Johannes B Majer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4881346/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 2004, 431, 162-167.	27.8	3,195
2	Charge-insensitive qubit design derived from the Cooper pair box. Physical Review A, 2007, 76, .	2.5	2,184
3	Coupling superconducting qubits via a cavity bus. Nature, 2007, 449, 443-447.	27.8	1,109
4	Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature, 2009, 460, 240-244.	27.8	923
5	Resolving photon number states in a superconducting circuit. Nature, 2007, 445, 515-518.	27.8	685
6	Approaching Unit Visibility for Control of a Superconducting Qubit with Dispersive Readout. Physical Review Letters, 2005, 95, 060501.	7.8	456
7	Suppressing charge noise decoherence in superconducting charge qubits. Physical Review B, 2008, 77, .	3.2	415
8	Generating single microwave photons in a circuit. Nature, 2007, 449, 328-331.	27.8	378
9	ac Stark Shift and Dephasing of a Superconducting Qubit Strongly Coupled to a Cavity Field. Physical Review Letters, 2005, 94, 123602.	7.8	351
10	Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting. Physical Review A, 2006, 74, .	2.5	281
11	Cavity QED with Magnetically Coupled Collective Spin States. Physical Review Letters, 2011, 107, 060502.	7.8	275
12	Strong Magnetic Coupling of an Ultracold Gas to a Superconducting Waveguide Cavity. Physical Review Letters, 2009, 103, 043603.	7.8	212
13	Fabrication and Characterization of Superconducting Circuit QED Devices for Quantum Computation. IEEE Transactions on Applied Superconductivity, 2005, 15, 860-863.	1.7	142
14	Reversible state transfer between superconducting qubits and atomic ensembles. Physical Review A, 2009, 79, .	2.5	128
15	Protecting a spin ensemble against decoherence in the strong-coupling regime of cavity QED. Nature Physics, 2014, 10, 720-724.	16.7	118
16	Superradiant emission from colour centres in diamond. Nature Physics, 2018, 14, 1168-1172.	16.7	106
17	Implementation of the Dicke Lattice Model in Hybrid Quantum System Arrays. Physical Review Letters, 2014, 113, 023603.	7.8	89
18	A scalable architecture for quantum computation with molecular nanomagnets. Dalton Transactions, 2016, 45, 16682-16693.	3.3	79

JOHANNES B MAJER

#	Article	IF	CITATIONS
19	Strong magnetic coupling of an inhomogeneous nitrogen-vacancy ensemble to a cavity. Physical Review A, 2012, 85, .	2.5	63
20	Simple phase bias for superconducting circuits. Applied Physics Letters, 2002, 80, 3638-3640.	3.3	61
21	Cavity QED with an ultracold ensemble on a chip: Prospects for strong magnetic coupling at finite temperatures. Physical Review A, 2010, 82, .	2.5	58
22	Smooth Optimal Quantum Control for Robust Solid-State Spin Magnetometry. Physical Review Letters, 2015, 115, 190801.	7.8	57
23	Coherent Coupling of Remote Spin Ensembles via a Cavity Bus. Physical Review Letters, 2017, 118, 140502.	7.8	53
24	Solid-state electron spin lifetime limited by phononic vacuum modes. Nature Materials, 2018, 17, 313-317.	27.5	53
25	Spectral hole burning and its application in microwave photonics. Nature Photonics, 2017, 11, 36-39.	31.4	43
26	Quantum Ratchets with Few Bands below the Barrier. Physical Review Letters, 2002, 89, 146801.	7.8	39
27	Enhanced Molecular Spin-Photon Coupling at Superconducting Nanoconstrictions. ACS Nano, 2020, 14, 8707-8715.	14.6	37
28	Non-Markovian dynamics of a single-mode cavity strongly coupled to an inhomogeneously broadened spin ensemble. Physical Review A, 2014, 90, .	2.5	32
29	Nanoscale constrictions in superconducting coplanar waveguide resonators. Applied Physics Letters, 2014, 105, .	3.3	31
30	Ultralong relaxation times in bistable hybrid quantum systems. Science Advances, 2017, 3, e1701626.	10.3	31
31	Electrical transport properties of single-crystal Al nanowires. Nanotechnology, 2016, 27, 385704.	2.6	28
32	Collective strong coupling with homogeneous Rabi frequencies using a 3D lumped element microwave resonator. Applied Physics Letters, 2016, 109, 033508.	3.3	27
33	Magnetic conveyor belt transport of ultracold atoms to a superconducting atomchip. Applied Physics B: Lasers and Optics, 2014, 116, 1017-1021.	2.2	24
34	Controlling quantum information processing in hybrid systems on chips. Quantum Information Processing, 2011, 10, 1037-1060.	2.2	23
35	Optimizing inhomogeneous spin ensembles for quantum memory. Physical Review A, 2012, 86, .	2.5	18
	(i) Ab initia (li) calculation of the spin lattice relaxation time (mml;math		_

<i>Ab initio</i> calculation of the spin lattice relaxation time <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>T</mml:mi><mml:mn>1</mml:mn><#maml:msubo</mml:n for nitrogen-vacancy centers in diamond. Physical Review B, 2018, 98, . 36

#	Article	IF	CITATIONS
37	Dispersive readout of room-temperature ensemble spin sensors. Quantum Science and Technology, 2021, 6, 03LT01.	5.8	9
38	Electron beam driven alkali metal atom source for loading aÂmagneto-optical trap in a cryogenic environment. Applied Physics B: Lasers and Optics, 2011, 102, 819-823.	2.2	3
39	Quantum Information Processing with Superconducting Qubits and Cavities. , 2007, , .		2
40	Backaction Effects of a SSET Measuring a Qubit Spectroscopy and Ground State Measurement. IEEE Transactions on Applied Superconductivity, 2005, 15, 880-883.	1.7	1
41	Perspective on witnessing entanglement in hybrid quantum systems. Applied Physics Letters, 2021, 119, 110501.	3.3	0