
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4872636/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. Journal of Thoracic and Cardiovascular Surgery, 2005, 129, 1330-1338.	0.8	524
2	Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4669-4674.	7.1	495
3	Late-term results of tissue-engineered vascular grafts in humans. Journal of Thoracic and Cardiovascular Surgery, 2010, 139, 431-436.e2.	0.8	449
4	Creation Of Viable Pulmonary Artery Autografts Through Tissue Engineering. Journal of Thoracic and Cardiovascular Surgery, 1998, 115, 536-546.	0.8	410
5	Tissue engineering heart valves: Valve leaflet replacement study in a lamb model. Annals of Thoracic Surgery, 1995, 60, S513-S516.	1.3	384
6	Tissue engineering of autologous aorta using a new biodegradable polymer. Annals of Thoracic Surgery, 1999, 68, 2298-2304.	1.3	287
7	First Evidence That Bone Marrow Cells Contribute to the Construction of Tissue-Engineered Vascular Autografts In Vivo. Circulation, 2003, 108, 1729-1734.	1.6	264
8	Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials, 2003, 24, 2303-2308.	11.4	260
9	Vascular tissue engineering: Towards the next generation vascular grafts. Advanced Drug Delivery Reviews, 2011, 63, 312-323.	13.7	206
10	A critical role for macrophages in neovessel formation and the development of stenosis in tissueâ€engineered vascular grafts. FASEB Journal, 2011, 25, 4253-4263.	0.5	199
11	Cell-Seeding Techniques in Vascular Tissue Engineering. Tissue Engineering - Part B: Reviews, 2010, 16, 341-350.	4.8	180
12	Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model. PLoS ONE, 2016, 11, e0158555.	2.5	156
13	Tissue-engineered Vascular Grafts Demonstrate Evidence of Growth and Development When Implanted in a Juvenile Animal Model. Annals of Surgery, 2008, 248, 370-377.	4.2	140
14	Concise Review: Tissue-Engineered Vascular Grafts for Cardiac Surgery: Past, Present, and Future. Stem Cells Translational Medicine, 2012, 1, 566-571.	3.3	136
15	Characterization of Long-Term Cultured c-kit ⁺ Cardiac Stem Cells Derived From Adult Rat Hearts. Stem Cells and Development, 2010, 19, 105-116.	2.1	111
16	Postischemic hyperthermia exacerbates neurologic injury after deep hypothermic circulatory arrest. Journal of Thoracic and Cardiovascular Surgery, 1998, 116, 780-792.	0.8	110
17	The tissue-engineered vascular graft using bone marrow without culture. Journal of Thoracic and Cardiovascular Surgery, 2005, 129, 1064-1070.	0.8	104
18	Tissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again. Regenerative Medicine, 2012, 7, 409-419.	1.7	104

#	Article	IF	CITATIONS
19	Evaluation of the use of an induced puripotent stem cell sheet for the construction of tissue-engineered vascular grafts. Journal of Thoracic and Cardiovascular Surgery, 2012, 143, 696-703.	0.8	99
20	Tissue Engineering Heart Valves: Valve Leaflet Replacement Study in a Lamb Model. Annals of Thoracic Surgery, 1995, 60, S513-S516.	1.3	97
21	The Evolution of Tissue Engineered Vascular Graft Technologies: From Preclinical Trials to Advancing Patient Care. Applied Sciences (Switzerland), 2019, 9, 1274.	2.5	94
22	Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 924-932.	0.8	86
23	Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Science Translational Medicine, 2020, 12, .	12.4	81
24	Tissue-engineered blood vessels in pediatric cardiac surgery. Yale Journal of Biology and Medicine, 2008, 81, 161-6.	0.2	77
25	Vessel Bioengineering. Circulation Journal, 2014, 78, 12-19.	1.6	76
26	Well-organized neointima of large-pore poly(l-lactic acid) vascular graft coated with poly(l-lactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly(l-lactic acid) graft in a mouse aortic implantation model. Atherosclerosis, 2014, 237, 684-691.	0.8	75
27	Tissue-engineered Vascular Grafts in Children With Congenital Heart Disease: Intermediate Term Follow-up. Seminars in Thoracic and Cardiovascular Surgery, 2018, 30, 175-179.	0.6	74
28	Long-Term Functional Efficacy of a Novel Electrospun Poly(Glycerol Sebacate)-Based Arterial Graft in Mice. Annals of Biomedical Engineering, 2016, 44, 2402-2416.	2.5	71
29	Characterization of the Natural History of Extracellular Matrix Production in Tissue-Engineered Vascular Grafts during Neovessel Formation. Cells Tissues Organs, 2012, 195, 60-72.	2.3	64
30	Tissue-engineered vascular grafts: does cell seeding matter?. Journal of Pediatric Surgery, 2010, 45, 1299-1305.	1.6	62
31	The innate immune system contributes to tissueâ€engineered vascular graft performance. FASEB Journal, 2015, 29, 2431-2438.	0.5	58
32	Development of Small Diameter Nanofiber Tissue Engineered Arterial Grafts. PLoS ONE, 2015, 10, e0120328.	2.5	56
33	Tissue-engineered vascular grafts for congenital cardiac disease: Clinical experience and current status. Trends in Cardiovascular Medicine, 2017, 27, 521-531.	4.9	53
34	Tissue-engineered arterial grafts: long-term results after implantation in a small animal model. Journal of Pediatric Surgery, 2009, 44, 1127-1133.	1.6	52
35	Evaluation of remodeling process in small-diameter cell-free tissue-engineered arterial graft. Journal of Vascular Surgery, 2015, 62, 734-743.	1.1	52
36	Fast-degrading bioresorbable arterial vascular graft with high cellular infiltration inhibits calcification of the graft. Journal of Vascular Surgery, 2017, 66, 243-250.	1.1	50

#	Article	IF	CITATIONS
37	Biomechanical Diversity Despite Mechanobiological Stability in Tissue Engineered Vascular Grafts Two Years Post-Implantation. Tissue Engineering - Part A, 2015, 21, 1529-1538.	3.1	47
38	Tissue Engineered Heart Valves: Autologous Cell Seeding on Biodegradable Polymer Scaffold. Artificial Organs, 2002, 26, 402-406.	1.9	45
39	Tissue-engineered cardiac patch seeded with human induced pluripotent stem cell derived cardiomyocytes promoted the regeneration of host cardiomyocytes in a rat model. Journal of Cardiothoracic Surgery, 2016, 11, 163.	1.1	43
40	Novel Bioresorbable Vascular Graft With Sponge-Type Scaffold as a Small-Diameter Arterial Graft. Annals of Thoracic Surgery, 2016, 102, 720-727.	1.3	43
41	The effects of vasoactive intestinal peptide on monocrotaline induced pulmonary hypertensive rabbits following cardiopulmonary bypass: a comparative study with isoproteronol and nitroglycerine. Vascular, 2002, 10, 138-145.	0.5	36
42	Role of Bone Marrow Mononuclear Cell Seeding for Nanofiber Vascular Grafts. Tissue Engineering - Part A, 2018, 24, 135-144.	3.1	36
43	Differential outcomes of venous and arterial tissue engineered vascular grafts highlight the importance of coupling long-term implantation studies with computational modeling. Acta Biomaterialia, 2019, 94, 183-194.	8.3	34
44	Tropoelastin inhibits intimal hyperplasia of mouse bioresorbable arterial vascular grafts. Acta Biomaterialia, 2017, 52, 74-80.	8.3	33
45	The effect of pore diameter on neo-tissue formation in electrospun biodegradable tissue-engineered arterial grafts in a large animal model. Acta Biomaterialia, 2020, 115, 176-184.	8.3	33
46	Toward a patient-specific tissue engineered vascular graft. Journal of Tissue Engineering, 2018, 9, 204173141876470.	5.5	32
47	Rational design of an improved tissue-engineered vascular graft: determining the optimal cell dose and incubation time. Regenerative Medicine, 2016, 11, 159-167.	1.7	29
48	Pilot Mouse Study of 1 mm Inner Diameter (ID) Vascular Graft Using Electrospun Poly(ester urea) Nanofibers. Advanced Healthcare Materials, 2016, 5, 2427-2436.	7.6	29
49	TGFβR1 Inhibition Blocks the Formation of Stenosis in Tissue-Engineered Vascular Grafts. Journal of the American College of Cardiology, 2015, 65, 512-514.	2.8	27
50	TGFâ€Î² receptor 1 inhibition prevents stenosis of tissueâ€engineered vascular grafts by reducing host mononuclear phagocyte activation. FASEB Journal, 2016, 30, 2627-2636.	0.5	26
51	Tissue engineered vascular grafts for pediatric cardiac surgery. Translational Pediatrics, 2018, 7, 188-195.	1.2	25
52	Different degradation rates of nanofiber vascular grafts in small and large animal models. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 203-214.	2.7	25
53	Effect of cell seeding on neotissue formation in a tissue engineered trachea. Journal of Pediatric Surgery, 2016, 51, 49-55.	1.6	24
54	Comparison of a Closed System to a Standard Open Technique for Preparing Tissue-Engineered Vascular Grafts. Tissue Engineering - Part C: Methods, 2015, 21, 88-93.	2.1	23

#	Article	IF	CITATIONS
55	Early natural history of neotissue formation in tissue-engineered vascular grafts in a murine model. Regenerative Medicine, 2019, 14, 389-408.	1.7	23
56	3D printing with MRI in pediatric applications. Journal of Magnetic Resonance Imaging, 2020, 51, 1641-1658.	3.4	23
57	Hemodynamic performance of tissue-engineered vascular grafts in Fontan patients. Npj Regenerative Medicine, 2021, 6, 38.	5.2	23
58	Deconstructing the Tissue Engineered Vascular Graft: Evaluating Scaffold Pre-Wetting, Conditioned Media Incubation, and Determining the Optimal Mononuclear Cell Source. ACS Biomaterials Science and Engineering, 2017, 3, 1972-1979.	5.2	22
59	Improvement of a Novel Small-diameter Tissue-engineered Arterial Graft With Heparin Conjugation. Annals of Thoracic Surgery, 2021, 111, 1234-1241.	1.3	21
60	Implantation of Inferior Vena Cava Interposition Graft in Mouse Model. Journal of Visualized Experiments, 2014, , .	0.3	20
61	Tissue Engineering in the Vasculature. Anatomical Record, 2014, 297, 83-97.	1.4	19
62	Targeted imaging of matrix metalloproteinase activity in the evaluation of remodeling tissue-engineered vascular grafts implanted in a growing lamb model. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 2227-2233.	0.8	19
63	Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth. Communications Medicine, 2022, 2, .	4.2	18
64	Cilostazol, Not Aspirin, Prevents Stenosis of Bioresorbable Vascular Grafts in a Venous Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2003-2010.	2.4	17
65	Current Status of Tissue Engineering Heart Valve. World Journal for Pediatric & Congenital Heart Surgery, 2016, 7, 677-684.	0.8	17
66	What is the best material for extracardiac Fontan operation?. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 1551-1552.	0.8	17
67	Preliminary Experience in the Use of an Extracellular Matrix (CorMatrix) as a Tube Graft: Word of Caution. Seminars in Thoracic and Cardiovascular Surgery, 2015, 27, 288-295.	0.6	16
68	Hemodynamic Characterization of a Mouse Model for Investigating the Cellular and Molecular Mechanisms of Neotissue Formation in Tissue-Engineered Heart Valves. Tissue Engineering - Part C: Methods, 2015, 21, 987-994.	2.1	15
69	Comparison of the Biological Equivalence of Two Methods for Isolating Bone Marrow Mononuclear Cells for Fabricating Tissue-Engineered Vascular Grafts. Tissue Engineering - Part C: Methods, 2015, 21, 597-604.	2.1	15
70	A new tissue-engineered biodegradable surgical patch for high-pressure systems. Interactive Cardiovascular and Thoracic Surgery, 2015, 20, 768-776.	1.1	13
71	Intravascular Ultrasound Characterization of a Tissue-Engineered Vascular Graft in an Ovine Model. Journal of Cardiovascular Translational Research, 2017, 10, 128-138.	2.4	13
72	Angiotensin II receptor I blockade prevents stenosis of tissue engineered vascular grafts. FASEB Journal, 2018, 32, 6822-6832.	0.5	13

#	Article	IF	CITATIONS
73	Bone marrow-derived mononuclear cell seeded bioresorbable vascular graft improves acute graft patency by inhibiting thrombus formation via platelet adhesion. International Journal of Cardiology, 2018, 266, 61-66.	1.7	13
74	Heparin-Eluting Tissue-Engineered Bioabsorbable Vascular Grafts. Applied Sciences (Switzerland), 2021, 11, 4563.	2.5	12
75	Clinical Application for Tissue Engineering Focused on Materials. Biomedicines, 2022, 10, 1439.	3.2	12
76	Electrospun Tissue-Engineered Arterial Graft Thickness Affects Long-Term Composition and Mechanics. Tissue Engineering - Part A, 2021, 27, 593-603.	3.1	11
77	Influence of Posttransplant Lymphoproliferative Disorder on Survival in Children After Heart Transplantation. Pediatric Cardiology, 2015, 36, 1748-1753.	1.3	7
78	Magnetic Resonance Imaging of Shear Stress and Wall Thickness in Tissue-Engineered Vascular Grafts. Tissue Engineering - Part C: Methods, 2018, 24, 465-473.	2.1	7
79	Evaluating the Longevity of the Fontan Pathway. Pediatric Cardiology, 2020, 41, 1539-1547.	1.3	7
80	The Real Need for Regenerative Medicine in the Future of Congenital Heart Disease Treatment. Biomedicines, 2021, 9, 478.	3.2	7
81	Transplantation of Pulmonary Valve Using a Mouse Model of Heterotopic Heart Transplantation. Journal of Visualized Experiments, 2014, , .	0.3	6
82	The evaluation of a tissue-engineered cardiac patch seeded with hips derived cardiac progenitor cells in a rat left ventricular model. PLoS ONE, 2020, 15, e0234087.	2.5	6
83	Development of a Tissue-Engineering Vascular Graft for Use in Congenital Heart Surgery. EBioMedicine, 2014, 1, 12-13.	6.1	5
84	lmatinib attenuates neotissue formation during vascular remodeling in an arterial bioresorbable vascular graft. JVS Vascular Science, 2020, 1, 57-67.	1.1	5
85	Current status of developing tissue engineering vascular technologies. Expert Opinion on Biological Therapy, 2021, , 1-8.	3.1	5
86	Konno Procedure for Congenital Aortic Stenosis with a Single Coronary Artery from the Left Coronary Sinus. Journal of Cardiac Surgery, 1992, 7, 351-355.	0.7	4
87	A mouse model of endocardial fibroelastosis. Cardiovascular Pathology, 2015, 24, 388-394.	1.6	4
88	Novel application and serial evaluation of tissue-engineered portal vein grafts in a murine model. Regenerative Medicine, 2017, 12, 929-938.	1.7	4
89	Survival of Toddler with Aortoesophageal Fistula after Button Battery Ingestion. Case Reports in Otolaryngology, 2021, 2021, 1-7.	0.2	3
90	Characterization of small-diameter electrospun tissue-engineered arterial grafts. Journal of the American College of Surgeons, 2009, 209, S30.	0.5	2

#	Article	IF	CITATIONS
91	CHAPTER 9. Smart Biomaterials for Cardiovascular Tissue Engineering. RSC Smart Materials, 0, , 230-257.	0.1	2
92	Modified Starnes Procedure in a Neonate With Severe Tricuspid Regurgitation. Annals of Thoracic Surgery, 2012, 93, 658-659.	1.3	1
93	Potential Molecular Mechanism of Retrograde Aortic Arch Stenosis in the Hybrid Approach toÂHypoplastic Left Heart Syndrome. Annals of Thoracic Surgery, 2015, 100, 1013-1020.	1.3	1
94	Tissue-Engineered Vascular Grafts for Children. , 2020, , 533-548.		1
95	TISSUE ENGINEERED BLOOD VESSELS: FROM THE BENCH TO THE BEDSIDE AND BACK AGAIN (DEVELOPMENT) T	j ETQq1 1	1 0.784314 g
96	Pre-clinical Evolution of a Novel Transcatheter Bioabsorbable ASD/PFO Occluder Device. Pediatric Cardiology, 2022, , 1.	1.3	0
97	Title is missing!. , 2020, 15, e0234087.		0
98	Title is missing!. , 2020, 15, e0234087.		0
99	Title is missing!. , 2020, 15, e0234087.		0
100	Title is missing!. , 2020, 15, e0234087.		0
101	Title is missing!. , 2020, 15, e0234087.		0
102	Title is missing!. , 2020, 15, e0234087.		0