
Anissa Gamble

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4874693/publications.pdf Version: 2024-02-01

ANUSSA CAMPLE

#	Article	IF	CITATIONS
1	Virtual Primary Care Implementation During COVID-19 in High-Income Countries: A Scoping Review. Telemedicine Journal and E-Health, 2022, 28, 920-931.	2.8	16
2	Pancreatic islet transplantation in type 1 diabetes: 20-year experience from a single-centre cohort in Canada. Lancet Diabetes and Endocrinology,the, 2022, 10, 519-532.	11.4	65
3	Phase 3 trial of human islet-after-kidney transplantation in type 1 diabetes. American Journal of Transplantation, 2021, 21, 1477-1492.	4.7	64
4	Progress in Translational Regulatory T Cell Therapies for Type 1 Diabetes and Islet Transplantation. Endocrine Reviews, 2021, 42, 198-218.	20.1	22
5	The Actual Operative Costs of Liver Transplantation and Normothermic Machine Perfusion in a Canadian Setting. PharmacoEconomics - Open, 2021, 5, 311-318.	1.8	15
6	Perioperative Outcomes Following Kidney-Pancreas Transplantation in Alberta, Canada: Research Letter. Canadian Journal of Kidney Health and Disease, 2021, 8, 205435812110293.	1.1	1
7	Liver Transplantation in Locally Unresectable, Undifferentiated Embryonal Cell Sarcoma. Transplantation Direct, 2021, 7, e654.	1.6	8
8	The Need for Ethnoracial Equity in Artificial Intelligence for Diabetes Management: Review and Recommendations. Journal of Medical Internet Research, 2021, 23, e22320.	4.3	20
9	Update on islet cell transplantation. Current Opinion in Organ Transplantation, 2021, 26, 397-404.	1.6	15
10	The Transition to Microsurgical Technique for Hepatic Artery Reconstruction in Pediatric Liver Transplantation. Plastic and Reconstructive Surgery, 2021, 148, 248e-257e.	1.4	4
11	Total pancreatectomy with islet cell autotransplantation in a 2-year-old child with hereditary pancreatitis due to a PRSS1 mutation. American Journal of Transplantation, 2021, 21, 3790-3793.	4.7	5
12	Glucose metabolism and pyruvate carboxylase enhance glutathione synthesis and restrict oxidative stress in pancreatic islets. Cell Reports, 2021, 37, 110037.	6.4	21
13	Tumor necrosis factor receptor superfamily member 25 (TNFRSF25) agonists in islet transplantation: Endogenous in vivo regulatory T cell expansion promotes prolonged allograft survival. American Journal of Transplantation, 2021, , .	4.7	11
14	Insulin expression and C-peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device. Cell Reports Medicine, 2021, 2, 100466.	6.5	126
15	Preclinical models of acute liver failure: a comprehensive review. PeerJ, 2021, 9, e12579.	2.0	11
16	Glucose-dependent partitioning of arginine to the urea cycle protects β-cells from inflammation. Nature Metabolism, 2020, 2, 432-446.	11.9	27
17	Normothermic Preservation of Liver – What Does the Future Hold?. Advances in Experimental Medicine and Biology, 2020, 1288, 13-31.	1.6	3
18	The Challenges of COVID-19 for People Living With Diabetes: Considerations for Digital Health. JMIR Diabetes, 2020, 5, e19581.	1.9	18

#	Article	IF	CITATIONS
19	Avoiding initial hypothermia does not improve liver graft quality in a porcine donation after circulatory death (DCD) model of normothermic perfusion. PLoS ONE, 2019, 14, e0220786.	2.5	6
20	Intraoperative continuous renal replacement therapy during liver transplantation: a pilot randomized-controlled trial (INCEPTION). Canadian Journal of Anaesthesia, 2019, 66, 1151-1161.	1.6	20
21	Transient Cold Storage Prior to Normothermic Liver Perfusion May Facilitate Adoption of a Novel Technology. Liver Transplantation, 2019, 25, 1503-1513.	2.4	63
22	Clearance of transaminases during normothermic ex situ liver perfusion. PLoS ONE, 2019, 14, e0215619.	2.5	17
23	Induction of Expandable Tissue-Specific Progenitor Cells from Human Pancreatic Tissue through Transient Expression of Defined Factors. Molecular Therapy - Methods and Clinical Development, 2019, 13, 243-252.	4.1	9
24	A Backâ€ŧoâ€Base Experience of Human Normothermic Ex Situ Liver Perfusion: Does the Chill Kill?. Liver Transplantation, 2019, 25, 848-858.	2.4	54
25	HCV Eradication with Direct-Acting Antivirals Does Not Impact HCC Progression on the Waiting List or HCC Recurrence after Liver Transplantation. Canadian Journal of Gastroenterology and Hepatology, 2019, 2019, 1-12.	1.9	7
26	Pan-caspase inhibitor F573 mitigates liver ischemia reperfusion injury in a murine model. PLoS ONE, 2019, 14, e0224567.	2.5	6
27	BMX-001, a novel redox-active metalloporphyrin, improves islet function and engraftment in a murine transplant model. American Journal of Transplantation, 2018, 18, 1879-1889.	4.7	15
28	Gearing Up for Stem Cell-derived Beta Cells—Are We Ready?. Transplantation, 2018, 102, 1207-1208.	1.0	6
29	The journey of islet cell transplantation and future development. Islets, 2018, 10, 80-94.	1.8	126
30	Beta Cell Death by Cell-free DNA and Outcome After Clinical Islet Transplantation. Transplantation, 2018, 102, 978-985.	1.0	40
31	Neuronal PAS Domain Protein 4 Suppression of Oxygen Sensing Optimizes Metabolism during Excitation of Neuroendocrine Cells. Cell Reports, 2018, 22, 163-174.	6.4	19
32	Ex situ liver perfusion: Organ preservation into the future. Transplantation Reviews, 2018, 32, 132-141.	2.9	7
33	An engineered cell sheet composed of human islets and human fibroblast, bone marrow–derived mesenchymal stem cells, or adipose–derived mesenchymal stem cells: An in vitro comparison study. Islets, 2018, 10, e1445948.	1.8	17
34	Determination of Minimal Hemoglobin Level Necessary for Normothermic Porcine Ex Situ Liver Perfusion. Transplantation, 2018, 102, 1284-1292.	1.0	11
35	Improved islet recovery and efficacy through co-culture and co-transplantation of islets with human adipose-derived mesenchymal stem cells. PLoS ONE, 2018, 13, e0206449.	2.5	49
36	Systematic Review and Meta-Analysis on the Impact of Thrombolytic Therapy in Liver Transplantation Following Donation after Circulatory Death. Journal of Clinical Medicine, 2018, 7, 425.	2.4	16

#	Article	IF	CITATIONS
37	Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nature Communications, 2018, 9, 5068.	12.8	584
38	lslet transplantation in type 1 diabetes: moving forward. Lancet Diabetes and Endocrinology,the, 2018, 6, 516-517.	11.4	13
39	Comparison of metabolic responses to the mixed meal tolerance test vs the oral glucose tolerance test after successful clinical islet transplantation. Clinical Transplantation, 2018, 32, e13301.	1.6	5
40	Normothermic Ex Vivo Machine Perfusion for Liver Grafts Recovered from Donors after Circulatory Death: A Systematic Review and Meta-Analysis. HPB Surgery, 2018, 2018, 1-8.	2.2	19
41	Hepatic Epithelioid Hemangioendothelioma Presenting as an Enlarging Vascular Lesion within the Spleen. Case Reports in Transplantation, 2018, 2018, 1-3.	0.3	1
42	The Role of Normothermic Perfusion in Liver Transplantation (TRaNsIT Study): A Systematic Review of Preliminary Studies. HPB Surgery, 2018, 2018, 1-14.	2.2	29
43	Normothermic ex-vivo liver perfusion: where do we stand and where to reach?. Expert Review of Gastroenterology and Hepatology, 2018, 12, 1045-1058.	3.0	11
44	Postnatal Exocrine Pancreas Growth by Cellular Hypertrophy Correlates with a Shorter Lifespan in Mammals. Developmental Cell, 2018, 45, 726-737.e3.	7.0	32
45	Engraftment Site and Effectiveness of the Pan-Caspase Inhibitor F573 to Improve Engraftment in Mouse and Human Islet Transplantation in Mice. Transplantation, 2017, 101, 2321-2329.	1.0	20
46	Transplantation of Human Pancreatic Endoderm Cells Reverses Diabetes Post Transplantation in a Prevascularized Subcutaneous Site. Stem Cell Reports, 2017, 8, 1689-1700.	4.8	68
47	A case of double common bile duct in a deceased donor for transplantation. Surgical and Radiologic Anatomy, 2017, 39, 1409-1411.	1.2	4
48	Low energy X-ray (grenz ray) treatment of purified islets prior to allotransplant markedly decreases passenger leukocyte populations. Islets, 2017, 9, e1330742.	1.8	1
49	Clinical pancreatic islet transplantation. Nature Reviews Endocrinology, 2017, 13, 268-277.	9.6	525
50	Islet cells share promoter hypomethylation independently of expression, but exhibit cell-type–specific methylation in enhancers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13525-13530.	7.1	49
51	Insulinoma or non-insulinoma pancreatogenous hypoglycemia? A diagnostic dilemma. Journal of Surgical Case Reports, 2016, 2016, rjw188.	0.4	8
52	Harnessing the Foreign Body Reaction in Marginal Mass Device-less Subcutaneous Islet Transplantation in Mice. Transplantation, 2016, 100, 1474-1479.	1.0	36
53	Phase 3 Trial of Transplantation of Human Islets in Type 1 Diabetes Complicated by Severe Hypoglycemia. Diabetes Care, 2016, 39, 1230-1240.	8.6	498
54	National Institutes of Health–Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities. Diabetes, 2016, 65, 3418-3428.	0.6	143

#	Article	IF	CITATIONS
55	Clinical islet isolation and transplantation outcomes with deceased cardiac death donors are similar to neurological determination of death donors. Transplant International, 2016, 29, 34-40.	1.6	28
56	Photoacoustic imaging of angiogenesis in a subcutaneous islet transplant site in a murine model. Journal of Biomedical Optics, 2016, 21, 066003.	2.6	5
57	Diaphragmatic Hernia After Living Donor Right Hepatectomy: Proposal for a Screening Protocol. Transplantation Direct, 2016, 2, e84.	1.6	12
58	A novel redox-active metalloporphyrin reduces reactive oxygen species and inflammatory markers but does not improve marginal mass engraftment in a murine donation after circulatory death islet transplantation model. Islets, 2016, 8, e1190058.	1.8	13
59	Research-Focused Isolation of Human Islets From Donors With and Without Diabetes at the Alberta Diabetes Institute IsletCore. Endocrinology, 2016, 157, 560-569.	2.8	97
60	Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proceedings of the United States of America, 2016, 113, E1826-34.	7.1	492
61	p16Ink4a-induced senescence of pancreatic beta cells enhances insulin secretion. Nature Medicine, 2016, 22, 412-420.	30.7	252
62	Antiaging Glycopeptide Protects Human Islets Against Tacrolimus-Related Injury and Facilitates Engraftment in Mice. Diabetes, 2016, 65, 451-462.	0.6	23
63	Diabetes Is Reversed in a Murine Model by Marginal Mass Syngeneic Islet Transplantation Using a Subcutaneous Cell Pouch Device. Transplantation, 2015, 99, 2294-2300.	1.0	97
64	Islet-after-failed-pancreas and pancreas-after-failed islet transplantation: Two complementary rescue strategies to control diabetes. Islets, 2015, 7, e1126036.	1.8	12
65	Donor-specific Antibody in Pediatric Liver Transplantation—Identifying a Tree by Its Fruit. Transplantation, 2015, 99, 1314-1315.	1.0	1
66	Heterotopic Pancreas within the Proximal Hepatic Duct, Containing Intraductal Papillary Mucinous Neoplasm. Case Reports in Surgery, 2015, 2015, 1-4.	0.4	4
67	A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nature Biotechnology, 2015, 33, 518-523.	17.5	293
68	Research Productivity of Residents and Surgeons With Formal Research Training. Journal of Surgical Education, 2014, 71, 865-870.	2.5	35
69	Islet cell transplantation. Seminars in Pediatric Surgery, 2014, 23, 83-90.	1.1	29
70	Pancreas Versus Islets After a Successful Kidney Transplant. Current Transplantation Reports, 2014, 1, 124-135.	2.0	3
71	Glutathione Ethyl Ester Supplementation during Pancreatic Islet Isolation Improves Viability and Transplant Outcomes in a Murine Marginal Islet Mass Model. PLoS ONE, 2013, 8, e55288.	2.5	20
72	Update on Islet Transplantation. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a007823-a007823.	6.2	179

#	Article	IF	CITATIONS
73	Human Mesenchymal Stem Cells Protect Human Islets from Pro-Inflammatory Cytokines. PLoS ONE, 2012, 7, e38189.	2.5	112
74	Caspase Inhibitor IDN6556 Facilitates Marginal Mass Islet Engraftment in a Porcine Islet Autotransplant Model. Transplantation, 2012, 94, 30-35.	1.0	13
75	Insulin-Heparin Infusions Peritransplant Substantially Improve Single-Donor Clinical Islet Transplant Success. Transplantation, 2010, 89, 465-471.	1.0	108
76	The Caspase Selective Inhibitor EP1013 Augments Human Islet Graft Function and Longevity in Marginal Mass Islet Transplantation in Mice. Diabetes, 2008, 57, 1556-1566.	0.6	55
77	Caspase Inhibitor Therapy Enhances Marginal Mass Islet Graft Survival and Preserves Long-Term Function in Islet Transplantation. Diabetes, 2007, 56, 1289-1298.	0.6	64
78	The TIM Family of Cosignaling Receptors: Emerging Targets for the Regulation of Autoimmune Disease and Transplantation Tolerance. Cell Transplantation, 2007, 16, 977-986.	2.5	2
79	Factors Influencing the Loss of \hat{l}^2 -Cell Mass in Islet Transplantation. Cell Transplantation, 2007, 16, 1-8.	2.5	144
80	Factors influencing the loss of beta-cell mass in islet transplantation. Cell Transplantation, 2007, 16, 1-8.	2.5	57
81	Chemokines and Their Receptors in Islet Allograft Rejection and as Targets for Tolerance Induction. Cell Transplantation, 2006, 15, 295-309.	2.5	30
82	The Portal Immunosuppressive Storm. Therapeutic Drug Monitoring, 2005, 27, 35-37.	2.0	117
83	Five-Year Follow-Up After Clinical Islet Transplantation. Diabetes, 2005, 54, 2060-2069.	0.6	1,489
84	Endogenous Pancreatic Enzyme Activity Levels Show no Significant Effect on Human Islet Isolation Yield. Cell Transplantation, 2004, 13, 153-160.	2.5	26
85	Clinical islet transplant: current and future directions towards tolerance. Immunological Reviews, 2003, 196, 219-236.	6.0	73
86	Improvement of Pancreatic Islet Isolation Outcomes Using Glutamine Perfusion during Isolation Procedure. Cell Transplantation, 2003, 12, 877-881.	2.5	30
87	Defining optimal immunosuppression for islet transplantation based on reduced diabetogenicity in canine islet autografts. Transplantation, 2002, 74, 1522-1528.	1.0	27
88	Future Trends in Islet Cell Transplantation. Diabetes Technology and Therapeutics, 2000, 2, 449-452.	4.4	22