
Xiaoding Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4872440/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008, 321, 385-388.	12.6	17,513
2	Nonlinear elastic behavior of two-dimensional molybdenum disulfide. Physical Review B, 2013, 87, .	3.2	400
3	Nonlinear elastic behavior of graphene: <i>Ab initio</i> calculations to continuum description. Physical Review B, 2009, 80, .	3.2	364
4	Elastic and frictional properties of graphene. Physica Status Solidi (B): Basic Research, 2009, 246, 2562-2567.	1.5	333
5	Optimal Length Scales Emerging from Shear Load Transfer in Natural Materials: Application to Carbon-Based Nanocomposite Design. ACS Nano, 2012, 6, 2333-2344.	14.6	186
6	Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nature Communications, 2020, 11, 3732.	12.8	172
7	Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies. Nano Energy, 2020, 70, 104528.	16.0	151
8	Microfabrication and mechanical properties of nanoporous gold at the nanoscale. Scripta Materialia, 2007, 56, 437-440.	5.2	123
9	Recoverable Slippage Mechanism in Multilayer Graphene Leads to Repeatable Energy Dissipation. ACS Nano, 2016, 10, 1820-1828.	14.6	112
10	Plasticity and ductility in graphene oxide through a mechanochemically induced damage tolerance mechanism. Nature Communications, 2015, 6, 8029.	12.8	95
11	Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules. Energy Storage Materials, 2021, 40, 329-336.	18.0	85
12	Failure mechanisms in composite panels subjected to underwater impulsive loads. Journal of the Mechanics and Physics of Solids, 2011, 59, 1623-1646.	4.8	84
13	Three-dimensional numerical modeling of composite panels subjected to underwater blast. Journal of the Mechanics and Physics of Solids, 2013, 61, 1319-1336.	4.8	78
14	Key Factors Limiting Carbon Nanotube Yarn Strength: Exploring Processing-Structure-Property Relationships. ACS Nano, 2014, 8, 11454-11466.	14.6	68
15	Nanograin–glass dual-phasic, elasto-flexible, fatigue-tolerant, and heat-insulating ceramic sponges at large scales. Materials Today, 2022, 54, 72-82.	14.2	62
16	Engineering the Mechanical Properties of Monolayer Graphene Oxide at the Atomic Level. Journal of Physical Chemistry Letters, 2016, 7, 2702-2707.	4.6	60
17	Kirigamiâ€Inspired Deformable 3D Structures Conformable to Curved Biological Surface. Advanced Science, 2018, 5, 1801070.	11.2	51
18	Atomistic Investigation of Load Transfer Between DWNT Bundles "Crosslinked―by PMMA Oligomers. Advanced Functional Materials, 2013, 23, 1883-1892.	14.9	48

#	Article	IF	CITATIONS
19	A new rate-dependent unidirectional composite model – Application to panels subjected to underwater blast. Journal of the Mechanics and Physics of Solids, 2013, 61, 1305-1318.	4.8	47
20	Experimental validation of multiscale modeling of indentation of suspended circular graphene membranes. International Journal of Solids and Structures, 2012, 49, 3201-3209.	2.7	46
21	Statistical shear lag model – Unraveling the size effect in hierarchical composites. Acta Biomaterialia, 2015, 18, 206-212.	8.3	39
22	Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells. Research and Reports in Biology, 2011, 2011, 1.	0.2	38
23	In Situ Scanning Electron Microscope Peeling To Quantify Surface Energy between Multiwalled Carbon Nanotubes and Graphene. ACS Nano, 2014, 8, 124-138.	14.6	37
24	Robust ultraclean atomically thin membranes for atomic-resolution electron microscopy. Nature Communications, 2020, 11, 541.	12.8	37
25	Robust Carbonâ€Nanotubeâ€Based Nanoâ€electromechanical Devices: Understanding and Eliminating Prevalent Failure Modes Using Alternative Electrode Materials. Small, 2011, 7, 79-86.	10.0	35
26	Carbon arbon Contacts for Robust Nanoelectromechanical Switches. Advanced Materials, 2012, 24, 2463-2468.	21.0	35
27	Plastic deformation in nanoscale gold single crystals and open-celled nanoporous gold. Modelling and Simulation in Materials Science and Engineering, 2007, 15, S181-S192.	2.0	34
28	Atomically Thin Polymer Layer Enhances Toughness of Graphene Oxide Monolayers. Matter, 2019, 1, 369-388.	10.0	32
29	Plane-strain bulge test for nanocrystalline copper thin films. Scripta Materialia, 2007, 57, 541-544.	5.2	31
30	Design and identification of high performance steel alloys for structures subjected to underwater impulsive loading. International Journal of Solids and Structures, 2012, 49, 1573-1587.	2.7	31
31	Thermal-Switchable, Trifunctional Ceramic–Hydrogel Nanocomposites Enable Full-Lifecycle Security in Practical Battery Systems. ACS Nano, 2022, 16, 10729-10741.	14.6	30
32	Dynamic shear-lag model for understanding the role of matrix in energy dissipation in fiber-reinforced composites. Acta Biomaterialia, 2018, 74, 270-279.	8.3	28
33	Residual plastic strain recovery driven by grain boundary diffusion in nanocrystalline thin films. Acta Materialia, 2011, 59, 3937-3945.	7.9	25
34	Molecular-Level Engineering of Adhesion in Carbon Nanomaterial Interfaces. Nano Letters, 2015, 15, 4504-4516.	9.1	25
35	Publisher's Note: Nonlinear elastic behavior of two-dimensional molybdenum disulfide [Phys. Rev. B 87 , 035423 (2013)]. Physical Review B, 2013, 87, .	3.2	22
36	A new Monte Carlo model for predicting the mechanical properties of fiber yarns. Journal of the Mechanics and Physics of Solids, 2015, 84, 325-335.	4.8	22

#	Article	IF	CITATIONS
37	Zone-Folded Longitudinal Acoustic Phonons Driving Self-Trapped State Emission in Colloidal CdSe Nanoplatelet Superlattices. Nano Letters, 2021, 21, 4137-4144.	9.1	22
38	Enhancing strength and ductility via crystalline-amorphous nanoarchitectures in TiZr-based alloys. Science Advances, 2022, 8, eabm2884.	10.3	22
39	Ultrasensitive triboelectric nanogenerator for weak ambient energy with rational unipolar stacking structure and low-loss power management. Nano Energy, 2017, 41, 351-358.	16.0	19
40	Growth of Ultraflat Graphene with Greatly Enhanced Mechanical Properties. Nano Letters, 2020, 20, 6798-6806.	9.1	19
41	Unraveling crack stability and strain localization in staggered composites by fracture analysis on the shear-lag model. Composites Science and Technology, 2018, 156, 262-268.	7.8	18
42	Achieving outstanding damping performance through bio-inspired sutural tessellations. Journal of the Mechanics and Physics of Solids, 2020, 142, 104010.	4.8	18
43	A new three-dimensional progressive damage model for fiber-reinforced polymer laminates and its applications to large open-hole panels. Composites Science and Technology, 2019, 182, 107757.	7.8	17
44	A new continuum model for viscoplasticity in metallic glasses based on thermodynamics and its application to creep tests. Journal of the Mechanics and Physics of Solids, 2021, 146, 104216.	4.8	15
45	Optimization of Damping Properties of Staggered Composites Through Microstructure Design. Journal of Applied Mechanics, Transactions ASME, 2018, 85, .	2.2	14
46	Deformation and fracture behavior of electrocodeposited alumina nanoparticle/copper composite films. Journal of Materials Science, 2007, 42, 5256-5263.	3.7	11
47	A multiscale analytical framework for mode I crack in staggered composites. Journal of the Mechanics and Physics of Solids, 2020, 145, 104157.	4.8	10
48	A general property-structure relationship from crack stability analysis on hybrid staggered composites with elasto-plastic matrices. Composite Structures, 2020, 240, 112071.	5.8	9
49	A universal fracture analysis framework for staggered composites composed of tablets with different wavy topologies. Journal of the Mechanics and Physics of Solids, 2021, 151, 104387.	4.8	9
50	Design the wave attenuation property of nacreous composites. Extreme Mechanics Letters, 2020, 40, 100875.	4.1	8
51	Correlations between the hierarchical spatial heterogeneity and the mechanical properties of metallic glasses. International Journal of Mechanical Sciences, 2021, 204, 106570.	6.7	8
52	Optimizing mechanical properties of bio-inspired composites through functionally graded matrix and microstructure design. Composite Structures, 2018, 206, 621-627.	5.8	7
53	Observation of plastic deformation in freestanding single crystal Au nanowires. Applied Physics Letters, 2006, 89, 111916.	3.3	5
54	Enhancing the impact performance of reinforced composites through fiber hybridization—A hybrid dynamic shear-lag model. Extreme Mechanics Letters, 2021, 47, 101352.	4.1	5

#	Article	IF	CITATIONS
55	Atomically Thin Bilayer Janus Membranes for Cryo-electron Microscopy. ACS Nano, 2021, 15, 16562-16571.	14.6	5
56	A multiscale model for the prediction of ballistic performance of fiber-reinforced composites. International Journal of Impact Engineering, 2021, 154, 103889.	5.0	3
57	Size effects in layered composites – Defect tolerance and strength optimization. Composites Science and Technology, 2018, 165, 154-160.	7.8	2
58	Modeling Intrinsic Wrinkles in Graphene and Their Effects on the Mechanical Properties. Jom, 2020, 72, 3987-3992.	1.9	1
59	Experimental and Theoretical Studies of Fiber-Reinforced Composite Panels Subjected to Underwater Blast Loading. , 2014, , 91-122.		1
60	Finite deformation continuum model for mechanically induced phase transition in transition metal dichalcogenide monolayers. Journal of the Mechanics and Physics of Solids, 2022, 166, 104955.	4.8	1
61	Carbon Nanotubes: Atomistic Investigation of Load Transfer Between DWNT Bundles "Crosslinked―by PMMA Oligomers (Adv. Funct. Mater. 15/2013). Advanced Functional Materials, 2013, 23, 1976-1976.	14.9	0