Sayaka Uchida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/487344/publications.pdf

Version: 2024-02-01

95 3,625 34 57
papers citations h-index g-index

112 112 2810 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Oxygen Evolution Reaction Driven by Charge Transfer from a Cr Complex to Co-Containing Polyoxometalate in a Porous Ionic Crystal. Journal of the American Chemical Society, 2022, 144, 2980-2986.	13.7	32
2	Photocatalytic Water Oxidation by Phosphotungstate and Mg-Al Layered Double Hydroxide Hybrid. Chemistry Letters, 2022, 51, 107-110.	1.3	1
3	Macrocyclic Polyoxometalates: Selective Polyanion Binding and Ultrahigh Proton Conduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	24
4	Proton conduction in ionic crystals based on polyoxometalates. Coordination Chemistry Reviews, 2022, 462, 214524.	18.8	48
5	Basicity of isostructural porous ionic crystals composed of Nb/Ta-substituted Keggin-type polyoxotungstates. Dalton Transactions, 2022, 51, 8186-8191.	3.3	4
6	Polyoxocationic antimony oxide cluster with acidic protons. Science Advances, 2022, 8, .	10.3	5
7	Proton-Conductive Crystals Based on Polyoxometalates. Bulletin of Japan Society of Coordination Chemistry, 2022, 79, 106-111.	0.2	0
8	Structure-function Relationships of Porous Ionic Crystals (PICs) Based on Polyoxometalate Anions and Oxo-centered Trinuclear Metal Carboxylates as Counter Cations. Chemistry Letters, 2021, 50, 21-30.	1.3	20
9	Integrating molecular design and crystal engineering approaches in non-humidified intermediate-temperature proton conductors based on a Dawson-type polyoxometalate and poly(ethylene glycol) derivatives. Nanoscale, 2021, 13, 8049-8057.	5.6	21
10	Formation of Mixedâ€Valence Luminescent Silver Clusters via Cationâ€Coupled Electronâ€Transfer in a Redoxâ€Active Ionic Crystal Based on a Dawsonâ€type Polyoxometalate with Closed Pores. European Journal of Inorganic Chemistry, 2021, 2021, 1531-1535.	2.0	5
11	Ultrahigh Proton Conduction via Extended Hydrogen-Bonding Network in a Preyssler-Type Polyoxometalate-Based Framework Functionalized with a Lanthanide Ion. ACS Applied Materials & Samp; Interfaces, 2021, 13, 19138-19147.	8.0	25
12	Isomeric effects on the acidity of Al $<$ sub $>$ 13 $<$ /sub $>$ Keggin clusters in porous ionic crystals. Chemical Communications, 2021, 57, 8893-8896.	4.1	8
13	Incorporating highly basic polyoxometalate anions comprising Nb or Ta into nanoscale reaction fields of porous ionic crystals. Nanoscale, 2021, 13, 18451-18457.	5.6	17
14	Porous Layered Inorganic–Organic Hybrid Frameworks Constructed from Polyoxovanadate and Bolaamphiphiles. Crystal Growth and Design, 2021, 21, 7230-7239.	3.0	3
15	Flame spray pyrolysis makes highly loaded Cu nanoparticles on ZrO2 for CO2-to-methanol hydrogenation. Chemical Engineering Journal, 2020, 381, 122750.	12.7	54
16	Effect of molecular weights of confined single-chain poly(allylamine) toward proton conduction in inorganic frameworks based on Preyssler-type polyoxometalate. Inorganica Chimica Acta, 2020, 499, 119204.	2.4	7
17	Development of CO ₂ -to-Methanol Hydrogenation Catalyst by Focusing on the Coordination Structure of the Cu Species in Spinel-Type Oxide Mg _{1â€"<i>x</i>} Cu _{<i>x</i>} Al ₂ O ₄ . ACS Catalysis, 2020, 10. 15186-15194.	11.2	19
18	Amorphous High-Surface-Area Aluminum Hydroxide–Bicarbonates for Highly Efficient Methyl Orange Removal from Water. Langmuir, 2020, 36, 6277-6285.	3.5	11

#	Article	IF	CITATIONS
19	Isostructural mesoporous ionic crystals as a tunable platform for acid catalysis. Dalton Transactions, 2020, 49, 10328-10333.	3.3	7
20	Selective Convergence to Atropisomers of a Porphyrin Derivative Having Bulky Substituents at the Periphery. Journal of Organic Chemistry, 2020, 85, 12856-12869.	3.2	4
21	Confinement of Polymers in Polyoxometalate-based Ion Crystals for Enhanced Proton Conductivity. Hamon, 2020, 30, 106-109.	0.0	0
22	Conductive Inorganic–Organic Hybrid Layered Crystals Composed of Kegginâ€√ype Polyoxotungstates and a Heterocyclic Surfactant. European Journal of Inorganic Chemistry, 2019, 2019, 442-447.	2.0	5
23	Frontiers and progress in cation-uptake and exchange chemistry of polyoxometalate-based compounds. Chemical Science, 2019, 10, 7670-7679.	7.4	57
24	Confinement of poly(allylamine) in Preyssler-type polyoxometalate and potassium ion framework for enhanced proton conductivity. Communications Chemistry, 2019, 2, .	4.5	31
25	Guest encapsulations in non-porous crystals of fully fluorinated dinuclear metal complexes with the $M < sub > 2 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 < sub > 0 $	3.3	2
26	Structureâ€Function Relationships in Fructose Dehydration to 5â€Hydroxymethylfurfural under Mild Conditions by Porous Ionic Crystals Constructed with Analogous Building Blocks. ChemCatChem, 2019, 11, 3745-3749.	3.7	5
27	Rapid formation of small mixed-valence luminescent silver clusters <i>via</i> cation-coupled electron-transfer in a redox-active porous ionic crystal based on dodecamolybdophosphate. Nanoscale, 2019, 11, 5460-5466.	5.6	13
28	Highly pH-dependent Facile-preparation of Amorphous High Surface Area Aluminum Hydroxide-bicarbonates with [ε-Al ₁₃ O ₄ (OH) ₂₄ (H ₂ O) ₁₂] ⁷⁺ . Chemistry Letters, 2018, 47, 668-670.	1.3	1
29	Cu Species Incorporated into Amorphous ZrO ₂ with High Activity and Selectivity in CO ₂ -to-Methanol Hydrogenation. Journal of Physical Chemistry C, 2018, 122, 5430-5442.	3.1	83
30	Rapid Uptake/Release of Cs ⁺ in Isostructural Redox-Active Porous Ionic Crystals with Large-Molecular-Size and Easily Reducible Dawson-Type Polyoxometalates as Building Blocks. Inorganic Chemistry, 2018, 57, 4833-4836.	4.0	13
31	Solidâ€State Umbrellaâ€type Inversion of a VO 5 Squareâ€Pyramidal Unit in a Bowlâ€type Dodecavanadate Induced by Insertion and Elimination of a Guest Molecule. Angewandte Chemie, 2018, 130, 16283-16287.	2.0	6
32	Effect of the ammonium ion on proton conduction in porous ionic crystals based on Keggin-type silicododecatungstate. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 1289-1294.	0.5	9
33	Solidâ€State Umbrellaâ€type Inversion of a VO 5 Squareâ€Pyramidal Unit in a Bowlâ€type Dodecavanadate Induced by Insertion and Elimination of a Guest Molecule. Angewandte Chemie - International Edition, 2018, 57, 16051-16055.	13.8	18
34	Conductive hybrid crystal composed of polyoxovanadate and deprotonatable ionic-liquid surfactant. Inorganic Chemistry Communication, 2018, 96, 24-29.	3.9	8
35	Porous Cubic Cesium Salts of Silicododecatungstate(molybdate)/Borododecatungstate Blends: Synthesis and Molecular Adsorption Properties. Inorganic Chemistry, 2018, 57, 8821-8830.	4.0	6
36	Spatial-Temporal Characteristics of Confined Polymer Motion Determine Proton Conduction of Polyoxometalate–Poly(ethylene glycol) Hybrid Nanocomposites. Journal of Physical Chemistry Letters, 2018, 9, 5772-5777.	4.6	32

#	Article	IF	CITATIONS
37	Synergetic effect in heterogeneous acid catalysis by a porous ionic crystal based on Al(<scp>iii</scp>)–salphen and polyoxometalate. Dalton Transactions, 2017, 46, 3105-3109.	3.3	16
38	Porous Ionic Crystals Based on Polyoxometalates. Structure and Bonding, 2017, , 65-87.	1.0	3
39	Proton conduction in alkali metal ion-exchanged porous ionic crystals. Physical Chemistry Chemical Physics, 2017, 19, 29077-29083.	2.8	32
40	High Proton Conduction in Crystalline Composites Based on Preyssler-Type Polyoxometalates and Polymers under Nonhumidified or Humidified Conditions. Inorganic Chemistry, 2017, 56, 15187-15193.	4.0	57
41	Conductive Hybrid Crystal Composed from Polyoxomolybdate and Deprotonatable Ionic-Liquid Surfactant. International Journal of Molecular Sciences, 2016, 17, 994.	4.1	12
42	Reductionâ€Induced Highly Selective Uptake of Cesium Ions by an Ionic Crystal Based on Silicododecamolybdate. Angewandte Chemie, 2016, 128, 4055-4059.	2.0	7
43	Control of Polymorphisms and Functions in All-Inorganic Ionic Crystals Based on Polyaluminum Hydroxide and Polyoxometalates. Crystal Growth and Design, 2016, 16, 4968-4974.	3.0	22
44	Reductionâ€Induced Highly Selective Uptake of Cesium Ions by an Ionic Crystal Based on Silicododecamolybdate. Angewandte Chemie - International Edition, 2016, 55, 3987-3991.	13.8	44
45	A functional mesoporous ionic crystal based on polyoxometalate. Dalton Transactions, 2016, 45, 2805-2809.	3.3	28
46	Crystalline polyoxometalate (POM)–polyethylene glycol (PEG) composites aimed as non-humidified intermediate-temperature proton conductors. Journal of Solid State Chemistry, 2016, 234, 9-14.	2.9	37
47	High CO2/CH4 Separation Performance Exhibited at Room Temperature by a Nonporous Ionic Crystal with 3-Methylpyridinium Cation. Chemistry Letters, 2015, 44, 1179-1181.	1.3	4
48	Redox-Induced Reversible Uptake–Release of Cations in Porous Ionic Crystals Based on Polyoxometalate: Cooperative Migration of Electrons with Alkali Metal Ions. Chemistry of Materials, 2015, 27, 2092-2099.	6.7	40
49	Morphology-Controlled Synthesis of Cubic Cesium Hydrogen Silicododecatungstate Crystals. Crystal Growth and Design, 2014, 14, 6620-6626.	3.0	14
50	Concerted Functions of Anions and Cations in a Molecular Ionic Crystal with Stable Three-Dimensional Micropores. Inorganic Chemistry, 2014, 53, 3655-3661.	4.0	27
51	Porous Ionic Crystals Modified via Coordination Programming through Single-crystal-to-single-crystal Transformation: Effect of Basicity. Chemistry Letters, 2014, 43, 1192-1194.	1.3	5
52	Porous Ionic Crystals Modified by Post-Synthesis of K ₂ [Cr ₃ 0(OOCH) ₆ (etpy) ₃] ₂ [α-SiW _{12<through 2013,="" 52,="" 9320-9326.<="" chemistry,="" inorganic="" single-crystal-to-single-crystal="" td="" transformation.=""><td>subx0<sı< td=""><td>ub>240</td></sı<></td></through>}]	su bx0 <sı< td=""><td>ub>240</td></sı<>	ub>240
53	Synthesis and Structural Characterization of Inorganic-Organic-Inorganic Hybrids of Dipalladium-Substituted Î ³ -Keggin Silicodecatungstates. Inorganic Chemistry, 2013, 52, 2662-2670.	4.0	13
54	Cubic Cesium Hydrogen Silicododecatungstate with Anisotropic Morphology and Polyoxometalate Vacancies Exhibiting Selective Water Sorption and Cation-Exchange Properties. Chemistry of Materials, 2013, 25, 905-911.	6.7	42

#	Article	IF	Citations
55	Highly selective sorption and unique packing geometries of unsaturated hydrocarbons and CO2 in a fluorine-substituted organic–inorganic ionic crystal. Dalton Transactions, 2013, 42, 16209.	3.3	17
56	Enrichment of tritiated water using mesoporous silica. Microporous and Mesoporous Materials, 2013, 179, 217-223.	4.4	3
57	Structural and dynamical aspects of alkylammonium salts of a silicodecatungstate as heterogeneous epoxidation catalysts. Dalton Transactions, 2012, 41, 9979.	3.3	20
58	Highly Selective Sorption and Separation of CO ₂ from a Gas Mixture of CO ₂ and CH ₄ at Room Temperature by a Zeolitic Organic–Inorganic Ionic Crystal and Investigation of the Interaction with CO ₂ . Journal of Physical Chemistry C, 2012, 116, 16105-16110.	3.1	35
59	Selective Sorption of Olefins by Halogen-Substituted Macrocation-Polyoxometalate Porous Ionic Crystals. Chemistry of Materials, 2012, 24, 325-330.	6.7	35
60	Polyoxotungstate-Surfactant Layered Crystal toward Conductive Inorganic-Organic Hybrid. Crystals, 2012, 2, 362-373.	2.2	14
61	lonic Crystals [M ₃ O(OOCC ₆ H ₅) ₆ (H ₂ O) ₃] _{4 (M = Cr, Fe) as Heterogeneous Catalysts for Pinacol Rearrangement. Inorganic Chemistry, 2012, 51, 775-777.}	1 ₄ /sub>[α	:-SiW
62	Threeâ€Dimensional Ordered Arrays of 58×58×58ã€Ã ³ Hollow Frameworks in Ionic Crystals of M ₂ Zn ₂ â€Substituted Polyoxometalates. Angewandte Chemie - International Edition, 2012, 51, 1597-1601.	of 13.8	69
63	Inverse and High CO ₂ /C ₂ H ₂ Sorption Selectivity in Flexible Organic–Inorganic Ionic Crystals. Angewandte Chemie - International Edition, 2012, 51, 1635-1639.	13.8	102
64	Zeotype Organic–Inorganic Ionic Crystals: Facile Cation Exchange and Controllable Sorption Properties. Angewandte Chemie - International Edition, 2010, 49, 9930-9934.	13.8	50
65	A Flexible Nonporous Heterogeneous Catalyst for Sizeâ€Selective Oxidation through a Bottomâ€Up Approach. Angewandte Chemie - International Edition, 2010, 49, 9972-9976.	13.8	55
66	Hierarchical design of nanostructured materials based on polyoxometalates. Pure and Applied Chemistry, 2009, 81, 2369-2376.	1.9	13
67	A Tin–Tungsten Mixed Oxide as an Efficient Heterogeneous Catalyst for CC Bondâ€Forming Reactions. Chemistry - A European Journal, 2009, 15, 4343-4349.	3.3	58
68	Sizeâ€Selective Sorption of Small Organic Molecules in Oneâ€Dimensional Channels of an Ionic Crystalline Organicâ€"Inorganic Hybrid Compound Stabilized by Ï€â€"Ï€ Interactions. Angewandte Chemie - International Edition, 2009, 48, 6160-6164.	13.8	32
69	Micelles and Vesicles Formed by Polyoxometalate–Block Copolymer Composites. Angewandte Chemie - International Edition, 2009, 48, 8281-8284.	13.8	100
70	Cucurbit[<i>n</i>]urilâ^'Polyoxoanion Hybrids. Journal of the American Chemical Society, 2009, 131, 432-433.	13.7	154
71	Control of Structures and Sorption Properties of Ionic Crystals of A ₂ [Cr ₃ O(OOCC ₂ H ₅) ₆ (H ₂ O) _{(A = Na, K, Rb, NH₄, Cs, TMA). Inorganic Chemistry, 2008, 47, 3349-3357.}	Зк¢sub>]∙	< s 5b>2
72	Highly Selective Sorption of Small Unsaturated Hydrocarbons by Nonporous Flexible Framework with Silver Ion. Journal of the American Chemical Society, 2008, 130, 12370-12376.	13.7	99

#	Article	IF	Citations
73	Synthesis of a Dialuminum-Substituted Silicotungstate and the Diastereoselective Cyclization of Citronellal Derivatives. Journal of the American Chemical Society, 2008, 130, 15872-15878.	13.7	99
74	Self-Organization of All-Inorganic Dodecatung stophosphate Nanocrystallites. Journal of the American Chemical Society, 2007, 129, 7378-7384.	13.7	63
75	States of Water in Ionic Crystals of [Cr3O(OOCH)6(H2O)3]+Macrocation with \hat{l} ±-Keggin-Type Polyoxometalates. Journal of Physical Chemistry C, 2007, 111, 8218-8227.	3.1	20
76	Preparation of Monodispersed Nanoparticles by Electrostatic Assembly of Keggin-Type Polyoxometalates and 1,4,7-Triazacyclononane-Based Transition-Metal Complexes. Chemistry of Materials, 2007, 19, 4694-4701.	6.7	30
77	Design and syntheses of nano-structured ionic crystals with selective sorption properties. Coordination Chemistry Reviews, 2007, 251, 2537-2546.	18.8	103
78	Recognition of Small Polar Molecules with an Ionic Crystal of \hat{l}_{\pm} -Keggin-Type Polyoxometalate with a Macrocation. Inorganic Chemistry, 2006, 45, 5136-5144.	4.0	58
79	Channel-Selective Independent Sorption and Collection of Hydrophilic and Hydrophobic Molecules by Cs2[Cr3O(OOCC2H5)6(H2O)3]2[l±-SiW12O40] Ionic Crystal. Journal of the American Chemical Society, 2006, 128, 14240-14241.	13.7	90
80	Structures and Sorption Properties of Ionic Crystals of Polyoxometalates with Macrocation. Chemistry Letters, 2006, 35, 688-693.	1.3	18
81	[\hat{i}^3 -1,2-H2SiV2W10O40] Immobilized on Surface-Modified SiO2 as a Heterogeneous Catalyst for Liquid-Phase Oxidation with H2O2. Chemistry - A European Journal, 2006, 12, 4176-4184.	3.3	118
82	Amphiphilic Guest Sorption of K2[Cr3O(OOCC2H5)6(H2O)3]2[\hat{l} ±-SiW12O40] lonic Crystal. Journal of the American Chemical Society, 2005, 127, 10560-10567.	13.7	107
83	Peroxotungstate Immobilized on Ionic Liquid-Modified Silica as a Heterogeneous Epoxidation Catalyst with Hydrogen Peroxide. Journal of the American Chemical Society, 2005, 127, 530-531.	13.7	275
84	Structures and Sorption Properties of Ionic Crystals of Macrocation-Dawson-Type Polyoxometalates with Different Charges. Chemistry of Materials, 2005, 17, 1367-1375.	6.7	52
85	Zeotype Ionic Crystal of Cs5[Cr3O(OOCH)6(H2O)3][$\hat{l}\pm$ -CoW12O40] \hat{A} -7.5H2O with Shape-Selective Adsorption of Water. Journal of the American Chemical Society, 2004, 126, 1602-1603.	13.7	111
86	Unique Guest-Inclusion Properties of a Breathing Ionic Crystal of K3[Cr3O(OOCH)6(H2O)3][α-SiW12O40]â⟨16 H2O. Chemistry - A European Journal, 2003, 9, 5850-5857.	3.3	59
87	A Breathing Ionic Crystal Displaying Selective Binding of Small Alcohols and Nitriles: K3[Cr3O(OOCH)6(H2O)3][-SiW12O40]â<16 H2O. Angewandte Chemie - International Edition, 2002, 41, 2814-2817.	13.8	118
88	A Breathing Ionic Crystal Displaying Selective Binding of Small Alcohols and Nitriles: K3[Cr3O(OOCH)6(H2O)3][α-SiW12O40]â⟨16 H2O., 2002, 41, 2814.		1
89	Tunable One-Pot Syntheses of Hexagonal-, Cubic-, and Lamellar-Mesostructured Vanadiumâ^'Phosphorus Oxides. Chemistry of Materials, 2001, 13, 179-184.	6.7	57
90	Origin of Microporosity of Ammonium Dodecatungstophosphate Unveiled by Single Crystal Structure Analysis. Chemistry Letters, 2001, 30, 1272-1273.	1.3	10

SAYAKA UCHIDA

#	Article	IF	CITATIONS
91	States and Dynamic Behavior of Protons and Water Molecules in H3PW12O40Pseudoliquid Phase Analyzed by Solid-State MAS NMR. Journal of Physical Chemistry B, 2000, 104, 8108-8115.	2.6	117
92	Inhomogeneity in the interaction between methanol molecules and Br \tilde{A} ,nsted acid sites of H-ZSM-5 directly detected by 2D CPMAS 13C NMR spectroscopy. Chemical Communications, 1998, , 1489-1490.	4.1	4
93	The First Direct Detection of Rapid Migration of Acidic Protons between Heteropolyanions in H3PW12O40·nH2O (n < 6) by31P NMR. Chemistry Letters, 1998, 27, 643-644.	1.3	19
94	Syntheses, Polymorphic Transformations, and Functions of Ionic Crystals Based on Mononuclear Bismuth(III) Complexes and Polyoxometalates. ChemNanoMat, 0, , .	2.8	0
95	Macrocyclic Polyoxometalates: Selective Polyanion Binding and Ultrahigh Proton Conduction. Angewandte Chemie, 0, , .	2.0	2