Angela Hodge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4876288/publications.pdf Version: 2024-02-01

ANCELA HODCE

#	Article	IF	CITATIONS
1	Swimming, gliding, or hyphal riding? On microbial migration along the arbuscular mycorrhizal hyphal highway and functional consequences thereof. New Phytologist, 2021, 230, 14-16.	7.3	22
2	Aphids Influence Soil Fungal Communities in Conventional Agricultural Systems. Frontiers in Plant Science, 2019, 10, 895.	3.6	17
3	Contrasting Nitrogen Fertilisation Rates Alter Mycorrhizal Contribution to Barley Nutrition in a Field Trial. Frontiers in Plant Science, 2019, 10, 1312.	3.6	27
4	Aphids can acquire the nitrogen delivered to plants by arbuscular mycorrhizal fungi. Functional Ecology, 2019, 33, 576-586.	3.6	19
5	Arbuscular Mycorrhizal Fungi and Plant Chemical Defence: Effects of Colonisation on Aboveground and Belowground Metabolomes. Journal of Chemical Ecology, 2018, 44, 198-208.	1.8	79
6	Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N ₂ O hotspots. New Phytologist, 2018, 220, 1285-1295.	7.3	113
7	Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphateâ€solubilizing bacterium. New Phytologist, 2016, 210, 1022-1032.	7.3	265
8	Resolving the â€~nitrogen paradox' of <i>arbuscular mycorrhizas</i> : fertilization with organic matter brings considerable benefits for plant nutrition and growth. Plant, Cell and Environment, 2016, 39, 1683-1690.	5.7	122
9	Fishing for nutrients in heterogeneous landscapes: modelling plant growth trade-offs in monocultures and mixed communities. AoB PLANTS, 2015, 7, .	2.3	4
10	Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant and Soil, 2015, 386, 1-19.	3.7	369
11	Phosphate Concentration and Arbuscular Mycorrhizal Colonisation Influence the Growth, Yield and Expression of Twelve PHT1 Family Phosphate Transporters in Foxtail Millet (Setaria italica). PLoS ONE, 2014, 9, e108459.	2.5	84
12	Interactions Between Arbuscular Mycorrhizal Fungi and Organic Material Substrates. Advances in Applied Microbiology, 2014, 89, 47-99.	2.4	57
13	The direct response of the external mycelium of arbuscular mycorrhizal fungi to temperature and the implications for nutrient transfer. Soil Biology and Biochemistry, 2014, 78, 109-117.	8.8	42
14	Microbial mediation of plant competition and community structure. Functional Ecology, 2013, 27, 865-875.	3.6	133
15	An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environmental Microbiology, 2013, 15, 1870-1881.	3.8	288
16	Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition. FEMS Microbiology Ecology, 2012, 80, 236-247.	2.7	207
17	Optimal root proliferation strategies: the roles of nutrient heterogeneity, competition and mycorrhizal networks. Plant and Soil, 2012, 351, 191-206.	3.7	26
18	Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13754-13759.	7.1	554

Angela Hodge

#	Article	IF	CITATIONS
19	Plant root growth, architecture and function. Plant and Soil, 2009, 321, 153-187.	3.7	573
20	Root decisions. Plant, Cell and Environment, 2009, 32, 628-640.	5.7	253
21	Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytologist, 2009, 181, 199-207.	7.3	387
22	Temperature dependence of respiration in roots colonized by arbuscular mycorrhizal fungi. New Phytologist, 2009, 182, 188-199.	7.3	38
23	Mycorrhizal respiration: implications for global scaling relationships. Trends in Plant Science, 2008, 13, 583-588.	8.8	65
24	Temporal changes in local spatial structure of late-successional species: establishment of an Andean caulescent rosette plant. Journal of Ecology, 2004, 92, 122-131.	4.0	11
25	The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 2004, 162, 9-24.	7.3	1,392
26	Plant and mycorrhizal regulation of rhizodeposition. New Phytologist, 2004, 163, 459-480.	7.3	1,129
27	Plant nitrogen capture from organic matter as affected by spatial dispersion, interspecific competition and mycorrhizal colonization. New Phytologist, 2003, 157, 303-314.	7.3	122
28	Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. New Phytologist, 2001, 151, 725-734.	7.3	114
29	An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 2001, 413, 297-299.	27.8	945
30	Microbial ecology of the arbuscular mycorrhiza. FEMS Microbiology Ecology, 2000, 32, 91-96.	2.7	4
31	Plant root proliferation in nitrogen–rich patches confers competitive advantage. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 431-435.	2.6	293