James D E T Wilton-Ely

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4881400/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coordinatively unsaturated ruthenium allenylidene complexes: highly effective, well defined catalysts for the ring-closure metathesis of Ĩ±,ω-dienes and dienynes. Chemical Communications, 1999, , 601-602.	4.1	125
2	The first co-ordinatively unsaturated Group 8 allenylidene complexes: insights into Grubbs' vs. Dixneuf–Fürstner olefin metathesis catalysts. Journal of the Chemical Society Dalton Transactions, 1999, , 285-292.	1.1	122
3	Multimetallic Assemblies Using Piperazine-Based Dithiocarbamate Building Blocks. Inorganic Chemistry, 2008, 47, 9642-9653.	4.0	101
4	Competition as a Design Concept:Â Polymorphism in Self-Assembled Monolayers of Biphenyl-Based Thiols. Journal of the American Chemical Society, 2006, 128, 13868-13878.	13.7	91
5	Polyazolyl Chelate Chemistry. 7.1Reactivity of the Complexes [MCl(PPh3)2{HB(pz)3}] (M = Ru, Os; pz =) Tj ETQq	1 <u>1</u> 0.784 2.3	314 rgBT /O
6	Reusable and highly active supported copper(i)–NHC catalysts for Click chemistry. Chemical Communications, 2013, 49, 11358.	4.1	79
7	Stress in Self-Assembled Monolayers: ï‰-Biphenyl Alkane Thiols on Au(111). Journal of Physical Chemistry B, 2005, 109, 10902-10908.	2.6	77
8	A Chromo-Fluorogenic Synthetic "Canary―for CO Detection Based on a Pyrenylvinyl Ruthenium(II) Complex. Journal of the American Chemical Society, 2014, 136, 11930-11933.	13.7	77
9	<i>Ex Vivo</i> Tracking of Endogenous CO with a Ruthenium(II) Complex. Journal of the American Chemical Society, 2017, 139, 18484-18487.	13.7	74
10	Chromo-fluorogenic probes for carbon monoxide detection. Chemical Communications, 2016, 52, 5902-5911.	4.1	73
11	Simultaneous Detection of Carbon Monoxide and Viscosity Changes in Cells. Angewandte Chemie - International Edition, 2020, 59, 21431-21435.	13.8	70
12	The surface functionalisation of gold nanoparticles with metal complexes. Dalton Transactions, 2008, , 25-29.	3.3	67
13	Highly Selective and Near-Quantitative Conversion of Fructose to 5-Hydroxymethylfurfural Using Mildly Acidic Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2014, 2, 978-981.	6.7	67
14	Functionalised dithiocarbamate complexes: Synthesis and molecular structures of 2-diethylaminoethyl and 3-dimethylaminopropyl dithiocarbamate complexes [M{S2CN(CH2CH2NEt2)2}n] and [M{S2CN(CH2CH2CH2NMe2)2}n] (n=2, M=Ni, Cu, Zn, Pd; n=3, M=Co). Inorganica Chimica Acta, 2009, 362, 2020-2026.	2.4	65
15	The Use of Imidazolium-2-dithiocarboxylates in the Formation of Gold(I) Complexes and Gold Nanoparticlesâ€Dedicated to Prof. Dr. Hubert Schmidbaur on the occasion of his 75th birthday Inorganic Chemistry, 2010, 49, 1784-1793.	4.0	63
16	Multifunctional Dithiocarbamates as Ligands Towards the Rational Synthesis of Polymetallic Arrays: An Example Based on a Piperizine-Derived Dithiocarbamate Ligand. European Journal of Inorganic Chemistry, 2005, 2005, 4027-4030.	2.0	61
17	The coupling of methylene and vinyl ligands at a ruthenium(II) centre. Chemical Communications, 1997, , 2207-2208.	4.1	59
18	Structural diversity in gold(I) complexes of 4-sulfanylbenzoic acid. Dalton Transactions RSC, 2001, , 1058-1062.	2.3	57

#	Article	IF	CITATIONS
19	Facile Preparation of Drug-Loaded Tristearin Encapsulated Superparamagnetic Iron Oxide Nanoparticles Using Coaxial Electrospray Processing. Molecular Pharmaceutics, 2017, 14, 2010-2023.	4.6	55
20	Bifunctional dithiocarbamates: a bridge between coordination chemistry and nanoscale materials. Dalton Transactions, 2009, , 607-609.	3.3	52
21	Multifunctional Dithiocarbamates: Synthesis and Ring-Closing Metathesis of Diallyldithiocarbamate Complexes. Organometallics, 2010, 29, 2547-2556.	2.3	51
22	Strategies for the Separation of the Furanic Compounds HMF, DFF, FFCA, and FDCA from Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 16483-16492.	6.7	50
23	Multimetallic complexes of group 10 and 11 metals based on polydentate dithiocarbamate ligands. Dalton Transactions, 2011, 40, 5852.	3.3	49
24	Multimetallic Arrays: Bi-, Tri-, Tetra-, and Hexametallic Complexes Based on Gold(I) and Gold(III) and the Surface Functionalization of Gold Nanoparticles with Transition Metals. Inorganic Chemistry, 2009, 48, 3866-3874.	4.0	47
25	Multimetallic arrays: Symmetrical bi-, tri- and tetrametallic complexes based on the group 10 metals and the functionalisation of gold nanoparticles with nickel-phosphine surface units. Dalton Transactions, 2009, , 3688.	3.3	47
26	Heavy Metal Sensing Using Selfâ€Assembled Nanoparticles at a Liquid–Liquid Interface. Advanced Optical Materials, 2014, 2, 966-977.	7.3	47
27	From sugars to FDCA: a techno-economic assessment using a design concept based on solvent selection and carbon dioxide emissions. Green Chemistry, 2021, 23, 1716-1733.	9.0	47
28	Polyazolyl Chelate Chemistry. 8.1Organometallic Dihydridobis(pyrazol-1-yl)borato Complexes of Ruthenium(II). Organometallics, 1998, 17, 4249-4258.	2.3	46
29	Multimetallic Arrays: Symmetrical and Unsymmetrical Bi-, Tri-, and Tetrametallic Organometallic Complexes of Ruthenium(II) and Osmium(II). Organometallics, 2009, 28, 197-208.	2.3	45
30	Phosphaalkyne Hydrometalation:Â Synthesis and Reactivity of the Complexes [Ru(PCHCMe3)Cl(CA)(PPh3)2] (A = O, S). Organometallics, 1998, 17, 4744-4753.	2.3	43
31	Ruthenium(II) and Osmium(II) Vinyl Complexes as Highly Sensitive and Selective Chromogenic and Fluorogenic Probes for the Sensing of Carbon Monoxide in Air. Chemistry - A European Journal, 2015, 21, 14529-14538.	3.3	41
32	Organometallic Macrocycle Chemistry. 5.1 Ïf-Vinyl and Ïf-Aryl Complexes of Ruthenium(II) Ligated by 1,4,7-Trithiacyclononane:  X-ray Crystal Structure of [Ru(CHCH2)(CO)(PPh3)([9]aneS3)]PF6·2CH2Cl2. Organometallics, 1996, 15, 5409-5415.	2.3	40
33	Unprecedented coupling of vinylidene and allenylidene ligands with dithiocarbamates: X-ray structure of [Ru{C(ĩCĩCPh2)SC(NMe2)S}(S2CNMe2)(CO)(PPh3)]. Journal of Organometallic Chemistry, 1999, 578, 264-267.	1.8	39
34	Dithiocarboxylate complexes of ruthenium(ii) and osmium(ii). Dalton Transactions, 2011, 40, 3737.	3.3	38
35	Highly Sensitive and Selective Molecular Probes for Chromoâ€Fluorogenic Sensing of Carbon Monoxide in Air, Aqueous Solution and Cells. Chemistry - A European Journal, 2019, 25, 2069-2081.	3.3	38
36	Diversity in the Structural Chemistry of (Phosphine)gold(I) 1,3,4-Thiadiazole-2,5-dithiolates (Bismuthiolates I). Inorganic Chemistry, 2001, 40, 6266-6271.	4.0	37

#	Article	IF	CITATIONS
37	The Close-Knit Supramolecular Network of Bis[(tert-butyl isocyanide)gold(I)] 1,3,4-Thiadiazole-2,5-disulfide. Organometallics, 2001, 20, 1895-1897.	2.3	36
38	Polyazolyl Chelate Chemistry. 6.1 Bidentate Coordination of HB(pz)3 (pz = Pyrazol-1-yl) to Ruthenium and Osmium:  Crystal Structure of [RuH(CO)(PPh3)2{κ2-HB(pz)3}]. Organometallics, 1998, 17, 1552-1557.	2.3	35
39	Nonâ€innocent Behaviour of Dithiocarboxylate Ligands Based on Nâ€Heterocyclic Carbenes. Chemistry - A European Journal, 2010, 16, 10971-10974.	3.3	35
40	Ring-Closing Metathesis and Nanoparticle Formation Based on Diallyldithiocarbamate Complexes of Gold(I): Synthetic, Structural, and Computational Studies. Inorganic Chemistry, 2014, 53, 2404-2416.	4.0	35
41	Synthesis and Reactivity of [TpRh(PPh3)2] (Tp = Hydridotris(pyrazol-1-yl)borate). Organometallics, 1998, 17, 3152-3154.	2.3	34
42	The Highly Selective and Near-Quantitative Conversion of Glucose to 5-Hydroxymethylfurfural Using lonic Liquids. PLoS ONE, 2016, 11, e0163835.	2.5	34
43	Synthesis and Catalytic Application of [Rh(PPh3)2([9]aneS3)]PF6‡. Organometallics, 1997, 16, 4517-4518.	2.3	32
44	On the Importance of Purity for the Formation of Self-Assembled Monolayers from Thiocyanates. Langmuir, 2008, 24, 6609-6615.	3.5	32
45	Multimetallic Complexes and Functionalized Gold Nanoparticles Based on a Combination of d- and f-Elements. Inorganic Chemistry, 2014, 53, 1989-2005.	4.0	32
46	Alkenyl and alkynyl complexes of osmium(II) derived from [OsH(Cl)(CO)(BTD)(PPh3)2] (BTDâ€=â€2,1,3-benzothiadiazole). Journal of the Chemical Society Dalton Transactions, 1998, , 3501-3510.	1.1	31
47	Mixed-Donor Ligands:  Pyrrolecarbaldehyde and Pyrrolecarbothioaldehyde σ-Organyl Complexes of Ruthenium(II) and Osmium(II). Organometallics, 2005, 24, 2862-2874.	2.3	31
48	Spectroscopic, Structural and Theoretical Investigation of Alkenyl Ruthenium Complexes Supported by Sulfur–Nitrogen Mixed-Donor Ligands. European Journal of Inorganic Chemistry, 2006, 2006, 3068-3078.	2.0	31
49	Rapid, High‥ield Fructose Dehydration to 5â€Hydroxymethylfurfural in Mixtures of Water and the Noncoordinating Ionic Liquid [bmim][OTf]. ChemSusChem, 2019, 12, 4452-4460.	6.8	31
50	Limonene-derived phosphines in the cobalt-catalysed hydroformylation of alkenes. Dalton Transactions, 2003, , 4669.	3.3	30
51	σ-Organyl complexes of ruthenium and osmium supported by a mixed-donor ligand. Dalton Transactions, 2005, , 1930.	3.3	30
52	Efficient Formation of 2,5-Diformylfuran in Ionic Liquids at High Substrate Loadings and Low Oxygen Pressure with Separation through Sublimation. ACS Sustainable Chemistry and Engineering, 2020, 8, 2462-2471.	6.7	30
53	Characterization and Valorization of Humins Produced by HMF Degradation in Ionic Liquids: A Valuable Carbonaceous Material for Antimony Removal. ACS Sustainable Chemistry and Engineering, 2021, 9, 2212-2223.	6.7	30
54	Functionalised dithiocarbamate complexes: Complexes based on indoline, indole and substituted piperazine backbones – X-ray crystal structure of [Ni(S2CNC3H6C6H4)2]. Inorganica Chimica Acta, 2010, 363, 3222-3228.	2.4	29

#	Article	IF	CITATIONS
55	The functionalisation of ruthenium(ii) and osmium(ii) alkenyl complexes with amine- and alkoxy-terminated dithiocarbamates. Dalton Transactions, 2010, 39, 4080.	3.3	29
56	Synthesis and catalytic application of palladium imidazol(in)ium-2-dithiocarboxylate complexes. Dalton Transactions, 2012, 41, 12386.	3.3	28
57	Synthesis and Reactions of Five-Coordinate Mono- and Binuclear Thiocarbonylâ^'Alkenyl and Thioacyl Complexes of Ruthenium(II). Organometallics, 2007, 26, 6114-6125.	2.3	27
58	Ruthenium hydride and vinyl complexes supported by nitrogen–oxygen mixed-donor ligands. Inorganica Chimica Acta, 2005, 358, 3218-3226.	2.4	26
59	Direct Catalytic Conversion of Cellulose to 5-Hydroxymethylfurfural Using Ionic Liquids. Inorganics, 2016, 4, 32.	2.7	26
60	Co-ordinative activation of phosphaalkynes: methyl neopentylidene phosphorane complexes of ruthenium(II); crystal structure of [Ru(MePCHButâ€S)Cl(I)(CO)(PPh3) 2]. Journal of the Chemical Society Dalton Transactions, 1997, , 139-140.	1.1	25
61	Bimetallic complexes based on carboxylate and xanthate ligands: Synthesis and electrochemical investigations. Dalton Transactions, 2009, , 7891.	3.3	24
62	Synthetic and Computational Studies of Thiocarbonyl/σ-Organyl Coupling Reactions. Organometallics, 2008, 27, 5548-5558.	2.3	23
63	Effect of peptide orientation on electron transfer. Physical Chemistry Chemical Physics, 2010, 12, 9996.	2.8	22
64	Two-, Three-, and Four-Coordination at Gold(I) Supported by the Bidentate Selenium Ligand [Ph2P(Se)NP(Se)Ph2] Inorganic Chemistry, 2001, 40, 4656-4661.	4.0	21
65	Silver(i) coordination by variants of the bis(diphenylphosphino)amine chalcogenide ligandElectronic supplementary information (ESI) available: tables of crystal data. See http://www.rsc.org/suppdata/dt/b1/b105154g/. Dalton Transactions RSC, 2001, , 3647-3651.	2.3	20
66	Thiocarbamoyl Complexes of Ruthenium(II), Rhodium(III), and Iridium(III). Organometallics, 2005, 24, 5342-5355.	2.3	20
67	Multimetallic Complexes and Functionalized Nanoparticles Based on Unsymmetrical Dithiocarbamate Ligands with Allyl and Propargyl Functionality. Inorganic Chemistry, 2014, 53, 11740-11748.	4.0	20
68	Functionalised [(NHC)Pd(allyl)Cl] complexes: Synthesis, immobilisation and application in cross-coupling and dehalogenation reactions. Catalysis Communications, 2016, 87, 78-81.	3.3	20
69	Strategies for the functionalisation of gold nanorods to reduce toxicity and aid clinical translation. Nanotheranostics, 2021, 5, 155-165.	5.2	20
70	Gold nanomaterials functionalised with gadolinium chelates and their application in multimodal imaging and therapy. Chemical Communications, 2020, 56, 4037-4046.	4.1	19
71	Multimetallic Complexes and Functionalized Nanoparticles Based on Oxygen- and Nitrogen-Donor Combinations. Inorganic Chemistry, 2013, 52, 4700-4713.	4.0	18
72	Multimetallic Alkenyl Complexes Bearing Macrocyclic Dithiocarbamate Ligands. Organometallics, 2015, 34, 494-505.	2.3	18

#	Article	IF	CITATIONS
73	From recovered metal waste to high-performance palladium catalysts. Green Chemistry, 2017, 19, 5846-5853.	9.0	18
74	Gold(i) complexes bearing mixed-donor ligands derived from N-heterocyclic carbenes. Dalton Transactions, 2011, 40, 6645.	3.3	17
75	Multimetallic Complexes Based on a Diphosphine-Dithiocarbamate "Janus―Ligand. Inorganic Chemistry, 2015, 54, 4222-4230.	4.0	16
76	Bifunctional Chalcogen Linkers for the Stepwise Generation of Multimetallic Assemblies and Functionalized Nanoparticles. Inorganic Chemistry, 2016, 55, 12982-12996.	4.0	16
77	Convenient Syntheses of [IrCl(CS)(PPh3)2] and a Bis(thiocarbonyl) Complex of Iridiumâ€. Organometallics, 1996, 15, 3791-3797.	2.3	15
78	A σ-Phosphaalkyne Complex of Ruthenium(0). Inorganic Chemistry, 1997, 36, 5142-5144.	4.0	15
79	Novel syntheses of heterodinuclear phosphaalkenyl complexes: X-ray structure of [Ru{P(AuPPh3)CHBut}Cl2 (CO)(PPh3)2]. Chemical Communications, 1997, , 179-180.	4.1	14
80	Polyfunctionalised Nanoparticles Bearing Robust Gadolinium Surface Units for High Relaxivity Performance in MRI. Chemistry - A European Journal, 2019, 25, 10895-10906.	3.3	13
81	Simultaneous Detection of Carbon Monoxide and Viscosity Changes in Cells. Angewandte Chemie, 2020, 132, 21615-21619.	2.0	13
82	The Pentynoate Ligand as a Building Block for Multimetallic Systems. European Journal of Inorganic Chemistry, 2014, 2014, 2065-2072.	2.0	12
83	A metallacyclic λ5-phosphaalkenyl complex of ruthenium(II): X-ray structure of [Ru{κ2-P(ĩ€†O)CButC(O)}(CNBut)2(PPh3)2]. Chemical Communications, 1998, , 367-368.	4.1	11
84	Synthesis and reactivity of dialkyldithiophosphate complexes of ruthenium(<scp>ii</scp>). RSC Advances, 2012, 2, 999-1008.	3.6	11
85	Mercuriophosphaalkene-P complexes: crystal structure of [Ru{P(CHBut)HgC5H4Fe(Î+-C5H5)}Cl2(CO)(PPh3)2]. Journal of the Chemical Society Dalton Transactions, 1998, , 1419-1420.	1.1	10
86	Synthesis and Reactivity of the Ruthenium(II) Dithiocarbonate Complex [Ru(κ2-S2CO)(dppm)2] (dppm =) Tj ETQ	9000 rg	BT 10verlock
87	Gold nanomaterials in the management of lung cancer. Emerging Topics in Life Sciences, 2020, 4, 627-643.	2.6	10
88	Phospha-alkyne hydro-osmiation: synthesis of [Os{κ1P,κ1P′-PCRP(CHR)}Cl(CO)(PPh3)2] (R = CMe3). C Communications, 1999, , 451-452.	hemical 4.1	9
89	Auration, Argentation, and Mercuration Reactions of an Iridaphosphirene. Inorganic Chemistry, 2005, 44, 3275-3282.	4.0	9
90	Combined Magnetic Resonance Imaging and Photodynamic Therapy Using Polyfunctionalised Nanoparticles Bearing Robust Gadolinium Surface Units. Chemistry - A European Journal, 2020, 26, 4552-4566.	3.3	9

#	Article	IF	CITATIONS
91	Synthesis and Application of Ruthenium(II) Alkenyl Complexes with Perylene Fluorophores for the Detection of Toxic Vapours and Gases. Chemistry - A European Journal, 2019, 25, 14214-14222.	3.3	8
92	From Waste to Green Applications: The Use of Recovered Gold and Palladium in Catalysis. Molecules, 2021, 26, 5217.	3.8	8
93	Multifunctional Dithiocarbamates: Synthesis and Ring-Closing Metathesis of Diallyldithiocarbamate Complexes. Organometallics, 2011, 30, 2068-2069.	2.3	7
94	The stepwise generation of multimetallic complexes based on a vinylbipyridine linkage and their photophysical properties. Dalton Transactions, 2017, 46, 5558-5570.	3.3	7
95	Thiolate Complexes of Gold(I) Based on a Tris(phosphine) Support. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2001, 56, 1257-1263.	0.7	4
96	Heteromultimetallic compounds based on polyfunctional carboxylate linkers. New Journal of Chemistry, 2019, 43, 3199-3207.	2.8	4
97	Heterotrimetallic complexes of iron and ruthenium based on vinyliminium dithiocarboxylate ligands. Journal of Organometallic Chemistry, 2019, 886, 9-12.	1.8	4
98	Metallostar Assemblies Based on Dithiocarbamates for Use as MRI Contrast Agents. Inorganic Chemistry, 2020, 59, 10813-10823.	4.0	4
99	From Recovered Palladium to Molecular and Nanoscale Catalysts. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	3
100	Pyrrole Thioaldehyde Complexes of Nickel, Palladium and Platinum. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2004, 59, 1372-1378.	0.7	2