Jiyang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4874002/publications.pdf

Version: 2024-02-01

109321 118850 4,000 66 35 62 citations h-index g-index papers 66 66 66 3607 times ranked docs citations citing authors all docs

#	Article	IF	Citations
1	Synthesis of new zeolite structures. Chemical Society Reviews, 2015, 44, 7112-7127.	38.1	460
2	Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes. Science Advances, 2017, 3, e1603171.	10.3	286
3	[(C4H12N)2][Zn3(HPO3)4]: An Open-Framework Zinc Phosphite Containing Extra-Large 24-Ring Channels. Angewandte Chemie - International Edition, 2006, 45, 2546-2548.	13.8	156
4	A luminescent cadmium metal–organic framework for sensing of nitroaromatic explosives. Dalton Transactions, 2015, 44, 230-236.	3. 3	137
5	A novel photo- and hydrochromic europium metal–organic framework with good anion sensing properties. Journal of Materials Chemistry C, 2017, 5, 8999-9004.	5.5	133
6	Methylviologen-templated layered bimetal phosphate: a multifunctional X-ray-induced photochromic material. Chemical Science, 2014, 5, 4237-4241.	7.4	130
7	Thermally treated zeolitic imidazolate framework-8 (ZIF-8) for visible light photocatalytic degradation of gaseous formaldehyde. Chemical Science, 2020, 11, 6670-6681.	7.4	130
8	Red Room-Temperature Phosphorescence of CDs@Zeolite Composites Triggered by Heteroatoms in Zeolite Frameworks. ACS Central Science, 2019, 5, 349-356.	11.3	128
9	Carbon Dots in a Matrix: Energyâ€Transferâ€Enhanced Roomâ€Temperature Red Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 18443-18448.	13.8	125
10	Carbon Dotsâ€inâ€Matrix Boosting Intriguing Luminescence Properties and Applications. Small, 2019, 15, e1805504.	10.0	124
11	Methyl viologen-templated zinc gallophosphate zeolitic material with dual photo-/thermochromism and tuneable photovoltaic activity. Chemical Science, 2015, 6, 2922-2927.	7.4	104
12	Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence. Chemical Science, 2016, 7, 3564-3568.	7.4	99
13	Cotemplating Ionothermal Synthesis of a New Open-Framework Aluminophosphate with Unique Al/P Ratio of 6/7. Chemistry of Materials, 2008, 20, 4179-4181.	6.7	94
14	Carbon Dots in Porous Materials: Host–Guest Synergy for Enhanced Performance. Angewandte Chemie - International Edition, 2020, 59, 19390-19402.	13.8	94
15	Luminescent carbon dots in a new magnesium aluminophosphate zeolite. Chemical Communications, 2013, 49, 9006.	4.1	93
16	Template-Modulated Afterglow of Carbon Dots in Zeolites: Room-Temperature Phosphorescence and Thermally Activated Delayed Fluorescence., 2019, 1, 58-63.		92
17	Multifunctional open-framework zinc phosphate C12H14N2 [Zn6(PO4)4(HPO4)(H2O)2]: photochromic, photoelectric and fluorescent properties. Chemical Communications, 2013, 49, 4995.	4.1	91
18	Metal–organic frameworks based on bipyridinium carboxylate: photochromism and selective vapochromism. Journal of Materials Chemistry C, 2017, 5, 2084-2089.	5 . 5	81

#	Article	IF	CITATIONS
19	Ultrastable Perovskite–Zeolite Composite Enabled by Encapsulation and Inâ€Situ Passivation. Angewandte Chemie - International Edition, 2020, 59, 23100-23106.	13.8	7 5
20	A new methylviologen-templated zinc gallophosphate zeolite with photo-/thermochromism, fluorescent and photoelectric properties. Inorganic Chemistry Frontiers, 2016, 3, 541-546.	6.0	72
21	A Zwitterionic Ligandâ€Based Cationic Metalâ€Organic Framework for Rapidly Selective Dye Capture and Highly Efficient Cr ₂ O ₇ ^{2â^³} Removal. Chemistry - A European Journal, 2018, 24, 2718-2724.	3.3	69
22	Polyoxomolybdic Cobalt Encapsulated within Zr-Based Metal–Organic Frameworks as Efficient Heterogeneous Catalysts for Olefins Epoxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 3624-3631.	6.7	67
23	A Germanate Built from a 6 ⁸ 12 ⁶ Cavity Cotemplated by an (H ₂ O) ₁₆ Cluster and 2â€Methylpiperazine. Angewandte Chemie - International Edition, 2008, 47, 7868-7871.	13.8	66
24	Photochromic Terbium Phosphonates with Photomodulated Luminescence and Metal Ion Sensitive Detection. Chemistry - A European Journal, 2016, 22, 15451-15457.	3.3	63
25	Novel photo- and/or thermochromic MOFs derived from bipyridinium carboxylate ligands. Inorganic Chemistry Frontiers, 2016, 3, 814-820.	6.0	59
26	Facile synthesis of CDs@ZIF-8 nanocomposites as excellent peroxidase mimics for colorimetric detection of H2O2 and glutathione. Sensors and Actuators B: Chemical, 2021, 329, 129115.	7.8	58
27	2H3O·[Co8(HPO3)9(CH3OH)3]·2H2O: An Open-Framework Cobalt Phosphite Containing Extra-Large 18-Ring Channels. Chemistry of Materials, 2008, 20, 17-19.	6.7	57
28	Zeolite-confined carbon dots: tuning thermally activated delayed fluorescence emission <i>via</i> energy transfer. Materials Chemistry Frontiers, 2020, 4, 1404-1410.	5.9	57
29	[Ni(1,2-PDA) ₃] ₂ (HOCH ₂ CH ₂ CH ₂ CH ₂ NH ₃ <td>ub>)_{ 6.7}</td> <td>•3(H 56</td>	ub>) _{ 6.7}	•3(H 56
30	High proton conduction in a new alkali metal-templated open-framework aluminophosphate. Chemical Communications, 2015, 51, 9317-9319.	4.1	54
31	Blue photoluminescent carbon nanodots prepared from zeolite as efficient sensors for picric acid detection. Sensors and Actuators B: Chemical, 2017, 253, 911-917.	7.8	51
32	Carbon Dots-in-Zeolite via In-Situ Solvent-Free Thermal Crystallization: Achieving High-Efficiency and Ultralong Afterglow Dual Emission. CCS Chemistry, 2020, 2, 118-127.	7.8	50
33	Water Stable Metal–Organic Framework Based on Phosphono-containing Ligand as Highly Sensitive Luminescent Sensor toward Metal Ions. Crystal Growth and Design, 2018, 18, 7683-7689.	3.0	47
34	Carbon Dotsâ€inâ€EuAPOâ€5 Zeolite: Tripleâ€Emission for Multilevel Luminescence Antiâ€Counterfeiting. Small, 2021, 17, e2103374.	10.0	47
35	Organotemplate-free synthesis of an open-framework magnesium aluminophosphate with proton conduction properties. Chemical Communications, 2015, 51, 2149-2151.	4.1	38
36	Carbon nanodots in ZIF-8: synthesis, tunable luminescence and temperature sensing. Inorganic Chemistry Frontiers, 2018, 5, 2739-2745.	6.0	38

#	Article	IF	CITATIONS
37	CNDs@zeolite: new room-temperature phosphorescent materials derived by pyrolysis of organo-templated zeolites. Journal of Materials Chemistry C, 2017, 5, 10894-10899.	5 . 5	30
38	Metal-Organic framework-based Wood Aerogel for Effective Removal of Micro/Nano plastics. Chemical Research in Chinese Universities, 2022, 38, 186-191.	2.6	27
39	A new two-dimensional layered germanate with <i>in situ</i> embedded carbon dots for optical temperature sensing. Inorganic Chemistry Frontiers, 2018, 5, 139-144.	6.0	25
40	Self-assembled three-dimensional hierarchical CoMoO4 nanosheets on NiCo2O4 for high-performance supercapacitor. Journal of Alloys and Compounds, 2019, 793, 418-424.	5.5	25
41	Photoluminescent chiral carbon dots derived from glutamine. Chinese Chemical Letters, 2021, 32, 3916-3920.	9.0	25
42	Carbon Dots in a Matrix: Energyâ€Transferâ€Enhanced Roomâ€Temperature Red Phosphorescence. Angewandte Chemie, 2019, 131, 18614-18619.	2.0	23
43	Zeolite-Enhanced Sustainable Pd-Catalyzed C–C Cross-Coupling Reaction: Controlled Release and Capture of Palladium. ACS Applied Materials & Samp; Interfaces, 2020, 12, 11419-11427.	8.0	23
44	High-efficiency synthesis of enhanced-titanium and anatase-free TS-1 zeolite by using a crystallization modifier. Inorganic Chemistry Frontiers, 2021, 8, 3077-3084.	6.0	23
45	Designed synthesis of CD@Cu-ZIF-8 composites as excellent peroxidase mimics for assaying glutathione. Materials Chemistry Frontiers, 2021, 5, 6125-6132.	5.9	21
46	Formation and origin of multicenter photoluminescence in zeolite-based carbogenic nanodots. Nanoscale, 2018, 10, 10650-10656.	5.6	18
47	Sustainable Ligandâ€Free, Palladiumâ€Catalyzed Suzuki–Miyaura Reactions in Water: Insights into the Role of Base. ChemSusChem, 2019, 12, 5265-5273.	6.8	18
48	Photochromic inorganic–organic complex derived from low-cost deep eutectic solvents with tunable photocurrent responses and photocatalytic properties. CrystEngComm, 2020, 22, 1078-1085.	2.6	18
49	Quest for Zeoliteâ€like Supramolecular Assemblies: Selfâ€Assembly of Metal–Organic Squares via Directed Hydrogen Bonding. Angewandte Chemie - International Edition, 2020, 59, 19659-19662.	13.8	18
50	A zwitterionic ligand-based water-stable metal–organic framework showing photochromic and Cr(<scp>vi</scp>) removal properties. Dalton Transactions, 2020, 49, 10613-10620.	3.3	16
51	Highly Efficient Zeolite-Supported Pd Catalyst Activated in C–C Cross-Coupling Reaction. Industrial & Lamp; Engineering Chemistry Research, 2020, 59, 11241-11249.	3.7	14
52	The synthesis of SAPO-34 zeolite for an improved MTO performance: tuning the particle size and an insight into the formation mechanism. Inorganic Chemistry Frontiers, 2021, 8, 2315-2322.	6.0	13
53	Carbon Dots in Porous Materials: Host–Guest Synergy for Enhanced Performance. Angewandte Chemie, 2020, 132, 19558-19570.	2.0	12
54	Crystallization and MTO performance of SAPO-34 zeolite under the influence of hydroxyl radicals. Inorganic Chemistry Communication, 2019, 107, 107462.	3.9	10

#	Article	IF	Citations
55	Solvothermal syntheses and structures of four indium–phosphite coordination polymers. CrystEngComm, 2014, 16, 2266.	2.6	8
56	Flexible films derived from PIM-1 with ultralow dielectric constants. Microporous and Mesoporous Materials, 2020, 294, 109887.	4.4	8
57	Ultrastable Perovskite–Zeolite Composite Enabled by Encapsulation and Inâ€Situ Passivation. Angewandte Chemie, 2020, 132, 23300-23306.	2.0	7
58	Multi-emissive room temperature phosphorescence of a two-dimensional metal-organic framework. Inorganic Chemistry Communication, 2019, 104, 119-123.	3.9	6
59	The effect of guest cations on proton conduction of LTA zeolite. RSC Advances, 2021, 11, 5393-5398.	3.6	6
60	Small pore SAPO-14-based zeolites with improved propylene selectivity in the methanol to olefins process. Inorganic Chemistry Frontiers, 2022, 9, 1752-1760.	6.0	6
61	Biomass-based Carbon Dots as Peroxidase Mimics for Colorimetric Detection of Glutathione and L-Cysteine. Chemical Research in Chinese Universities, 2022, 38, 1446-1452.	2.6	6
62	Quest for Zeoliteâ€like Supramolecular Assemblies: Selfâ€Assembly of Metal–Organic Squares via Directed Hydrogen Bonding. Angewandte Chemie, 2020, 132, 19827-19830.	2.0	4
63	Multifunctional Viologen-Derived Supramolecular Network with Photo/Vapochromic and Proton Conduction Properties. Molecules, 2021, 26, 6209.	3.8	3
64	Make waste profitable: repurposing SAPO-34 coke from the methanol-to-olefin reaction for luminescent CDs@zeolite composites. Inorganic Chemistry Frontiers, 2022, 9, 3737-3746.	6.0	3
65	lonothermal synthesis of a photoelectroactive titanophosphite with a three-dimensional open-framework. CrystEngComm, 2019, 21, 5867-5871.	2.6	2
66	Highly stable aluminosilicate FAU zeolites with excellent proton conductivity. Inorganic Chemistry Communication, 2021, 129, 108626.	3.9	1