## Patrick Henaff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4878463/publications.pdf Version: 2024-02-01



DATDICK HENAER

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots. Biological Cybernetics, 2014, 108, 291-303.                                                           | 1.3 | 75        |
| 2  | Robot-Based Motor Rehabilitation in Autism: A Systematic Review. International Journal of Social<br>Robotics, 2019, 11, 753-764.                                                  | 4.6 | 24        |
| 3  | On the Role of Sensory Feedbacks in Rowat–Selverston CPG to Improve Robot Legged Locomotion.<br>Frontiers in Neurorobotics, 2010, 4, 113.                                         | 2.8 | 21        |
| 4  | Measurement and analysis of physical parameters of the handshake between two persons according to simple social contexts. , 2016, , .                                             |     | 17        |
| 5  | Hebbian Plasticity in CPG Controllers Facilitates Self-Synchronization for Human-Robot Handshaking.<br>Frontiers in Neurorobotics, 2018, 12, 29.                                  | 2.8 | 17        |
| 6  | Real time implementation of CTRNN and BPTT algorithm to learn on-line biped robot balance:<br>Experiments on the standing posture. Control Engineering Practice, 2011, 19, 89-99. | 5.5 | 13        |
| 7  | A Study of Adaptive Locomotive Behaviors of a Biped Robot: Patterns Generation and Classification.<br>Lecture Notes in Computer Science, 2010, , 313-324.                         | 1.3 | 12        |
| 8  | Sensor network architecture to measure characteristics of a handshake between humans. , 2014, , .                                                                                 |     | 12        |
| 9  | Gas Storage Valuation and Hedging: A Quantification of Model Risk. International Journal of Financial<br>Studies, 2018, 6, 27.                                                    | 2.3 | 11        |
| 10 | Bio-inspired plastic controller for a robot arm to shake hand with human. , 2016, , .                                                                                             |     | 8         |
| 11 | Physical Analysis of Handshaking Between Humans: Mutual Synchronisation and Social Context.<br>International Journal of Social Robotics, 2019, 11, 541-554.                       | 4.6 | 8         |
| 12 | MUSCLE EMULATION WITH DC MOTOR AND NEURAL NETWORKS FOR BIPED ROBOTS. International Journal of Neural Systems, 2010, 20, 341-353.                                                  | 5.2 | 7         |
| 13 | Experience-based learning mechanism for neural controller adaptation: Application to walking biped robots. , 2009, , .                                                            |     | 6         |
| 14 | Integration of a collaborative robot in a hard steel industrial environment. , 2018, , .                                                                                          |     | 6         |
| 15 | Comparative study of forced oscillators for the adaptive generation of rhythmic movements in robot controllers. Biological Cybernetics, 2019, 113, 547-560.                       | 1.3 | 6         |
| 16 | Electronic hardware design of a low cost tactile sensor device for physical human-robot interactions. , 2013, , .                                                                 |     | 5         |
| 17 | CPG-based Controllers can Generate Both Discrete and Rhythmic Movements. , 2018, , .                                                                                              |     | 5         |
| 18 | Closed-loop Central Pattern Generator Control of Human Gaits in OpenSim Simulator. , 2019, , .                                                                                    |     | 5         |

Closed-loop Central Pattern Generator Control of Human Gaits in OpenSim Simulator. , 2019, , . 18

2

PATRICK HENAFF

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Analysis of a handshake between humans using wavelet transforms. , 2015, , .                                                                                                            |     | 3         |
| 20 | Muscle‣ike Compliance in Knee Articulations Improves Biped Robot Walkings. , 0, , .                                                                                                     |     | 3         |
| 21 | CPG-based Controllers can Trigger the Emergence of Social Synchrony in Human-Robot Interactions. ,<br>2018, , .                                                                         |     | 3         |
| 22 | The Sound of Actuators: Disturbance in Human - Robot Interactions?. , 2019, , .                                                                                                         |     | 3         |
| 23 | CPG-based circuitry for controlling musculoskeletal model of human locomotor system. , 2017, , .                                                                                        |     | 2         |
| 24 | Increasing Capacity of Association Memory by Means of Synaptic Clustering. Neural Processing Letters, 2019, 50, 2717-2730.                                                              | 3.2 | 2         |
| 25 | Non-invasive low cost method for linear and angular accelerations measurement in biped locomotion mechanisms. , 2011, , .                                                               |     | 1         |
| 26 | Simulation of Spinal Muscle Control in Human Gait Using OpenSim. IEEE Transactions on Medical<br>Robotics and Bionics, 2022, 4, 254-265.                                                | 3.2 | 1         |
| 27 | Keynote III. Procedia Computer Science, 2017, 116, 10.                                                                                                                                  | 2.0 | 0         |
| 28 | Neuro-musculoskeletal simulator of human rhythmic movements. , 2017, , .                                                                                                                |     | 0         |
| 29 | Motor Coordination Learning for Rhythmic Movements. , 2019, , .                                                                                                                         |     | 0         |
| 30 | Étude sur l'intérêt des modèles biologiques de réseaux de neurones pour la synthèse de rythmes<br>locomoteurs adaptatifs. Journal Europeen Des Systemes Automatises, 2007, 41, 413-436. | 0.4 | 0         |
| 31 | Estimation of Imaginary Movements Quality Based on Machine Learning for Brain Computer Interface<br>Applications. MA¬krosistemi, ElektronA¬ka Ta Akustika, 2018, 23, 25-31.             | 0.1 | 0         |