List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4883320/publications.pdf Version: 2024-02-01

CEDALD KEHD

#	Article	IF	CITATIONS
1	Reversible Metalâ€Free Carbon Dioxide Binding by Frustrated Lewis Pairs. Angewandte Chemie - International Edition, 2009, 48, 6643-6646.	13.8	680
2	Rapid intramolecular heterolytic dihydrogen activation by a four-membered heterocyclic phosphane–borane adduct. Chemical Communications, 2007, , 5072.	4.1	563
3	Metalâ€Free Catalytic Hydrogenation of Enamines, Imines, and Conjugated Phosphinoalkenylboranes. Angewandte Chemie - International Edition, 2008, 47, 7543-7546.	13.8	426
4	Lewis Acid Properties of Tris(pentafluorophenyl)borane. Structure and Bonding in Lâ~'B(C6F5)3Complexes⊥. Organometallics, 1999, 18, 1724-1735.	2.3	337
5	Heterolytic dihydrogen activation with the 1,8-bis(diphenylphosphino)naphthalene/B(C6F5)3 pair and its application for metal-free catalytic hydrogenation of silyl enol ethers. Chemical Communications, 2008, , 5966.	4.1	277
6	Reactions of an Intramolecular Frustrated Lewis Pair with Unsaturated Substrates: Evidence for a Concerted Olefin Addition Reaction. Journal of the American Chemical Society, 2009, 131, 12280-12289.	13.7	218
7	Capture of NO by a Frustrated Lewis Pair: A New Type of Persistent <i>N</i> â€Oxyl Radical. Angewandte Chemie - International Edition, 2011, 50, 7567-7571.	13.8	181
8	1,1-Carboboration. Chemical Communications, 2012, 48, 1839-1850.	4.1	180
9	Reaction of Frustrated Lewis Pairs with Conjugated Ynonesâ€Selective Hydrogenation of the Carbon–Carbon Triple Bond. Angewandte Chemie - International Edition, 2011, 50, 7183-7186.	13.8	169
10	<i>N</i> , <i>N</i> -Addition of Frustrated Lewis Pairs to Nitric Oxide: An Easy Entry to a Unique Family of Aminoxyl Radicals. Journal of the American Chemical Society, 2012, 134, 10156-10168.	13.7	153
11	Reactions of phosphorus/boron frustrated Lewis pairs with SO ₂ . Chemical Science, 2013, 4, 213-219.	7.4	150
12	CO ₂ and Formate Complexes of Phosphine/Borane Frustrated Lewis Pairs. Chemistry - A European Journal, 2011, 17, 9640-9650.	3.3	146
13	Carbonâ^'Carbon Bond Activation by 1,1-Carboboration of Internal Alkynes. Journal of the American Chemical Society, 2010, 132, 13594-13595.	13.7	145
14	Facile Carbon Monoxide Reduction at Intramolecular Frustrated Phosphane/Borane Lewis Pair Templates. Angewandte Chemie - International Edition, 2013, 52, 2243-2246.	13.8	143
15	Addition reactions to the intramolecular mesityl2P–CH2–CH2–B(C6F5)2 frustrated Lewis pair. Dalton Transactions, 2010, 39, 7556.	3.3	141
16	Intramolecular frustrated N/B lewis pairs by enamine hydroboration. Chemical Science, 2011, 2, 1842.	7.4	140
17	Frustrated Lewis Pair Behavior of Intermolecular Amine/B(C ₆ F ₅) ₃ Pairs. Organometallics, 2012, 31, 2367-2378.	2.3	133
18	Metal-free dihydrogen activation chemistry: structural and dynamic features of intramolecular P/B pairs. Dalton Transactions, 2009, , 1534.	3.3	127

#	Article	IF	CITATIONS
19	Formylborane Formation with Frustrated Lewis Pair Templates. Angewandte Chemie - International Edition, 2014, 53, 1118-1121.	13.8	127
20	Formation of Cyclic Allenes and Cumulenes by Cooperative Addition of Frustrated Lewis Pairs to Conjugated Enynes and Diynes. Angewandte Chemie - International Edition, 2010, 49, 2414-2417.	13.8	125
21	1,1-Carboboration of 1-Alkynes: A Conceptual Alternative to the Hydroboration Reaction. Organic Letters, 2011, 13, 62-65.	4.6	121
22	Catalytic Hydrogenation of Sensitive Organometallic Compounds by Antagonistic N/B Lewis Pair Catalyst Systems. Journal of the American Chemical Society, 2009, 131, 3454-3455.	13.7	120
23	Chemistry of a geminal frustrated Lewis pair featuring electron withdrawing C6F5 substituents at both phosphorus and boron. Chemical Communications, 2011, 47, 4288.	4.1	118
24	Cyclizations via Frustrated Lewis Pairs: Lewis Acid Induced Intramolecular Additions of Amines to Olefins and Alkynes. Chemistry - A European Journal, 2010, 16, 3005-3008.	3.3	113
25	Internal Adduct Formation of Active Intramolecular C ₄ -bridged Frustrated Phosphane/Borane Lewis Pairs. Journal of the American Chemical Society, 2014, 136, 3293-3303.	13.7	113
26	Reactions of a Cationic Geminal Zr ⁺ /P Pair with Small Molecules. Journal of the American Chemical Society, 2013, 135, 6465-6476.	13.7	107
27	Exploring the Limits of Frustrated Lewis Pair Chemistry with Alkynes: Detection of a System that Favors 1,1 arboboration over Cooperative 1,2â€₽/Bâ€Addition. Chemistry - an Asian Journal, 2010, 5, 2199-2208.	3.3	106
28	Pâ^'C Bond Activation Chemistry: Evidence for 1,1-Carboboration Reactions Proceeding with Phosphorusâ^'Carbon Bond Cleavage. Journal of the American Chemical Society, 2011, 133, 4610-4616.	13.7	103
29	Electronic Control of Frustrated Lewis Pair Behavior: Chemistry of a Geminal Alkylidene-Bridged Per-pentafluorophenylated P/B Pair. Organometallics, 2011, 30, 4211-4219.	2.3	101
30	Borole Formation by 1,1-Carboboration. Journal of the American Chemical Society, 2014, 136, 68-71.	13.7	101
31	Structure and Dynamic Features of an Intramolecular Frustrated Lewis Pair. Chemistry - A European Journal, 2010, 16, 14069-14073.	3.3	99
32	Alkenylborane-Derived Frustrated Lewis Pairs: Metal-Free Catalytic Hydrogenation Reactions of Electron-Deficient Alkenes. Organometallics, 2012, 31, 5638-5649.	2.3	98
33	Dibenzopentalenes from B(C ₆ F ₅) ₃ â€Induced Cyclization Reactions of 1,2â€Bis(phenylethynyl)benzenes. Angewandte Chemie - International Edition, 2013, 52, 5992-5996.	13.8	98
34	Carbonylation Reactions of Intramolecular Vicinal Frustrated Phosphane/Borane Lewis Pairs. Journal of the American Chemical Society, 2013, 135, 18567-18574.	13.7	94
35	Five-Membered Zirconacycloallenoids: Synthesis and Characterization of Members of a Unique Class of Internally Metal-Stabilized Bent Allenoid Compounds. Journal of the American Chemical Society, 2009, 131, 1996-2007.	13.7	90
36	Noninteracting, Vicinal Frustrated P/B-Lewis Pair at the Norbornane Framework: Synthesis, Characterization, and Reactions. Journal of the American Chemical Society, 2013, 135, 8882-8895.	13.7	89

#	Article	IF	CITATIONS
37	Fiveâ€Membered Metallacyclic Allenoids: Synthesis and Structure of Remarkably Stable Strongly Distorted Cyclic Allene Derivatives. Angewandte Chemie - International Edition, 2008, 47, 2622-2625.	13.8	81
38	Metal-Free Frustrated Lewis Pair Catalyzed 1,4-Hydrogenation of Conjugated Metallocene Dienamines. Organometallics, 2010, 29, 1067-1069.	2.3	81
39	Remarkable coordination behavior of alkyl isocyanides toward unsaturated vicinal frustrated P/B Lewis pairs. Chemical Science, 2013, 4, 2657.	7.4	81
40	New Insights into Frustrated Lewis Pairs: Structural Investigations of Intramolecular Phosphane–Borane Adducts by Using Modern Solid-State NMR Techniques and DFT Calculations. Journal of the American Chemical Society, 2012, 134, 4236-4249.	13.7	78
41	Reaction of Bis(alkynyl)silanes with Tris(pentafluorophenyl)borane: Synthesis of Bulky Silole Derivatives by Means of 1,1â€Carboboration under Mild Reaction Conditions. Advanced Synthesis and Catalysis, 2009, 351, 1080-1088.	4.3	77
42	1,1â€Organoboration of Diâ€1â€elkynylsilanes with Alkynyl Groups of Different Reactivity: New Organometallicâ€6ubstituted Siloles. Chemische Berichte, 1993, 126, 2221-2226.	0.2	75
43	Advanced 1,1-carboboration reactions with pentafluorophenylboranes. Chemical Science, 2016, 7, 56-65.	7.4	75
44	Structural Importance of Secondary Interactions in Molecules: Origin of Unconventional Conformations of Phosphine–Borane Adducts. Chemistry - A European Journal, 2008, 14, 333-343.	3.3	74
45	The 1,1â€Carboboration of Bis(alkynyl)phosphanes as a Route to Phosphole Compounds. Angewandte Chemie - International Edition, 2012, 51, 1954-1957.	13.8	74
46	Reaction of a Bridged Frustrated Lewis Pair with Nitric Oxide: A Kinetics Study. Journal of the American Chemical Society, 2014, 136, 513-519.	13.7	73
47	Deconstructing the Catalytic, <i>Vicinal</i> Difluorination of Alkenes: HF-Free Synthesis and Structural Study of <i>p</i> -TollF ₂ . Journal of Organic Chemistry, 2017, 82, 11792-11798.	3.2	71
48	Phosphirenium-borate zwitterion: formation in the 1,1-carboboration reaction of phosphinylalkynes. Chemical Communications, 2011, 47, 10482.	4.1	70
49	Generation of Homogeneous (sp3-C1)-Bridged Cp/Amido and Cp/Phosphido Group 4 Metal Zieglerâ^'Natta Catalyst Systems. Journal of the American Chemical Society, 2001, 123, 6181-6182.	13.7	69
50	Heterolytic Cleavage of Dihydrogen by Frustrated Lewis Pairs Derived from α-(Dimesitylphosphino)ferrocenes and B(C ₆ F ₅) ₃ . Organometallics, 2008, 27, 5279-5284.	2.3	69
51	Synthesis, Structural Features, and Formation of Organometallic Derivates of C1-Bridged Cp/Amido Titanium and Zirconium "CpCN-Constrained Geometry―Systems. Organometallics, 2005, 24, 4760-4773.	2.3	67
52	Phosphido- and Amidozirconocene Cation-Based Frustrated Lewis Pair Chemistry. Journal of the American Chemical Society, 2015, 137, 10796-10808.	13.7	67
53	Formation of sp3-C1-Bridged Cp/Amido Titanium and Zirconium "CpCN―Constrained-Geometry Zieglerâ^'Natta Catalyst Systems. Organometallics, 2002, 21, 1031-1041.	2.3	66
54	Intramolecular Frustrated Lewis Pairs: Formation and Chemical Features. Topics in Current Chemistry, 2012, 332, 45-83.	4.0	66

#	Article	IF	CITATIONS
55	α-CH acidity of alkyl–B(C ₆ F ₅) ₂ compounds – the role of stabilized borata-alkene formation in frustrated Lewis pair chemistry. Chemical Science, 2015, 6, 816-825.	7.4	66
56	Frustrated Lewis Pair Modification by 1,1-Carboboration: Disclosure of a Phosphine Oxide Triggered Nitrogen Monoxide Addition to an Intramolecular P/B Frustrated Lewis Pair. Journal of the American Chemical Society, 2014, 136, 9014-9027.	13.7	65
57	Frustrated Lewis Pair Chemistry: Searching for New Reactions. Chemical Record, 2017, 17, 803-815.	5.8	63
58	Reactions of Modified Intermolecular Frustrated P/B Lewis Pairs with Dihydrogen, Ethene, and Carbon Dioxide. Organometallics, 2012, 31, 2801-2809.	2.3	62
59	Formation of Unsaturated Vicinal Zr ⁺ /P Frustrated Lewis Pairs by the Unique 1,1-Carbozirconation Reactions. Journal of the American Chemical Society, 2014, 136, 12431-12443.	13.7	60
60	Organosubstituierte 1,1′â€5pirobisilole und 1,1′â€5pirobigermole durch vierfache Organoborierung von Tetraâ€1â€alkinylsilanen und â€germanen. Chemische Berichte, 1993, 126, 1385-1396.	0.2	59
61	(Butadiene)metallocene/B(C6F5)3 Pathway to Catalyst Systems for Stereoselective Methyl Methacrylate Polymerization:  Evidence for an Anion Dependent Metallocene Catalyzed Polymerization Process. Journal of the American Chemical Society, 2004, 126, 2089-2104.	13.7	59
62	Electronic control in frustrated Lewis pair chemistry: adduct formation of intramolecular FLP systems with $\hat{a} \in P(C6F5)$ Lewis base components. Dalton Transactions, 2013, 42, 4487.	3.3	59
63	Anomalous Staudinger reaction at intramolecular frustrated P–B Lewis pair frameworks. Chemical Communications, 2012, 48, 11739.	4.1	57
64	The Chemistry of a Nonâ€Interacting Vicinal Frustrated Phosphane/Borane Lewis Pair. Chemistry - A European Journal, 2017, 23, 6056-6068.	3.3	56
65	Stoichiometric Reactions and Catalytic Hydrogenation with a Reactive Intramolecular Zr ⁺ /Amine Frustrated Lewis Pair. Journal of the American Chemical Society, 2015, 137, 4550-4557.	13.7	54
66	Chemistry of Metalâ^'Metal-Bonded Earlyâ^'Late Heterobimetallics:  Cooperative Reactions of Functional Groups at a Persistent Organometallic Zrâ^'Rh Framework. Organometallics, 2005, 24, 214-225.	2.3	53
67	1,2-Olefin addition of a frustrated amineâ $€$ "borane Lewis pair. Chemical Communications, 2009, , 7417.	4.1	53
68	Exploring CH-Activation Pathways in Bifunctional Zirconocene/Borane Systems. Journal of the American Chemical Society, 2004, 126, 11046-11057.	13.7	51
69	Metalâ€Free Arene and Heteroarene Borylation Catalyzed by Strongly Electrophilic Bisâ€boranes. Chemistry - A European Journal, 2017, 23, 12141-12144.	3.3	51
70	Hydrogen Activation by an Intramolecular Boron Lewis Acid/Zirconocene Pair. Angewandte Chemie - International Edition, 2012, 51, 8830-8833.	13.8	50
71	CO-Reduction Chemistry: Reaction of a CO-Derived Formylhydridoborate with Carbon Monoxide, with Carbon Dioxide, and with Dihydrogen. Journal of the American Chemical Society, 2017, 139, 6474-6483.	13.7	50
72	Facile 1,1-Carboboration Reactions of Acetylenic Thioethers. Organometallics, 2013, 32, 384-386.	2.3	48

#	Article	IF	CITATIONS
73	The frustrated Lewis pair pathway to methylene phosphonium systems. Chemical Science, 2014, 5, 797-803.	7.4	47
74	Selective Oxidation of an Active Intramolecular Amine/Borane Frustrated Lewis Pair with Dioxygen. Journal of the American Chemical Society, 2016, 138, 4302-4305.	13.7	46
75	Evidence for α-Nitrogen Participation in the Internal Câ^'H Activation Reaction at ((Dimethylamino)methyl)cyclopentadienyl-Derived Methylzirconocene Cations. Organometallics, 1999, 18, 3818-3826.	2.3	45
76	1,1â€Carbozirconation: Unusual Reaction of an Alkyne with a Methyl Zirconocene Cation and Subsequent Frustrated Lewis Pair Like Reactivity. Angewandte Chemie - International Edition, 2013, 52, 13629-13632.	13.8	45
77	1,1-Carboboration Route to Substituted Naphthalenes. Organic Letters, 2012, 14, 1448-1451.	4.6	44
78	Reactions of dimethylzirconocene complexes with a vicinal frustrated P/B Lewis pair. Dalton Transactions, 2013, 42, 14531.	3.3	43
79	A Ferroceneâ€Based Phosphane/Borane Frustrated Lewis Pair for Asymmetric Imine Reduction. European Journal of Inorganic Chemistry, 2017, 2017, 368-371.	2.0	43
80	Reaction of Frustrated Lewis Pairs with Ketones and Esters. Chemistry - an Asian Journal, 2012, 7, 1347-1356.	3.3	42
81	A Unique Frustrated Lewis Pair Pathway to Remarkably Stable Borata–Alkene Systems. European Journal of Inorganic Chemistry, 2013, 2013, 3312-3315.	2.0	42
82	Borata–alkene derivatives conveniently made by frustrated Lewis pair chemistry. Dalton Transactions, 2014, 43, 632-638.	3.3	42
83	Reactions of Boroles Formed by 1,1-Carboboration. Organometallics, 2015, 34, 229-235.	2.3	42
84	Peralkylated 1,4-dibora-2,5-cyclohexadienes-formation and rearrangement into peralkylated nido-2,3,4,5- tetracarbahexaboranes(6). Polyhedron, 1991, 10, 1497-1506.	2.2	40
85	Stabilized borata-alkene formation: structural features, reactions and the role of the counter cation. Dalton Transactions, 2015, 44, 21032-21040.	3.3	39
86	1,6-Dihydro-1,6-disilapentalene derivatives by 1,1-organoboration of triynes. Journal of Organometallic Chemistry, 1998, 562, 207-215.	1.8	38
87	Cooperative 1,1-addition reactions of vicinal phosphane/borane frustrated Lewis pairs. Coordination Chemistry Reviews, 2016, 306, 468-482.	18.8	38
88	Exploring physicochemical space <i>via</i> a bioisostere of the trifluoromethyl and ethyl groups (BITE): attenuating lipophilicity in fluorinated analogues of Gilenya® for multiple sclerosis. Chemical Communications, 2018, 54, 12002-12005.	4.1	38
89	Preparation of the Borane (Fmes)BH ₂ and its Utilization in the FLP Reduction of Carbon Monoxide and Carbon Dioxide. Angewandte Chemie - International Edition, 2019, 58, 6737-6741.	13.8	38
90	Alkene Addition of Frustrated P/B and N/B Lewis Pairs at the [3]Ferrocenophane Framework. Organometallics, 2011, 30, 584-594.	2.3	37

#	Article	IF	CITATIONS
91	Why Does the Intramolecular Trimethyleneâ€Bridged Frustrated Lewis Pair Mes ₂ PCH ₂ CH ₂ CH ₂ B(C ₆ F ₅) <sul Not Activate Dihydrogen?. Chemistry - A European Journal, 2016, 22, 5988-5995.</sul 	o>2 8/s ub>	37
92	Fluorocyclisation via I(I)/I(III) catalysis: a concise route to fluorinated oxazolines. Beilstein Journal of Organic Chemistry, 2018, 14, 1021-1027.	2.2	37
93	Photochemical isomerisation of boryl-substituted silole derivatives. Chemical Communications, 2010, 46, 3016.	4.1	36
94	Frustrated Lewis Pair Chemistry Derived from Bulky Allenyl and Propargyl Phosphanes. Chemistry - A European Journal, 2016, 22, 1103-1113.	3.3	36
95	Intermolecular Redoxâ€Neutral Amine Câ^'H Functionalization Induced by the Strong Boron Lewis Acid B(C ₆ F ₅) ₃ in the Frustrated Lewis Pair Regime. Chemistry - A European Journal, 2017, 23, 4723-4729.	3.3	36
96	Harnessing the Maltodextrin Transport Mechanism for Targeted Bacterial Imaging: Structural Requirements for Improved in vivo Stability in Tracer Design. ChemMedChem, 2018, 13, 241-250.	3.2	36
97	Solid state frustrated Lewis pair chemistry. Chemical Science, 2018, 9, 4859-4865.	7.4	35
98	Preparation of Dihydroborole Derivatives by a Simple 1,1-Carboboration Route. Organometallics, 2012, 31, 2445-2451.	2.3	34
99	Reactions of a methylzirconocene cation with phosphinoalkynes: an alternative pathway for generating Cp2Zr(ii) systems. Chemical Communications, 2012, 48, 6109.	4.1	33
100	Reaction of an "Invisible―Frustrated N/B Lewis Pair with Dihydrogen. Chemistry - an Asian Journal, 2013, 8, 212-217.	3.3	33
101	A hydroboration route to geminal P/B frustrated Lewis pairs with a bulky secondary phosphane component and their reaction with carbon dioxide. Dalton Transactions, 2017, 46, 11715-11721.	3.3	33
102	Remarkable Behavior of a Bifunctional Alkynylborane Zirconocene Complex toward Donor Ligands and Acetylenes. Journal of the American Chemical Society, 2013, 135, 17444-17456.	13.7	32
103	Structural features and reactions of a geminal frustrated phosphane/borane Lewis pair. Journal of Organometallic Chemistry, 2013, 744, 149-155.	1.8	32
104	Frustrated Lewis Pair Behavior of [Cp ₂ ZrOCR ₂ CH ₂ PPh ₂] ⁺ Cations. Organometallics, 2015, 34, 2655-2661.	2.3	32
105	Benzannulation of Heterocyclic Frameworks by 1,1-Carboboration Pathways. Journal of Organic Chemistry, 2015, 80, 2240-2248.	3.2	32
106	Synthetic Endeavors toward Titanium Based Frustrated Lewis Pairs with Controlled Electronic and Steric Properties. Organometallics, 2015, 34, 2000-2011.	2.3	32
107	Cooperative carbon monoxide to formyl reduction at a trifunctional PBB frustrated Lewis pair. Chemical Communications, 2017, 53, 5499-5502.	4.1	32
108	Borata-Wittig olefination reactions of ketones, carboxylic esters and amides with bis(pentafluorophenyl)borata-alkene reagents. Organic and Biomolecular Chemistry, 2017, 15, 6223-6232.	2.8	32

#	Article	IF	CITATIONS
109	Formation of macrocyclic ring systems by carbonylation of trifunctional P/B/B frustrated Lewis pairs. Chemical Science, 2018, 9, 1544-1550.	7.4	32
110	Synthesis of 1,6-dihalogeno-2,3,4,5-tetracarba-nido-hexaborane(6) derivatives. Journal of Organometallic Chemistry, 1995, 501, 87-93.	1.8	31
111	Reaction of strongly electrophilic alkenylboranes with phosphanylalkynes: rare examples of intermolecular 1,1-alkenylboration reactions. Chemical Communications, 2013, 49, 6992.	4.1	31
112	Developing Phosphaâ€ S tork Chemistry Induced by a Borane Lewis Acid. Angewandte Chemie - International Edition, 2014, 53, 12168-12171.	13.8	31
113	1,1-Organoboration of tetraynes—routes to new siloles, stannoles and fused heterocycles. Journal of Organometallic Chemistry, 1999, 577, 82-92.	1.8	30
114	Formation of a bifunctional zirconocene complex that favours intramolecular –B(C6F5)2addition to a Cp ring over σ-ligand abstraction. Chemical Communications, 2004, , 1020-1021.	4.1	30
115	Unusual 1,1-Hydroboration Route to a Reactive Unsaturated Vicinal Frustrated Phosphane/Borane Lewis Pair. Organometallics, 2018, 37, 2665-2668.	2.3	30
116	Frustrated Lewis pair addition to conjugated diynes: Formation of zwitterionic 1,2,3-butatriene derivatives. Dalton Transactions, 2012, 41, 9135.	3.3	29
117	Functional group chemistry at intramolecular frustrated Lewis pairs: substituent exchange at the Lewis acid site with 9-BBN. Dalton Transactions, 2013, 42, 709-718.	3.3	29
118	An Ethyleneâ€Bridged Phosphane/Borane Frustrated Lewis Pair Featuring the â€B(Fxyl) ₂ Lewis Acid Component. Chemistry - A European Journal, 2016, 22, 11015-11021.	3.3	29
119	Formation of Thermally Robust Frustrated Lewis Pairs by Electrocyclic Ring Closure Reactions. Angewandte Chemie - International Edition, 2016, 55, 5526-5530.	13.8	29
120	Frustrated Lewis Pair vs Metal–Carbon σ-Bond Insertion Chemistry at an <i>o</i> -Phenylene-Bridged Cp ₂ Zr ⁺ /PPh ₂ System. Organometallics, 2017, 36, 424-434.	2.3	29
121	Stereospecific αâ€5ialylation by Siteâ€6elective Fluorination. Angewandte Chemie - International Edition, 2019, 58, 3814-3818.	13.8	29
122	Aggregation Behavior of a Sixâ€Membered Cyclic Frustrated Phosphane/Borane Lewis Pair: Formation of a Supramolecular Cyclooctameric Macrocyclic Ring System. Angewandte Chemie - International Edition, 2019, 58, 882-886.	13.8	29
123	Direct synthesis of a geminal zwitterionic phosphonium/hydridoborate system – developing an alternative tool for generating frustrated Lewis pair hydrogen activation systems. Organic and Biomolecular Chemistry, 2015, 13, 5783-5792.	2.8	28
124	Coupling of Carbon Monoxide with Nitrogen Monoxide at a Frustrated Lewis Pair Template. Angewandte Chemie - International Edition, 2016, 55, 9216-9219.	13.8	28
125	Selective Metalâ€free HB(C ₆ F ₅) ₂ Catalyzed Allene Cyclotrimerization: Formation of 1,3,5â€Trimethylenecyclohexane and Its Trisâ€hydroboration Product. Angewandte Chemie - International Edition, 2017, 56, 1376-1380.	13.8	28
126	Trisubstituted Boroles by 1,1-Carboboration. Organometallics, 2015, 34, 4205-4208.	2.3	27

#	Article	IF	CITATIONS
127	Formation of Reactive π-Conjugated Frustrated N/B Pairs by Borane-Induced Propargyl Amine Rearrangement. Journal of the American Chemical Society, 2018, 140, 3635-3643.	13.7	27
128	Reaction of Unsaturated Vicinal Phosphane/Borane Frustrated Lewis Pairs with Benzaldehyde. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 2455-2462.	1.2	26
129	Reversible formylborane/SO ₂ coupling at a frustrated Lewis pair framework. Chemical Communications, 2017, 53, 633-635.	4.1	26
130	CO/CO and NO/NO coupling at a hidden frustrated Lewis pair template. Chemical Science, 2017, 8, 2457-2463.	7.4	26
131	Reactions of (Diphenylphosphinomethyl)zirconocene Chloride with B(C6F5)3: Competition between P/B and P/Zr+ Frustrated Lewis Pair Reactions. Organometallics, 2013, 32, 7306-7311.	2.3	25
132	Reduction of Dioxygen by Radical/B(<i>p</i> ₆ F ₄ X) ₃ Pairs to Give Isolable Bis(borane)superoxide Compounds. Angewandte Chemie - International Edition, 2017, 56, 16641-16644.	13.8	25
133	The special role of B(C ₆ F ₅) ₃ in the single electron reduction of quinones by radicals. Chemical Science, 2018, 9, 8011-8018.	7.4	25
134	1,1-Organoboration of tri-1-alkynyltin compounds: novel triorganotin cations, stannoles, 3-stannolenes and 1-stanna-4-bora-2,5-cyclohexadienes. Inorganica Chimica Acta, 1994, 220, 161-173.	2.4	24
135	Nitrile insertion into a boryl-substituted five-membered zirconacycloallenoid: unexpected formation of a zwitterionic boratirane product. Chemical Communications, 2009, , 6572.	4.1	23
136	Preparation of Dithienylphospholes by 1,1 arboboration. Chemistry - A European Journal, 2014, 20, 11883-11893.	3.3	23
137	Thiophene synthesis via 1,1-carboboration. Chemical Communications, 2015, 51, 7226-7229.	4.1	22
138	A Frustrated Phosphane–Borane Lewis Pair and Hydrogen: A Kinetics Study. Chemistry - A European Journal, 2016, 22, 11958-11961.	3.3	22
139	Formation and reactions of active five-membered phosphane/borane frustrated Lewis pair ring systems. Dalton Transactions, 2018, 47, 4449-4454.	3.3	22
140	The Borole Route to Reactive Pentafluorophenylâ€ s ubstituted Diboranes(4). Angewandte Chemie - International Edition, 2018, 57, 14570-14574.	13.8	22
141	Reductive Cleavage of the CO Molecule by a Reactive Vicinal Frustrated PH/BH Lewis Pair. Journal of the American Chemical Society, 2020, 142, 17260-17264.	13.7	22
142	An Enamine/HB(C ₆ F ₅) ₂ Adduct as a Dormant State in Frustrated Lewis Pair Chemistry. Organometallics, 2013, 32, 6745-6752.	2.3	21
143	αâ€Hydroxymethylation of Pyridines at a Frustrated Lewis Pair Template. Chemistry - A European Journal, 2015, 21, 1454-1457	3.3	21
144	Synthesis of new asymmetric substituted boron amidines – reactions with CO and transfer hydrogenations of phenylacetylene. Dalton Transactions, 2015, 44, 19606-19614.	3.3	21

#	Article	IF	CITATIONS
145	Selective N,Oâ€Addition of the TEMPO Radical to Conjugated Boryldienes. Angewandte Chemie - International Edition, 2016, 55, 1470-1473.	13.8	21
146	Single Site Fluorination of the GM ₄ Ganglioside Epitope Upregulates Oligodendrocyte Differentiation. ACS Chemical Neuroscience, 2018, 9, 1159-1165.	3.5	21
147	Multiâ€Component Synthesis of Rare 1,3â€Dihydroâ€1,3â€azaborinine Derivatives: Application of a Boraâ€Nazar Type Reaction. Angewandte Chemie - International Edition, 2019, 58, 15377-15380.	ον 13.8	21
148	Formation and Cycloaddition Reactions of a Reactive Boraalkene Stabilized Internally by <i>N</i> â€Heterocyclic Carbene. Angewandte Chemie - International Edition, 2021, 60, 19905-19911.	13.8	21
149	Phospha-Claisen Type Reactions at Frustrated Lewis Pair Frameworks. Journal of the American Chemical Society, 2016, 138, 8554-8559.	13.7	20
150	Frustrated Lewis Pair Behavior of an Open, Noninteracting Phosphane/Borane Pair at a Rigid Organic Framework: Exploring Decisive Factors for FLP Activity. Organometallics, 2017, 36, 5003-5012.	2.3	20
151	Selective formation of heterocyclic <i>trans</i> -cycloalkenes by alkyne addition to a biphenylene-based phosphane/borane frustrated Lewis pair. Chemical Communications, 2018, 54, 6344-6347.	4.1	20
152	Formation of Active Cyclic Fiveâ€membered Frustrated Phosphane/Borane Lewis Pairs and their Cycloaddition Reactions. Chemistry - A European Journal, 2020, 26, 745-753.	3.3	20
153	Alkyne 1,1â€Hydroboration to a Reactive Frustrated P/Bâ€H Lewis Pair. Angewandte Chemie - International Edition, 2021, 60, 6757-6763.	13.8	20
154	Carboboration Reactions of 1,2â€Bis[(diarylphosphino)ethynyl]benzenes with Tris(pentafluorophenyl)borane. Helvetica Chimica Acta, 2012, 95, 2515-2527.	1.6	19
155	Functionalization of Intramolecular Frustrated Lewis Pairs by 1,1â€Carboboration with Conjugated Enynes. Chemistry - A European Journal, 2015, 21, 12456-12464.	3.3	19
156	Geminal bis-borane formation by borane Lewis acid induced cyclopropyl rearrangement and its frustrated Lewis pair reaction with carbon dioxide. Chemical Science, 2017, 8, 1097-1104.	7.4	19
157	Metal-Free Acetylene Coupling by the (C6 F5)2 Bâ^'X 1,2-Halogenoboration Reaction. Chemistry - A European Journal, 2018, 24, 10044-10048.	3.3	19
158	Boraneâ€Induced Dimerization of Arylallenes. Angewandte Chemie - International Edition, 2018, 57, 13922-13926.	13.8	19
159	The [(NHC)B(H)C ₆ F ₅] ⁺ Cations and Their [B](H)â^'CO Borane Carbonyls. Angewandte Chemie - International Edition, 2020, 59, 21460-21464.	13.8	19
160	Reactions of an anionic chelate phosphane/borata-alkene ligand with [Rh(nbd)Cl] ₂ , [Rh(CO) ₂ Cl] ₂ and [Ir(cod)Cl] ₂ . Chemical Science, 2020, 11, 7349-7355.	7.4	18
161	Carbon–Carbon Bond Cleavage by Strongly Electrophilic Boranes. Chemistry - A European Journal, 2010, 16, 12538-12540.	3.3	17
162	Reactions of bis(alkynyl)silanes with HB(C6F5)2: Formation of boryl-substituted silacyclobutene derivatives. Journal of Organometallic Chemistry, 2011, 696, 1184-1188.	1.8	17

#	Article	IF	CITATIONS
163	Structural Characterization of Frustrated Lewis Pairs and Their Reaction Products Using Modern Solid‣tate NMR Spectroscopy Techniques. Israel Journal of Chemistry, 2015, 55, 150-178.	2.3	17
164	Preparation of the Borane (Fmes)BH 2 and its Utilization in the FLP Reduction of Carbon Monoxide and Carbon Dioxide. Angewandte Chemie, 2019, 131, 6809-6813.	2.0	17
165	Cycloaddition Reactions of an Active Cyclic Phosphane/Borane Pair with Alkenes, Alkynes, and Carbon Dioxide. Chemistry - A European Journal, 2020, 26, 1269-1273.	3.3	17
166	Bifunctional Behavior of Unsaturated Intramolecular Phosphane–Borane Frustrated Lewis Pairs Derived from Uncatalyzed 1,4â€Hydrophosphination of a Dienylborane. Chemistry - A European Journal, 2015, 21, 12449-12455.	3.3	16
167	Tris(pentafluorophenyl)boraneâ€Catalyzed Reaction of Phosphorus/Boron and Nitrogen/Boron Frustrated Lewis Pair Dihydrogen Activation Products with Alkenes and Alkynes. ChemCatChem, 2017, 9, 651-658.	3.7	16
168	Using the Secondary PH/BH Functional Groups of an Active Geminal Frustrated Lewis Pair for Carbon Monoxide Reduction and Reactions with Nitriles and Isonitriles. Angewandte Chemie - International Edition, 2020, 59, 12477-12483.	13.8	16
169	Introducing the Dihydro-1,3-azaboroles: Convenient Entry by a Three-Component Reaction, Synthetic and Photophysical Application. Journal of the American Chemical Society, 2021, 143, 2059-2067.	13.7	16
170	Formation, structural characterization, and reactions of a unique cyclotrimeric vicinal Lewis pair containing (C ₆ F ₅) ₂ P-Lewis base and (C ₆ F ₅)BH-Lewis acid components. Dalton Transactions, 2014, 43, 15159-15169.	3.3	15
171	Observation of a Thermally Induced Boraâ€Nazarov Cyclization at a Phosphole Framework. Angewandte Chemie - International Edition, 2015, 54, 12366-12369.	13.8	15
172	Unsaturated Vicinal Frustrated Lewis Pair Formation by Electrocyclic Ring Closure and Their Reaction with Nitric Oxide. Organometallics, 2016, 35, 3667-3680.	2.3	15
173	Selective Metalâ€free HB(C 6 F 5) 2 Catalyzed Allene Cyclotrimerization: Formation of 1,3,5â€Trimethylenecyclohexane and Its Trisâ€hydroboration Product. Angewandte Chemie, 2017, 129, 1396-1400.	2.0	15
174	Chemical Behavior of a Pair of (COD)CpRh and â^'Ir Complexes with Pendant Peripheral â^'B(C ₆ F ₅) ₂ Groups. Organometallics, 2008, 27, 2328-2336.	2.3	14
175	Ethene/alkyne exchange reaction at an intramolecular frustrated Lewis pair. Chemical Communications, 2014, 50, 1980.	4.1	14
176	Zwitterionic Phosphirenium Borates Derived from Bis(alkynyl)mesityl Phosphanes and Tris(pentafluorophenyl)borane. Heteroatom Chemistry, 2014, 25, 396-401.	0.7	14
177	Phosphirenium borate betaines from alkynylphosphanes and the halogeno-B(C6F5)2 reagents. Chemical Communications, 2018, 54, 13746-13749.	4.1	14
178	Macrocycle Formation by Cooperative Selection at a Double-Sited Frustrated Lewis Pair. Organometallics, 2019, 38, 1897-1902.	2.3	14
179	A BH Borenium-Derived Thioxoborane, Its Persulfide, and Their Li ⁺ -Induced Reactions with Alkynes and with Carbon Dioxide. Journal of the American Chemical Society, 2020, 142, 19763-19771.	13.7	14
180	Reaction of Diphenylphosphanylacetylene with RB(C ₆ F ₅) ₂ Reagents: Evidence for a Remarkable Sequence of Synergistic Frustrated <i>Lewis</i> Pair Addition Reactions. Inorganic Chemistry, 2013, 52, 11661-11668.	4.0	13

#	Article	IF	CITATIONS
181	Cyclic Amine/Borane Lewis Pairs by the Reaction of <i>N</i> , <i>N</i> â€Diallylaniline with Lancaster′s H ₂ Bâ€C ₆ F ₅ Reagent. Chemistry - an Asian Journal, 2016, 11, 1394-1399.	3.3	13
182	Borata-Alkene Derived Syntheses of (F ₅ C ₆) ₂ B-Substituted Bis(indenyl) Group 4 Metal Complexes. Organometallics, 2016, 35, 2689-2693.	2.3	13
183	FLPNO Nitroxide Radical Formation by a 1,1-Carboboration Route. Organometallics, 2016, 35, 55-61.	2.3	13
184	Utilizing the TEMPO Radical in Zirconocene Cation and Hydrido Zirconocene Chemistry. Organometallics, 2017, 36, 3407-3414.	2.3	13
185	Design and reactions of a carbon Lewis base/boron Lewis acid frustrated Lewis pair. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20170015.	3.4	13
186	Indirect "No-Bond― ³¹ P··· ³¹ P Spin–Spin Couplings in <i>P</i> , <i>P</i> .[3]Ferrocenophanes: Insights from Solid-State NMR Spectroscopy and DFT Calculations. Journal of Physical Chemistry A, 2014, 118, 2316-2331.	2.5	12
187	A 1,1 arboboration Route to Boraâ€Nazarov Systems. Chemistry - an Asian Journal, 2015, 10, 2497-2502.	3.3	12
188	1,1-Alkenylboration of diarylphosphino-enynes: convenient synthetic entry to vicinal P/B Lewis pairs at extended conjugated π-frameworks. Organic and Biomolecular Chemistry, 2015, 13, 764-769.	2.8	12
189	Aggregation Behavior of a Sixâ€Membered Cyclic Frustrated Phosphane/Borane Lewis Pair: Formation of a Supramolecular Cyclooctameric Macrocyclic Ring System. Angewandte Chemie, 2019, 131, 892-896.	2.0	12
190	N-Heterocyclic Carbene Stabilized 1-Bora-1,3-butadienes. Journal of the American Chemical Society, 2021, 143, 21312-21320.	13.7	12
191	Reactivity of an Intramolecular Fluorophosphonium Fluoroborate. Chemistry - A European Journal, 2014, 20, 11287-11290.	3.3	11
192	Cooperative reaction chemistry derived from a borata-diene framework. Chemical Communications, 2016, 52, 1393-1396.	4.1	11
193	Phosphole formation by 1,1-carboboration – reactions of bis-alkynyl phosphanes with a frustrated P/B Lewis pair. Dalton Transactions, 2016, 45, 2023-2030.	3.3	11
194	Phosphine–Borane Frustrated Lewis Pairs Derived from a 1,1′-Disubstituted Ferrocene Scaffold: Synthesis and Hydrogenation Catalysis. Organometallics, 2017, 36, 2940-2946.	2.3	11
195	Stereospecific α‣ialylation by Site‣elective Fluorination. Angewandte Chemie, 2019, 131, 3854-3858.	2.0	11
196	Unsaturated vicinal frustrated phosphane/borane Lewis pairs as ligands in gold(i) chemistry. Chemical Communications, 2019, 55, 4367-4370.	4.1	11
197	Enamine/butadienylborane cycloaddition in the frustrated Lewis pair regime. Organic and Biomolecular Chemistry, 2015, 13, 10477-10486.	2.8	10
198	Metal-Free Carbonylation Route to a Reactive Borataepoxide System. Organometallics, 2018, 37, 1040-1049.	2.3	10

#	Article	IF	CITATIONS
199	Consecutive intermolecular 1,1-carboboration reactions of Me ₃ Si-substituted alkynes with the halogeno-B(C ₆ F ₅) ₂ reagents. Dalton Transactions, 2019, 48, 4837-4845.	3.3	10
200	Solid-State NMR Techniques for the Structural Characterization of Cyclic Aggregates Based on Borane–Phosphane Frustrated Lewis Pairs. Molecules, 2020, 25, 1400.	3.8	10
201	Alkyne 1,1â€Hydroboration to a Reactive Frustrated P/Bâ€H Lewis Pair. Angewandte Chemie, 2021, 133, 6831-6837.	2.0	10
202	Formation and Cycloaddition Reactions of a Reactive Boraalkene Stabilized Internally by N â€Heterocyclic Carbene. Angewandte Chemie, 2021, 133, 20058-20064.	2.0	10
203	Reaction of carbon oxides with an ethylene-bridged PH/B Lewis pair. Dalton Transactions, 2021, 50, 3523-3528.	3.3	10
204	Borole/Borapyramidane Relationship. Journal of the American Chemical Society, 2022, 144, 7815-7821.	13.7	10
205	2,5-Dihydro-1,2,5-phosphasilaborole Derivatives: Determination of Signs of Coupling Constants [1J(31P,29Si),2J(31P,31P),J(31P,13C),J(31P,1H)]. Magnetic Resonance in Chemistry, 1996, 34, 625-630.	1.9	9
206	Facile 1,1-Carboboration Reaction of a Diarylphosphino-substituted Conjugated Diyne with Tris(pentafluorophenyl)borane. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2013, 68, 666-674.	0.7	9
207	Formation of Thermally Robust Frustrated Lewis Pairs by Electrocyclic Ring Closure Reactions. Angewandte Chemie, 2016, 128, 5616-5620.	2.0	9
208	The Borole Route to Reactive Pentafluorophenyl‧ubstituted Diboranes(4). Angewandte Chemie, 2018, 130, 14778-14782.	2.0	9
209	Characterization of H ₂ â€Splitting Products of Frustrated Lewis Pairs: Benefit of Fast Magicâ€Angle Spinning. ChemPhysChem, 2019, 20, 672-679.	2.1	9
210	Total Chemical Syntheses of the GM ₃ and F–GM ₃ Ganglioside Epitopes and Comparative Pre-Clinical Evaluation for Non-Invasive Imaging of Oligodendrocyte Differentiation. ACS Chemical Neuroscience, 2020, 11, 2129-2136.	3.5	9
211	Halogen-directed chemical sialylation: pseudo-stereodivergent access to marine ganglioside epitopes. Chemical Science, 2020, 11, 6527-6531.	7.4	9
212	The Reaction of (Butadiene)zirconocene with Imines. European Journal of Inorganic Chemistry, 2002, 2002, 2789-2799.	2.0	8
213	Coupling of Carbon Monoxide with Nitrogen Monoxide at a Frustrated Lewis Pair Template. Angewandte Chemie, 2016, 128, 9362-9365.	2.0	8
214	Indirect synthesis of a pair of formal methane activation products at a phosphane/borane frustrated Lewis pair. Dalton Transactions, 2016, 45, 19230-19233.	3.3	8
215	Formation of borata-alkene/iminium zwitterions by ynamine hydroboration. Dalton Transactions, 2018, 47, 10853-10856.	3.3	8
216	Multiâ€Component Synthesis of Rare 1,3â€Dihydroâ€1,3â€azaborinine Derivatives: Application of a Boraâ€Naza Type Reaction. Angewandte Chemie, 2019, 131, 15521-15524.	roy 2.0	8

#	Article	IF	CITATIONS
217	Halogenoborane mediated allene cyclooligomerization. Chemical Science, 2019, 10, 2478-2482.	7.4	8
218	Using the Secondary PH/BH Functional Groups of an Active Geminal Frustrated Lewis Pair for Carbon Monoxide Reduction and Reactions with Nitriles and Isonitriles. Angewandte Chemie, 2020, 132, 12577-12583.	2.0	8
219	A deprotonation pathway to reactive [B]H ₂ boraalkenes. Dalton Transactions, 2022, 51, 7695-7704.	3.3	8
220	Reactions of Pendant Boryl Groups in Cp–Metal Complexes: Heterocyclic Ring Annelation in a CpIr System. European Journal of Inorganic Chemistry, 2008, 2008, 2273-2277.	2.0	7
221	Arylallenes and the halogeno-B(C ₆ F ₅) ₂ reagents: facile formation of 2-borylindenes. Chemical Communications, 2019, 55, 10166-10169.	4.1	7
222	Using the FpXylBH ₂ •SMe ₂ reagent for the regioselective synthesis of cyclic bis(alkenyl)boranes. Chemical Communications, 2020, 56, 12178-12181.	4.1	7
223	The [(NHC)B(H)C 6 F 5] + Cations and Their [B](H)â^'CO Borane Carbonyls. Angewandte Chemie, 2020, 132, 21644-21648.	2.0	7
224	A rare olefin 1,1-carboboration reaction opens a synthetic pathway to an unusually structured frustrated Lewis pair. Chemical Communications, 2020, 56, 8806-8809.	4.1	7
225	Selective N,Oâ€Addition of the TEMPO Radical to Conjugated Boryldienes. Angewandte Chemie, 2016, 128, 1492-1495.	2.0	6
226	A convenient route to internally phosphane-stabilized aryltriborane(7) compounds. Chemical Communications, 2018, 54, 12606-12609.	4.1	6
227	Developing carbon Lewis base/boron Lewis acid frustrated Lewis pair chemistry derived from conjugated dienamines. Tetrahedron, 2019, 75, 571-579.	1.9	6
228	Borane-induced ring closure reaction of oligomethylene-linked bis-allenes. Chemical Science, 2020, 11, 1542-1548.	7.4	6
229	Formation of amidino-borate derivatives by a multi-component reaction. Organic and Biomolecular Chemistry, 2021, 19, 5551-5554.	2.8	6
230	Proton-phosphorous connectivities revealed by high-resolution proton-detected solid-state NMR. Physical Chemistry Chemical Physics, 2022, 24, 7768-7778.	2.8	6
231	Formation of a Hybrid 1â€Boraâ€3â€boratabenzene Heteroarene Anion Derivative. Angewandte Chemie - International Edition, 2022, 61, .	13.8	6
232	Oligomeric Supersandwich Structure of a Lithium Enamino- Cyclopentadienide. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2006, 61, 1319-1322.	0.7	5
233	Observation of a Thermally Induced Boraâ€Nazarov Cyclization at a Phosphole Framework. Angewandte Chemie, 2015, 127, 12543-12546	2.0	5
234	A Route toward (Aminomethyl)cyclopentadienide Ligands and Their Group 4 Metal Complexes. European Journal of Inorganic Chemistry, 2018, 2018, 3813-3821.	2.0	5

#	Article	IF	CITATIONS
235	The XB(C6 F5)2 Halogenoborane Route to Phosphole Derivatives. European Journal of Inorganic Chemistry, 2019, 2019, 2912-2917.	2.0	5
236	Dihydrogen Splitting by Intramolecular Boraneâ€Phosphane Frustrated Lewis Pairs: A Comprehensive Characterization Strategy Using Solid State NMR and DFT Calculations. ChemPhysChem, 2019, 20, 1837-1849.	2.1	5
237	Carbon Monoxide Coupling Reactions via a Frustrated Lewis Pair-Derived η ² -Formyl Borane. Journal of the American Chemical Society, 2021, 143, 14992-14997.	13.7	5
238	Making Use of the Functional Group Combination of a Phosphane/Borane Lewis Pair Connected by an Unsaturated Four arbon Bridge. European Journal of Inorganic Chemistry, 2017, 2017, 4519-4524.	2.0	4
239	Zirconocene mediated acetylboron chemistry. Chemical Communications, 2018, 54, 5724-5727.	4.1	4
240	Carbon–carbon bond forming reactions of acetylenic esters and ketones within frustrated phosphane/borane Lewis pair frameworks. Dalton Transactions, 2019, 48, 11921-11926.	3.3	4
241	Nitro-redox reactions at a frustrated borane/phosphane Lewis pair. Dalton Transactions, 2016, 45, 6820-6823.	3.3	3
242	Diels-Alder route to norbornane derived vicinal phosphane/borane frustrated Lewis pairs for the metal-free catalytic hydrogenation of α, β-unsaturated ketones. Journal of Organometallic Chemistry, 2019, 899, 120879.	1.8	3
243	Boraneâ€Mediated Vinylphosphane Cycloaddition to Conjugated Ynones. European Journal of Inorganic Chemistry, 2020, 2020, 1096-1100.	2.0	3
244	Multi-component synthesis of dihydro-1,3-azaborinine derived oxindole isosteres. Chemical Communications, 2021, 57, 7689-7692.	4.1	3
245	The Bis(η 6 â€benzene)lithium Cation: A Fundamental Mainâ€Group Organometallic Species. Angewandte Chemie - International Edition, 2021, 60, 22879-22884.	13.8	3
246	Threeâ€component Reaction to 1,4,2â€Diazaboroleâ€type Heteroarene Systems. Angewandte Chemie - International Edition, 2021, , .	13.8	3
247	Frustrated Lewisâ€Pair Neighbors at the Xanthene Framework: Epimerization at Phosphorus and Cooperative Formation of Macrocyclic Adduct Structures. Chemistry - A European Journal, 2021, 27, 12104-12114.	3.3	2
248	Stereochemical Behavior of Pairs of Pâ€stereogenic Phosphanyl Groups at the Dimethylxanthene Backbone. Chemistry - A European Journal, 2022, , .	3.3	2
249	Cyclobutene Formation by Borane Catalyzed [2+2] Cycloaddition of a Vinylphosphane with Conjugated Ynones. European Journal of Inorganic Chemistry, 2020, 2020, 2270-2272.	2.0	1
250	Ring Construction by 1,1 arboboration; Making Anthracene Derivatives from a Tetra(alkynyl)benzene. Helvetica Chimica Acta, 0, , .	1.6	1
251	The Bis(η 6 â€benzene)lithium Cation: A Fundamental Mainâ€Group Organometallic Species. Angewandte Chemie, 2021, 133, 23061.	2.0	1
252	Threeâ€component Reaction to 1,4,2â€Diazaboroleâ€type Heteroarene Systems. Angewandte Chemie, 0, , .	2.0	0

#	Article	IF	CITATIONS
253	Substituent dependent cyclization reactions of 1,1'â€bis(alkynyl) ferrocenes with the (C6F5)BH2·SMe2hydroboration reagent. European Journal of Inorganic Chemistry, 0, , .	2.0	0
254	An olefin-based multi-component reaction to yield 1,2-azaborolidine derivatives. Dalton Transactions, 2022, 51, 1775-1778.	3.3	0
255	Formation of a Hybrid 1â€Boraâ€3â€boratabenzene Heteroarene Anion Derivative. Angewandte Chemie, 2022, 134, .	2.0	0