal of Pharmaceutics, 2019, 569, 118583.	5.2	12
57	Functionalization of polypyrroles with acids and β-diketones as complexing groups. Part 2: electrochemical growth of polypyrrole into hybrid zirconium oxopolymer sol–gel coatings. New Journal of Chemistry, 2000, 24, 885-892.	2.8	11
58	How the morphology of biochips roughness increases surface-enhanced chemiluminescence. Chemical Physics Letters, 2007, 439, 105-109.	2.6	11
59	Two step promotion of a hot tumor immune environment by gold decorated iron oxide nanoflowers and light-triggered mild hyperthermia. Nanoscale, 2021, 13, 18483-18497.	5.6	11
60	Characterization and biodistribution of Au nanoparticles loaded in PLGA nanocarriers using an original encapsulation process. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111875.	5.0	10
61	Labeling of fibronectin by fluorescent and paramagnetic nanoprobes for exploring the extracellular matrix: bioconjugate synthesis optimization and biochemical characterization. Analytical and Bioanalytical Chemistry, 2011, 399, 1653-1663.	3.7	9
62	Electropolymerization of carboxylic acid functionalized pyrrole into hybrid zirconium–silicon oxopolymer sol–gel coatings. New Journal of Chemistry, 2002, 26, 298-304.	2.8	7
63	The detrimental invasiveness of glioma cells controlled by gadolinium chelate-coated gold nanoparticles. Nanoscale, 2021, 13, 9236-9251.	5.6	7
64	Functionalization of Gadolinium Chelates Silica Nanoparticle through Silane Chemistry for Simultaneous MRI/ ⁶⁴ Cu PET Imaging. Contrast Media and Molecular Imaging, 2018, 2018, 1-10.	0.8	6
65	Enhanced chemiluminescence-based detection on gold substrate after electrografting of diazonium precursor-coated gold nanoparticles. Journal of Colloid and Interface Science, 2016, 467, 271-279.	9.4	5
66	Influence of pH upon Surfaceâ€enhanced Enzymeâ€catalyzed Luminol Chemiluminescence at Vicinity of Nanoscaleâ€corrugated Gold and Silver Films. Photochemistry and Photobiology, 2008, 84, 1244-1248.	2.5	4
67	Correlation reflectance spectroscopy of heterogeneous silver nanoparticle films upon compression at the air/water interface. Journal of Physics Condensed Matter, 2008, 20, 055228.	1.8	4
68	How gold inclusions increase the rate of fluorescein energy homotransfer in silica beads. Chemical Physics Letters, 2010, 490, 72-75.	2.6	4
69	Granulocyte Colony-Stimulating Factor Nanocarriers for Stimulation of the Immune System (Part I): Synthesis and Biodistribution Studies. Bioconjugate Chemistry, 2018, 29, 795-803.	3.6	4
70	One-pot direct synthesis for multifunctional ultrasmall hybrid silica nanoparticles. Journal of Materials Chemistry B, 2018, 6, 4821-4834.	5.8	4
71	Two examples of nanostructured gold surfaces as biosensors. Surface-enhanced chemiluminescence and double detection by surface plasmon resonance and luminescence. Gold Bulletin, 2008, 41, 174-186.	2.7	3
72	The Design of Hybrid Nanoparticles for Image-Guided Radiotherapy. ACS Symposium Series, 2012, , 95-143.	0.5	2

#	Article	IF	CITATIONS
73	Keeping an eye on gold. Gold Bulletin, 2013, 46, 211-212.	2.4	2

A one-step derivatization of silica supports with various hydroxylated compounds (reporter) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 Te