
Michael J Anteau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4872483/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Typha (Cattail) Invasion in North American Wetlands: Biology, Regional Problems, Impacts, Ecosystem Services, and Management. Wetlands, 2019, 39, 645-684.	1.5	125
2	Land use and wetland drainage affect water levels and dynamics of remaining wetlands. Ecosphere, 2015, 6, 1-22.	2.2	85
3	NUTRIENT RESERVES OF LESSER SCAUP (AYTHYA AFFINIS) DURING SPRING MIGRATION IN THE MISSISSIPPI FLYWAY: A TEST OF THE SPRING CONDITION HYPOTHESIS. Auk, 2004, 121, 917.	1.4	66
4	Do Interactions of Land Use and Climate Affect Productivity of Waterbirds and Prairie-Pothole Wetlands?. Wetlands, 2012, 32, 1-9.	1.5	63
5	Amphipod densities and indices of wetland quality across the upper-Midwest, USA. Wetlands, 2008, 28, 184-196.	1.5	60
6	Trace elements in lesser scaup (Aythya affinis) from the Mississippi flyway. Ecotoxicology, 2003, 12, 47-54.	2.4	53
7	Nest survival of piping plovers at a dynamic reservoir indicates an ecological trap for a threatened population. Oecologia, 2012, 170, 1167-1179.	2.0	44
8	RELATIONSHIPS OF CADMIUM, MERCURY, AND SELENIUM WITH NUTRIENT RESERVES OF FEMALE LESSER SCAUP (AYTHYA AFFINIS) DURING WINTER AND SPRING MIGRATION. Environmental Toxicology and Chemistry, 2007, 26, 515.	4.3	36
9	USING PLASMA-LIPID METABOLITES TO INDEX CHANGES IN LIPID RESERVES OF FREE-LIVING LESSER SCAUP (<i>AYTHYA AFFINIS</i>). Auk, 2008, 125, 354-357.	1.4	36
10	Diets of Lesser Scaup during Spring Migration throughout the Upper-Midwest are Consistent with the Spring Condition Hypothesis. Waterbirds, 2008, 31, 97-106.	0.3	36
11	Diet shifts of lesser scaup are consistent with the spring condition hypothesis. Canadian Journal of Zoology, 2006, 84, 779-786.	1.0	35
12	Selection Indicates Preference in Diverse Habitats: A Ground-Nesting Bird (Charadrius melodus) Using Reservoir Shoreline. PLoS ONE, 2012, 7, e30347.	2.5	34
13	Lipid Reserves of Lesser Scaup (<i>Aythya affinis</i>) Migrating across a Large Landscape Are Consistent with the "Spring Condition" Hypothesis. Auk, 2009, 126, 873-883.	1.4	33
14	Fish and land use influence Gammarus lacustris and Hyalella azteca (Amphipoda) densities in large wetlands across the upper Midwest. Hydrobiologia, 2011, 664, 69-80.	2.0	33
15	Temporal variation in survival and recovery rates of lesser scaup. Journal of Wildlife Management, 2016, 80, 850-861.	1.8	33
16	Prerequisites for Understanding Climate-Change Impacts on Northern Prairie Wetlands. Wetlands, 2016, 36, 299-307.	1.5	33
17	Wetland use and feeding by lesser scaup during spring migration across the upper Midwest, USA. Wetlands, 2009, 29, 704-712.	1.5	28
18	Location and agricultural practices influence spring use of harvested cornfields by cranes and geese in Nebraska. Journal of Wildlife Management, 2011, 75, 1004-1011.	1.8	22

MICHAEL J ANTEAU

#	Article	IF	CITATIONS
19	Agricultural practices and residual corn during spring crane and waterfowl migration in Nebraska. Journal of Wildlife Management, 2011, 75, 995-1003.	1.8	22
20	Generating Nested Wetland Catchments with Readily-Available Digital Elevation Data May Improve Evaluations of Land-Use Change on Wetlands. Wetlands, 2014, 34, 1123-1132.	1.5	22
21	Measuring and predicting abundance and dynamics of habitat for piping plovers on a large reservoir. Ecological Modelling, 2014, 272, 16-27.	2.5	21
22	Lipid Catabolism of Invertebrate Predator Indicates Widespread Wetland Ecosystem Degradation. PLoS ONE, 2011, 6, e16029.	2.5	21
23	Lesser Scaup (Aythya affinis). , 2014, , .		21
24	ls consolidation drainage an indirect mechanism for increased abundance of cattail in northern prairie wetlands?. Wetlands Ecology and Management, 2016, 24, 533-544.	1.5	20
25	Invertebrate communities of Prairie-Pothole wetlands in the age of the aquatic Homogenocene. Hydrobiologia, 2020, 847, 3773-3793.	2.0	19
26	Synergistic Interaction of Climate and Land-Use Drivers Alter the Function of North American, Prairie-Pothole Wetlands. Sustainability, 2019, 11, 6581.	3.2	18
27	Nutrient Reserves of Lesser Scaup (Aythya Affinis) During Spring Migration in the Mississippi Flyway: A Test of the Spring Condition Hypothesis. Auk, 2004, 121, 917-929.	1.4	17
28	A Bayesian approach for temporally scaling climate for modeling ecological systems. Ecology and Evolution, 2016, 6, 2978-2987.	1.9	13
29	Low renesting propensity and reproductive success make renesting unproductive for the threatened Piping Plover (Charadrius melodus). Condor, 2020, 122, .	1.6	13
30	Consolidation Drainage and Climate Change May Reduce Piping Plover Habitat in the Great Plains. Journal of Fish and Wildlife Management, 2016, 7, 4-13.	0.9	13
31	Landscape selection by piping plovers has implications for measuring habitat and population size. Landscape Ecology, 2014, 29, 1033-1044.	4.2	12
32	Detection probability of least tern and piping plover chicks in a large river system. Journal of Wildlife Management, 2014, 78, 709-720.	1.8	12
33	Longâ€ŧerm spatial heterogeneity in mallard distribution in the Prairie pothole region. Wildlife Society Bulletin, 2017, 41, 116-124.	1.6	12
34	Nest Movement by Piping Plovers in Response to Changing Habitat Conditions. Condor, 2009, 111, 550-555.	1.6	11
35	Discussion of "Natural Hydrograph of the Missouri River near Sioux City and the Least Tern and Piping Plover―by Donald G. Jorgensen. Journal of Hydrologic Engineering - ASCE, 2010, 15, 1076-1078.	1.9	11
36	Temporal variation in survival and recovery rates of lesser scaup: A response. Journal of Wildlife Management, 2017, 81, 1142-1148.	1.8	11

MICHAEL J ANTEAU

#	Article	IF	CITATIONS
37	The role of landscape features and density dependence in growth and fledging rates of Piping Plovers in North Dakota, USA. Condor, 2014, 116, 195-204.	1.6	10
38	ls income breeding an appropriate construct for waterfowl?. Journal of Ornithology, 2015, 156, 755-762.	1.1	10
39	Habitat selection and movements of Piping Plover broods suggest a tradeoff between breeding stages. Journal of Ornithology, 2015, 156, 999-1013.	1.1	10
40	Extreme climatic variability during migration invokes physiological and dietary plasticity among spring migrating ducks. Canadian Journal of Zoology, 2019, 97, 340-351.	1.0	8
41	Experimental evaluation of predator exclosures on nest, chick, and adult survival of piping plovers. Journal of Wildlife Management, 2022, 86, .	1.8	8
42	Synchrony of Piping Plover breeding populations in the U.S. Northern Great Plains. Condor, 2016, 118, 558-570.	1.6	7
43	Impacts of extreme environmental disturbances on piping plover survival are partially moderated by migratory connectivity. Biological Conservation, 2021, 264, 109371.	4.1	7
44	Diurnal Variation in Invertebrate Catch Rates by Sticky Traps: Potential for Biased Indices of Piping Plover Forage. Wetlands, 2010, 30, 757-762.	1.5	6
45	Asymmetric benefits of a heterospecific breeding association vary with habitat, conspecific abundance and breeding stage. Oikos, 2020, 129, 1504-1520.	2.7	6
46	Reassessing perennial cover as a driver of duck nest survival in the Prairie Pothole Region. Journal of Wildlife Management, 2022, 86, .	1.8	6
47	Dispersal distance is driven by habitat availability and reproductive success in Northern Great Plains piping plovers. Movement Ecology, 2021, 9, 59.	2.8	6
48	Density and success of upland duck nests in native―and tameâ€seeded conservation fields. Wildlife Society Bulletin, 2018, 42, 204-212.	1.6	5
49	High abundance of a single taxon (amphipods) predicts aquatic macrophyte biodiversity in prairie wetlands. Biodiversity and Conservation, 2022, 31, 1073-1093.	2.6	5
50	Plasma metabolite indices are robust to extrinsic variation and useful indicators of foraging habitat quality in Lesser Scaup. Auk, 2021, 138, .	1.4	4
51	Testing Competing Hypotheses For Chronology and Intensity of Lesser Scaup Molt During Winter and Spring Migration. Condor, 2011, 113, 298-305.	1.6	2
52	Wetland water-management may influence mercury bioaccumulation in songbirds and ducks at a mercury hotspot. Ecotoxicology, 2020, 29, 1229-1239.	2.4	2
53	Assessing Conservation and Management Actions with Ecosystem Services Better Communicates Conservation Value to the Public. Journal of Fish and Wildlife Management, 2022, 13, 306-318.	0.9	2
54	Foraging Movements and Colony Attendance of Least Terns (Sternula antillarum) on the Central Platte River, Nebraska, USA. Waterbirds, 2021, 44, .	0.3	0