Gunnar R Mair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4878986/publications.pdf Version: 2024-02-01

CHNNAD R MAID

#	Article	IF	CITATIONS
1	Gliding motility protein LIMP promotes optimal mosquito midgut traversal and infection by Plasmodium berghei. Molecular and Biochemical Parasitology, 2021, 241, 111347.	1.1	0
2	The neuromuscular system of the sheep tapeworm Moniezia expansa. Invertebrate Neuroscience, 2020, 20, 17.	1.8	5
3	EAT-18 is an essential auxiliary protein interacting with the non-alpha nAChR subunit EAT-2 to form a functional receptor. PLoS Pathogens, 2020, 16, e1008396.	4.7	17
4	Malaria transmission through the mosquito requires the function of the OMD protein. PLoS ONE, 2019, 14, e0222226.	2.5	2
5	Functional genetic evaluation of DNA house-cleaning enzymes in the malaria parasite: dUTPase and Ap4AH are essential in <i>Plasmodium berghei</i> but ITPase and NDH are dispensable. Expert Opinion on Therapeutic Targets, 2019, 23, 251-261.	3.4	6
6	Transmission of the malaria parasite requires ferlin for gamete egress from the red blood cell. Cellular Microbiology, 2019, 21, e12999.	2.1	14
7	Identification of a Golgi apparatus protein complex important for the asexual erythrocytic cycle of the malaria parasite <i>Plasmodium falciparum</i> . Cellular Microbiology, 2018, 20, e12843.	2.1	8
8	Plasmodium UIS3 sequesters host LC3 to avoid elimination by autophagy in hepatocytes. Nature Microbiology, 2018, 3, 17-25.	13.3	81
9	Nuclear Pore Complex Components in the Malaria Parasite Plasmodium berghei. Scientific Reports, 2018, 8, 11249.	3.3	19
10	Malaria parasite LIMP protein regulates sporozoite gliding motility and infectivity in mosquito and mammalian hosts. ELife, 2017, 6, .	6.0	27
11	A Putative Small Solute Transporter Is Responsible for the Secretion of G377 and TRAP-Containing Secretory Vesicles during Plasmodium Gamete Egress and Sporozoite Motility. PLoS Pathogens, 2016, 12, e1005734.	4.7	49
12	Proteomic Analysis of the Plasmodium berghei Gametocyte Egressome and Vesicular bioID of Osmiophilic Body Proteins Identifies Merozoite TRAP-like Protein (MTRAP) as an Essential Factor for Parasite Transmission. Molecular and Cellular Proteomics, 2016, 15, 2852-2862.	3.8	80
13	A small mitochondrial protein present in myzozoans is essential for malaria transmission. Open Biology, 2016, 6, 160034.	3.6	17
14	Maternally supplied S-acyl-transferase is required for crystalloid organelle formation and transmission of the malaria parasite. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7183-7188.	7.1	28
15	Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium. Parasitology International, 2016, 65, 463-471.	1.3	18
16	Integrated transcriptomic and proteomic analyses of <i>P. falciparum</i> gametocytes: molecular insight into sex-specific processes and translational repression. Nucleic Acids Research, 2016, 44, 6087-6101.	14.5	216
17	Translational Control of UIS4 Protein of the Host-Parasite Interface Is Mediated by the RNA Binding Protein Puf2 in Plasmodium berghei Sporozoites. PLoS ONE, 2016, 11, e0147940.	2.5	14
18	The Plasmodium palmitoyl-S-acyl-transferase DHHC2 is essential for ookinete morphogenesis and malaria transmission. Scientific Reports, 2015, 5, 16034.	3.3	46

GUNNAR R MAIR

#	Article	IF	CITATIONS
19	Zinc finger nuclease-based double-strand breaks attenuate malaria parasites and reveal rare microhomology-mediated end joining. Genome Biology, 2015, 16, 249.	8.8	43
20	In silico identification of genetically attenuated vaccine candidate genes for Plasmodium liver stage. Infection, Genetics and Evolution, 2015, 36, 72-81.	2.3	17
21	Genome-wide RIP-Chip analysis of translational repressor-bound mRNAs in the Plasmodium gametocyte. Genome Biology, 2014, 15, 493.	8.8	80
22	Genetic crosses and complementation reveal essential functions for the <i>Plasmodium</i> stage-specific actin2 in sporogonic development. Cellular Microbiology, 2014, 16, 751-767.	2.1	24
23	Lossâ€ofâ€function analyses defines vital and redundant functions of the <i><scp>P</scp>lasmodium</i> rhomboid protease family. Molecular Microbiology, 2013, 88, 318-338.	2.5	40
24	Experimentally controlled downregulation of the histone chaperone FACT in <i>Plasmodium berghei</i> reveals that it is critical to male gamete fertility. Cellular Microbiology, 2011, 13, 1956-1974.	2.1	43
25	Schistosome I/Lamides – A new family of bioactive helminth neuropeptides. International Journal for Parasitology, 2011, 41, 905-913.	3.1	19
26	Transition of Plasmodium Sporozoites into Liver Stage-Like Forms Is Regulated by the RNA Binding Protein Pumilio. PLoS Pathogens, 2011, 7, e1002046.	4.7	82
27	Universal Features of Post-Transcriptional Gene Regulation Are Critical for Plasmodium Zygote Development. PLoS Pathogens, 2010, 6, e1000767.	4.7	237
28	Analysis of mutant Plasmodium berghei parasites lacking expression of multiple PbCCp genes. Molecular and Biochemical Parasitology, 2009, 163, 1-7.	1.1	41
29	Discovery of multiple neuropeptide families in the phylum Platyhelminthes. International Journal for Parasitology, 2009, 39, 1243-1252.	3.1	85
30	Proteomic Profiling of Plasmodium Sporozoite Maturation Identifies New Proteins Essential for Parasite Development and Infectivity. PLoS Pathogens, 2008, 4, e1000195.	4.7	191
31	Regulation of Sexual Development of Plasmodium by Translational Repression. Science, 2006, 313, 667-669.	12.6	407
32	High efficiency transfection of Plasmodium berghei facilitates novel selection procedures. Molecular and Biochemical Parasitology, 2006, 145, 60-70.	1.1	426
33	Proteome Analysis of Separated Male and Female Gametocytes Reveals Novel Sex-Specific Plasmodium Biology. Cell, 2005, 121, 675-687.	28.9	336
34	A functionally atypical amidating enzyme from the human parasite Schistosoma mansoni. FASEB Journal, 2004, 18, 114-121.	0.5	36
35	Gene organization and expression of a neuropeptide Y homolog from the land planarianArthurdendyus triangulatus. Journal of Comparative Neurology, 2002, 454, 58-64.	1.6	21
36	Monogenean neuromusculature: some structural and functional correlates. International Journal for Parasitology, 1998, 28, 1609-1623.	3.1	29