List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4878394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental study of the effect of various collision angles and critical conditions on marine engine's twin-spray collision process. International Journal of Engine Research, 2023, 24, 999-1015.	2.3	1
2	Experimental investigations of aviation kerosene spray in different ambient conditions with various nozzle diameters and injection pressures. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2023, 237, 440-454.	1.9	2
3	A comparative study on alcohol-diesel blended fuels in a common rail diesel engine: Combined effects of carbon numbers, oxygen content, and molecular structure. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2022, 236, 124-136.	1.4	0
4	A detailed study on the micro-explosion of burning iron particles in hot oxidizing environments. Combustion and Flame, 2022, 238, 111755.	5.2	21
5	Impacts of gasoline fuel components on GDI engine performances: Part 1, influence on gaseous toxic pollutants. Fuel, 2022, 310, 122423.	6.4	2
6	Performance, Combustion, and Emission Evaluation of Ethanol-Gasoline Blends Ignited by Diesel in Dual-Fuel Intelligent Charge Compression Ignition (ICCI) Engine. Journal of Energy Resources Technology, Transactions of the ASME, 2022, 144, .	2.3	10
7	Parametric study on dual-fuel ignition characteristics under marine engine-relevant conditions. Fuel, 2022, 311, 122611.	6.4	3
8	Potential of EGR and intake heating for load extension using gasoline-ethanol blends as low reactivity fuel in an intelligent charge compression ignition engine. Fuel, 2022, 314, 122785.	6.4	6
9	Construction of a skeletal multi-component diesel surrogate model by integrating chemical lumping and genetic algorithm. Fuel, 2022, 313, 122711.	6.4	10
10	Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion - Part ΙΙ: A system optimization at low load. Energy, 2022, 241, 122886.	8.8	6
11	Experimental study on spray diffusion characteristics at various biodiesel-butanol blended ratios and ambient conditions. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2022, 236, 840-852.	1.4	1
12	Intelligent charge compression ignition combustion for range extender medium duty applications. Renewable Energy, 2022, 187, 671-687.	8.9	1
13	Characterizing the role of fuel injection strategies on performance, combustion, and emissions in in intelligent charge compression ignition (ICCI) mode. Applied Thermal Engineering, 2022, 207, 118169.	6.0	6
14	Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion – Part â…: Characteristics from medium to high load. Energy, 2022, 246, 123414.	8.8	7
15	Effects of injection strategies coupled with gasoline-hydrogenated catalytic biodiesel blends on combustion and emission characteristics in GCI engine under low loads. Fuel, 2022, 317, 123490.	6.4	4
16	Ignition and combustion behavior of single micron-sized iron particle in hot gas flow. Combustion and Flame, 2022, 241, 112099.	5.2	22
17	Experimental Investigation on Spray Evaporation and Dispersion Characteristics of Impinged Biodiesel-Butanol Blends. Journal of Engineering for Gas Turbines and Power, 2022, 144, .	1.1	3
18	Experimental study of axial spark location effects on transient flame/flow dynamics during ignition in a kerosene-fueled gas turbine model combustor. Fuel, 2022, 323, 124336.	6.4	0

#	Article	IF	CITATIONS
19	Application of methanol and optimization of mixture design over the full operating map in an intelligent charge compression ignition (ICCI) engine. Fuel Processing Technology, 2022, 234, 107345.	7.2	8
20	Construction of surrogate fuels for lower freezing point diesels based on component and functional groups analysis. Fuel Processing Technology, 2022, 235, 107359.	7.2	2
21	Experimental study of butanol/biodiesel dual-fuel combustion in intelligent charge compression ignition (ICCI) mode: A systematic analysis at low load. Fuel, 2021, 287, 119523.	6.4	25
22	An experimental study of the injection strategies on engine performance of the butanol/biodiesel dual-fuel Intelligent Charge Compression Ignition mode. International Journal of Engine Research, 2021, 22, 3219-3232.	2.3	6
23	Gasoline-diesel dual fuel intelligent charge compression ignition (ICCI) combustion: Conceptual model and comparison with other advanced combustion modes. Science China Technological Sciences, 2021, 64, 719-728.	4.0	24
24	A methodology for stratified-charge preparation via low-reactivity fuel multi-injection strategy in intelligent charge compression ignition (ICCI) mode. Fuel, 2021, 289, 119751.	6.4	10
25	Impact of small-amount diesel addition on methane ignition behind reflected shock waves: Experiments and modeling. Fuel, 2021, 288, 119672.	6.4	3
26	Co-effects of fuel research octane number and ethanol injection ratio on dual-fuel spark-ignition engine. International Journal of Engine Research, 2021, 22, 456-467.	2.3	3
27	Experimental study on spray characteristics of six-component diesel surrogate fuel under sub/trans/supercritical conditions with different injection pressures. Energy, 2021, 218, 119474.	8.8	23
28	Clustering-based particle detection method for digital holography to detect the three-dimensional location and in-plane size of particles. Measurement Science and Technology, 2021, 32, 055205.	2.6	27
29	Experimental and modeling study of the autoignition for diesel and n-alcohol blends from ethanol to n-pentanol in shock tube and rapid compression machine. Combustion and Flame, 2021, 227, 296-308.	5.2	17
30	Auto-ignition characteristics of a near-term light surrogate fuel for marine diesel: An experimental and modeling study. Combustion and Flame, 2021, 228, 302-314.	5.2	1
31	Autoignition behavior of methanol/diesel mixtures: Experiments and kinetic modeling. Combustion and Flame, 2021, 228, 1-12.	5.2	27
32	An experimental and modeling study of autoignition characteristics of two real low-octane gasoline fuels in a heated rapid compression machine at elevated pressures. Fuel, 2021, 295, 120645.	6.4	7
33	Ignition delay time measurements and kinetic modeling of methane/diesel mixtures at elevated pressures. Combustion and Flame, 2021, 229, 111390.	5.2	13
34	Development and validation of a detailed kinetic model for RP-3 aviation fuel based on a surrogate formulated by emulating macroscopic properties and microscopic structure. Combustion and Flame, 2021, 229, 111401.	5.2	17
35	Theoretical and Experimental Study of 3-Pentanol Autoignition: Ab Initio Calculation, Shock Tube Experiments, and Kinetic Modeling. Journal of Physical Chemistry A, 2021, 125, 5976-5989.	2.5	3
36	Effects of short chain aromatics in gasoline on GDI engine combustion and emissions. Fuel, 2021, 297, 120725.	6.4	9

#	Article	IF	CITATIONS
37	Quantification of the size, 3D location and velocity of burning iron particles in premixed methane flames using high-speed digital in-line holography. Combustion and Flame, 2021, 230, 111430.	5.2	22
38	Experimental study on diesel's twin injection and spray impingement characteristics under marine engine's conditions. Fuel, 2021, 302, 121133.	6.4	18
39	Experimental study on the application of bioethanol in dual-fuel intelligent charge compression ignition (ICCI) engine. Fuel, 2021, 303, 121181.	6.4	19
40	Experimental study on the application of n-butanol and n-butanol/kerosene blends as fuel for spark ignition aviation piston engine. Fuel, 2021, 304, 121362.	6.4	13
41	Experimental investigation on combustion and emission characteristics of butanol/biodiesel under blend fuel mode, dual fuel RCCI and ICCI modes. Fuel, 2021, 305, 121590.	6.4	26
42	Thermoacoustic Instability Characteristics and Flame/Flow Dynamics in a Multinozzle Lean Premixed Gas Turbine Model Combustor Operated with High Carbon Number Hydrocarbon Fuels. Energy & Fuels, 2021, 35, 1701-1714.	5.1	0
43	An experimental and modeling study of n-hexadecane autoignition under low-to-intermediate temperatures. Science China Technological Sciences, 2020, 63, 719-730.	4.0	8
44	Towards low emissions and high thermal efficiency of gasoline compression ignition engine under high loads by modulating the fuel reactivity and injection strategy. Science China Technological Sciences, 2020, 63, 96-104.	4.0	7
45	Experimental study on combustion stability characteristics in liquid-fueled gas turbine model combustor: Fuel sensitivities and flame/flow dynamics. Fuel, 2020, 265, 116973.	6.4	22
46	Experimental and kinetic study of diesel/gasoline surrogate blends over wide temperature and pressure. Combustion and Flame, 2020, 213, 369-381.	5.2	19
47	Effects of fuel reforming on large-bore low-speed two-stroke dual fuel marine engine combined with EGR and injection strategy. International Journal of Hydrogen Energy, 2020, 45, 29505-29517.	7.1	30
48	Dual fuel intelligent charge compression ignition (ICCI) combustion: Efficient and clean combustion technology for compression ignition engines. Fuel, 2020, 279, 118565.	6.4	45
49	Effects of n-heptane enrichment on in-cylinder thermochemical fuel reforming (TFR) characteristics and performances of spark ignition natural gas engine: A comparison with natural gas and methanol enrichment. Fuel, 2020, 271, 117531.	6.4	5
50	Low-temperature auto-ignition characteristics of NH3/diesel binary fuel: Ignition delay time measurement and kinetic analysis. Fuel, 2020, 281, 118761.	6.4	60
51	Experimental study the effect of injection strategies on combustion and emission characteristics in gasoline compression ignition engines using gasoline/hydrogenated catalytic biodiesel blends. Fuel, 2020, 278, 118156.	6.4	21
52	Control of intake boundary conditions for enabling clean combustion in variable engine conditions under intelligent charge compression ignition (ICCI) mode. Applied Energy, 2020, 274, 115297.	10.1	39
53	Experimental study on wide load operation of gasoline compression ignition engine: Real distillate gasoline versus primary reference fuel. Fuel, 2020, 277, 118211.	6.4	11
54	An experimental and modeling study of autoignition characteristics of butanol/diesel blends over wide temperature ranges. Combustion and Flame, 2020, 217, 175-187.	5.2	11

#	Article	IF	CITATIONS
55	Improvement of combustion performance and emissions in a gasoline direct injection (GDI) engine by modulation of fuel volatility. Fuel, 2020, 268, 117369.	6.4	19
56	The experimental study of autoignition of tetralin at intermediate-to-high temperatures. Fuel, 2020, 266, 117081.	6.4	10
57	Autoignition study of methyl decanoate using a rapid compression machine. Fuel, 2020, 266, 117060.	6.4	10
58	Experimental investigation of direct injection dual fuel of n-butanol and biodiesel on Intelligent Charge Compression Ignition (ICCI) Combustion mode. Applied Energy, 2020, 266, 114884.	10.1	48
59	Coordination of fuel reactivity and injection timing to achieve highly efficient and stable gasoline compression ignition combustion in a wide load range. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234, 1840-1853.	1.9	5
60	Investigation of engine performance for alcohol/kerosene blends as in spark-ignition aviation piston engine. Applied Energy, 2020, 268, 114959.	10.1	24
61	Effects of fuel injection strategies on combustion and emissions of intelligent charge compression ignition (ICCI) mode fueled with methanol and biodiesel. Fuel, 2020, 274, 117851.	6.4	68
62	The effect of ammonia addition on the low-temperature autoignition of n-heptane: An experimental and modeling study. Combustion and Flame, 2020, 217, 4-11.	5.2	84
63	Experimental Study of Premixed-Charge Compression Ignition Mode in Low Load Fueled With Butanol Isomers and Diesel Binary Fuels in a Common-Rail Diesel Engine. Journal of Energy Resources Technology, Transactions of the ASME, 2020, 142, .	2.3	4
64	Experimental and modeling study of the autoignition characteristics of commercial diesel under engine-relevant conditions. Proceedings of the Combustion Institute, 2019, 37, 4805-4812.	3.9	35
65	A comprehensive study of fuel reactivity on reactivity controlled compression ignition engine: Based on gasoline and diesel surrogates. Fuel, 2019, 255, 115822.	6.4	16
66	Comparison of four butanol isomers blended with diesel on particulate matter emissions in a common rail diesel engine. Journal of Aerosol Science, 2019, 137, 105434.	3.8	18
67	Surrogate fuels for RP-3 kerosene formulated by emulating molecular structures, functional groups, physical and chemical properties. Combustion and Flame, 2019, 208, 388-401.	5.2	48
68	The autoignition of iso-dodecane in low to high temperature range: An experimental and modeling study. Combustion and Flame, 2019, 210, 222-235.	5.2	15
69	Experimental study of combustion and emission characteristics of gasoline compression ignition (GCI) engines fueled by gasoline-hydrogenated catalytic biodiesel blends. Energy, 2019, 187, 115931.	8.8	27
70	Gas-phase autoignition of diesel/gasoline blends over wide temperature and pressure in heated shock tube and rapid compression machine. Combustion and Flame, 2019, 201, 264-275.	5.2	44
71	Engine performance and octane on demand studies of a dual fuel spark ignition engine with ethanol/gasoline surrogates as fuel. Energy Conversion and Management, 2019, 183, 296-306.	9.2	44
72	Experimental and modeling validation of a large diesel surrogate: Autoignition in heated rapid compression machine and oxidation in flow reactor. Combustion and Flame, 2019, 202, 195-207.	5.2	29

#	Article	IF	CITATIONS
73	Achieving high efficient gasoline compression ignition (GCI) combustion through the cooperative-control of fuel octane number and air intake conditions. Fuel, 2019, 242, 23-34.	6.4	42
74	An investigation on gasoline compression ignition (GCI) combustion in a heavy-duty diesel engine using gasoline/hydrogenated catalytic biodiesel blends. Applied Thermal Engineering, 2019, 160, 113952.	6.0	34
75	Combustion and emission characteristics of gasoline/hydrogenated catalytic biodiesel blends in gasoline compression ignition engines under different loads of double injection strategies. Applied Energy, 2019, 251, 113296.	10.1	39
76	Effects of natural gas, ethanol, and methanol enrichment on the performance of in-cylinder thermochemical fuel reforming (TFR) spark-ignition natural gas engine. Applied Thermal Engineering, 2019, 159, 113913.	6.0	20
77	Exploration of chemical composition effects on the autoignition of two commercial diesels: Rapid compression machine experiments and model simulation. Combustion and Flame, 2019, 204, 204-219.	5.2	29
78	Combustion and regulated/unregulated emissions of a direct injection spark ignition engine fueled with C3-C5 alcohol/gasoline surrogate blends. Energy, 2019, 174, 779-791.	8.8	22
79	Optimizing gasoline compression ignition engine performance and emissions: Combined effects of exhaust gas recirculation and fuel octane number. Applied Thermal Engineering, 2019, 153, 669-677.	6.0	41
80	Surrogate Formulation for Marine Diesel Considering Some Important Fuel Physical–Chemical Properties. Energy & Fuels, 2019, 33, 3539-3550.	5.1	11
81	A study on the low-to-intermediate temperature ignition delays of long chain branched paraffin: Iso-cetane. Proceedings of the Combustion Institute, 2019, 37, 631-638.	3.9	31
82	Experimental studies on the key parameters controlling the combustion and emission in premixed charge compression ignition concept based on diesel surrogates. Applied Energy, 2019, 235, 233-246.	10.1	36
83	Principles of non-intrusive diagnostic techniques and their applications for fundamental studies of combustion instabilities in gas turbine combustors: A brief review. Aerospace Science and Technology, 2019, 84, 585-603.	4.8	96
84	Review of the state-of-the-art of particulate matter emissions from modern gasoline fueled engines. Applied Energy, 2019, 238, 1269-1298.	10.1	125
85	A new methodology for diesel surrogate fuel formulation: Bridging fuel fundamental properties and real engine combustion characteristics. Energy, 2018, 148, 424-447.	8.8	76
86	Experimental studies on the combustion and particulate matter emission characteristics of biodiesel surrogate component/diesel. Applied Thermal Engineering, 2018, 131, 565-575.	6.0	10
87	Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system. Applied Energy, 2018, 230, 287-304.	10.1	94
88	Ignition delay times of decalin over low-to-intermediate temperature ranges: Rapid compression machine measurement and modeling study. Combustion and Flame, 2018, 196, 160-173.	5.2	41
89	Experimental studies on the co-effects of engine operating parameters and fuel functional groups on the performance and emissions of a GDI engine. Applied Thermal Engineering, 2018, 140, 707-715.	6.0	12
90	Combustion and emission behavior of N-propanol as partially alternative fuel in a direct injection spark ignition engine. Applied Thermal Engineering, 2018, 144, 126-136.	6.0	26

#	Article	IF	CITATIONS
91	Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoline surrogates. Energy, 2018, 157, 173-187.	8.8	36
92	Effects of the variation in diesel fuel components on the particulate matter and unregulated gaseous emissions from a common rail diesel engine. Fuel, 2018, 232, 279-289.	6.4	28
93	Experimental investigation of the combustion characteristics and the emission characteristics of biogas–diesel dual fuel in a common-rail diesel engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017, 231, 1900-1912.	1.9	3
94	Effects of different aromatics blended with diesel on combustion and emission characteristics with a common rail diesel engine. Applied Thermal Engineering, 2017, 125, 1530-1538.	6.0	44
95	Particulate matter emission characteristics of a reactivity controlled compression ignition engine fueled with biogas/diesel dual fuel. Journal of Aerosol Science, 2017, 113, 166-177.	3.8	29
96	Review of the state-of-the-art of biogas combustion mechanisms and applications in internal combustion engines. Renewable and Sustainable Energy Reviews, 2017, 69, 50-58.	16.4	111
97	Effects of EGR rate and hydrogen/carbon monoxide ratio on combustion and emission characteristics of biogas/diesel dual fuel combustion engine. Fuel, 2016, 181, 1050-1057.	6.4	83
98	Modulated diesel fuel injection strategy for efficient-clean utilization of low-grade biogas. Applied Thermal Engineering, 2016, 107, 844-852.	6.0	29
99	Octane rating effects of direct injection fuels on dual fuel HCCI-DI stratified combustion mode with port injection of n-heptane. Energy, 2016, 111, 1003-1016.	8.8	33
100	Enabling dual fuel sequential combustion using port fuel injection of high reactivity fuel combined with direct injection of low reactivity fuels. Applied Thermal Engineering, 2016, 103, 399-410.	6.0	22
101	Experimental studies on combustion and emissions of RCCI (reactivity controlled compression) Tj ETQq1 1 0.78	4314.rgBT 8.8	/Overlock 10 104
102	Experimental studies on combustion and emissions of RCCI fueled with n-heptane/alcohols fuels. Fuel, 2015, 162, 239-250.	6.4	64
103	Effects of direct injection timing and premixed ratio on combustion and emissions characteristics of RCCI (Reactivity Controlled Compression Ignition) with N-heptane/gasoline-like fuels. Energy, 2015, 93, 383-392.	8.8	50
104	Recent progress in the development of biofuel 2,5-dimethylfuran. Renewable and Sustainable Energy Reviews, 2015, 41, 633-646.	16.4	162
105	Polyethylene glycol–polylactic acid nanoparticles modified with cysteine–arginine–glutamic acid–lysine–alanine fibrin-homing peptide for glioblastoma therapy by enhanced retention effect. International Journal of Nanomedicine, 2014, 9, 5261.	6.7	20
106	Experimental study on compound HCCI (homogenous charge compression ignition) combustion fueled with gasoline and diesel blends. Energy, 2014, 64, 707-718.	8.8	78
107	Autoignition of butanol isomers/n-heptane blend fuels on a rapid compression machine in N2/O2/Ar mixtures. Science China Technological Sciences, 2014, 57, 461-470.	4.0	16
108	Effects of Iso-Alkanes as Surrogate Components Blending in Diesel Fuel on the Combustion Process		6

and Emission Characters. , 0, , .

#	Article	IF	CITATIONS
109	Experimental Investigation of Injection Strategies to Improve Intelligent Charge Compression Ignition (ICCI) Combustion with Methanol and Biodiesel Direct Injection. , 0, , .		6
110	Exploring the Effects of the Key Multi-Injection Parameters on Combustion and Emissions in Intelligent Charge Compression Ignition (ICCI) Mode. SAE International Journal of Advances and Current Practices in Mobility, 0, 3, 187-196.	2.0	1