
Sharmarke Mohamed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4882826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2016, 72, 439-459.	1.1	445
2	Towards crystal structure prediction of complex organic compounds – a report on the fifth blind test. Acta Crystallographica Section B: Structural Science, 2011, 67, 535-551.	1.8	358
3	Salt or Cocrystal? A New Series of Crystal Structures Formed from Simple Pyridines and Carboxylic Acids. Crystal Growth and Design, 2009, 9, 2881-2889.	3.0	183
4	Mechanically robust amino acid crystals as fiber-optic transducers and wide bandpass filters for optical communication in the near-infrared. Nature Communications, 2021, 12, 1326.	12.8	67
5	Computational prediction of salt and cocrystal structures—Does a proton position matter?. International Journal of Pharmaceutics, 2011, 418, 187-198.	5.2	60
6	Screening for cocrystals of succinic acid and 4-aminobenzoic acid. CrystEngComm, 2012, 14, 2454.	2.6	41
7	Porous organic polymer composites as surging catalysts for visible-light-driven chemical transformations and pollutant degradation. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 41, 100319.	11.6	32
8	Efficient Screening for Ternary Molecular Ionic Cocrystals Using a Complementary Mechanosynthesis and Computational Structure Prediction Approach. Chemistry - A European Journal, 2020, 26, 4752-4765.	3.3	27
9	Mechanosynthesis of Higherâ€Order Cocrystals: Tuning Order, Functionality and Size in Cocrystal Design**. Angewandte Chemie - International Edition, 2021, 60, 17481-17490.	13.8	22
10	Towards the systematic crystallisation of molecular ionic cocrystals: insights from computed crystal form landscapes. Faraday Discussions, 2018, 211, 401-424.	3.2	20
11	Using crystal structure prediction to rationalize the hydration propensities of substituted adamantane hydrochloride salts. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2016, 72, 551-561.	1.1	15
12	Exceptionally high work density of a ferroelectric dynamic organic crystal around room temperature. Nature Communications, 2022, 13, .	12.8	15
13	From serendipity to supramolecular design: assessing the utility of computed crystal form landscapes in inferring the risks of crystal hydration in carboxylic acids. CrystEngComm, 2018, 20, 6026-6039.	2.6	13
14	Commercial prospects for genomic sequencing technologies. Nature Reviews Drug Discovery, 2013, 12, 341-342.	46.4	11
15	Expanding the Supramolecular Toolkit: Computed Molecular and Crystal Properties for Supporting the Crystal Engineering of Higher-Order Molecular Ionic Cocrystals. Crystal Growth and Design, 2022, 22, 485-496.	3.0	10
16	7-Fluoroisatin–1,4-dioxane (1/1). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3574-o3574.	0.2	9
17	Applications of crystal structure prediction – organic molecular structures: general discussion. Faraday Discussions, 2018, 211, 493-539.	3.2	8
18	7-Fluoroisatin–dimethyl sulfoxide (1/1). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3575-o3575.	0.2	7

SHARMARKE MOHAMED

#	Article	IF	CITATIONS
19	Crystal structure evaluation: calculating relative stabilities and other criteria: general discussion. Faraday Discussions, 2018, 211, 325-381.	3.2	7
20	Formation of Noncovalent Complexes between Complex Mixtures of Polycyclic Aromatic Hydrocarbons (Asphaltenes) and Substituted Aromatics Studied by Fluorescence Spectroscopy. Energy & Fuels, 2021, 35, 8742-8755.	5.1	7
21	Applications of crystal structure prediction – inorganic and network structures: general discussion. Faraday Discussions, 2018, 211, 613-642.	3.2	6
22	Crystal Engineering of Binary Organic Eutectics: Significant Improvement in the Physicochemical Properties of Polycyclic Aromatic Hydrocarbons via the Computational and Mechanochemical Discovery of Composite Materials. Crystal Growth and Design, 2021, 21, 4151-4161.	3.0	6
23	Solvent inclusion in the crystal structure of bis[(adamantan-1-yl)methanaminium chloride] 1,4-dioxane hemisolvate monohydrate explained using the computed crystal energy landscape. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 1348-1352.	0.5	5
24	Experimental and theoretical characterization of the interfacial adhesion of 2D heterogeneous materials: A review. Journal of Micromechanics and Molecular Physics, 2021, 06, 31-48.	1.2	4
25	Discovery of three polymorphs of 7-fluoroisatin reveals challenges in using computational crystal structure prediction as a complement to experimental screening. CrystEngComm, 2008, , .	2.6	3
26	Structure searching methods: general discussion. Faraday Discussions, 2018, 211, 133-180.	3.2	3
27	5-Fluoroisatin–dimethyl sufoxide (1/1). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3576-o3576.	0.2	2
28	Mechanosynthesis of Higherâ€Order Cocrystals: Tuning Order, Functionality and Size in Cocrystal Design**. Angewandte Chemie, 2021, 133, 17622-17631.	2.0	2
29	5-Fluoro-3-hydroxy-3-(nitromethyl)-1H-indol-2(3H)-one. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3577-o3577.	0.2	0
30	Investigating the solid-state assembly of pharmaceutically-relevant N,N-dimethyl-O-thiocarbamates in the absence of labile hydrogen bonds. CrystEngComm, 2020, 22, 8290-8298.	2.6	0
31	Expanding the crystal form landscape: emerging computational tools for the discovery of eutectic composites and higher-order cocrystals of organic compounds. Acta Crystallographica Section A: Foundations and Advances, 2021, 77, C592-C592	0.1	О