Andrew Pomiankowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4871685/publications.pdf

Version: 2024-02-01

119 papers 7,165 citations

94433 37 h-index 80 g-index

137 all docs

137 docs citations

times ranked

137

4543 citing authors

#	Article	IF	CITATIONS
1	Sexual selection: Large sex combs signal male triumph in sperm competition. Current Biology, 2021, 31, R478-R481.	3.9	2
2	Meiotic drive does not cause conditionâ€dependent reduction of the sexual ornament in stalkâ€eyed flies. Journal of Evolutionary Biology, 2021, 34, 736-745.	1.7	2
3	The need for high-quality oocyte mitochondria at extreme ploidy dictates mammalian germline development. ELife, 2021, 10, .	6.0	12
4	X-linked meiotic drive can boost population size and persistence. Genetics, 2021, 217, 1-11.	2.9	8
5	Resistance to natural and synthetic gene drive systems. Journal of Evolutionary Biology, 2020, 33, 1345-1360.	1.7	43
6	Maintenance of Fertility in the Face of Meiotic Drive. American Naturalist, 2020, 195, 743-751.	2.1	17
7	Genome expansion in early eukaryotes drove the transition from lateral gene transfer to meiotic sex. ELife, 2020, 9, .	6.0	10
8	Jumping and Grasping: Universal Locking Mechanisms in Insect Legs. Insect Systematics and Diversity, 2019, 3, .	1.7	6
9	Meiotic drive reduces egg-to-adult viability in stalk-eyed flies. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191414.	2.6	22
10	Limits to environmental masking of genetic quality in sexual signals. Journal of Evolutionary Biology, 2019, 32, 868-877.	1.7	11
11	Ejaculate sperm number compensation in stalk-eyed flies carrying a selfish meiotic drive element. Heredity, 2019, 122, 916-926.	2.6	23
12	Evolution of asymmetric gamete signaling and suppressed recombination at the mating type locus. ELife, 2019, 8, .	6.0	3
13	Mate Value. , 2018, , 1-8.		3
14	The origin of heredity in protocells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160419.	4.0	26
15	The complexity of mating decisions in stalkâ€eyed flies. Ecology and Evolution, 2017, 7, 6659-6668.	1.9	9
16	The First Mitochondrial Genomics and Evolution SMBE-Satellite Meeting: A New Scientific Symbiosis. Genome Biology and Evolution, 2017, 9, 3054-3058.	2.5	0
17	Variation in the benefits of multiple mating on female fertility in wild stalkâ€eyed flies. Ecology and Evolution, 2017, 7, 10103-10115.	1.9	11
18	Sexual conflict explains the extraordinary diversity of mechanisms regulating mitochondrial inheritance. BMC Biology, 2017, 15, 94.	3.8	17

#	Article	IF	CITATIONS
19	Gamete signalling underlies the evolution of mating types and their number. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150531.	4.0	25
20	The evolution of mating type switching. Evolution; International Journal of Organic Evolution, 2016, 70, 1569-1581.	2.3	17
21	Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life. Molecular Biology and Evolution, 2016, 33, 2874-2884.	8.9	59
22	The Ecology and Evolutionary Dynamics of Meiotic Drive. Trends in Ecology and Evolution, 2016, 31, 315-326.	8.7	305
23	Selection for Mitochondrial Quality Drives Evolution of the Germline. PLoS Biology, 2016, 14, e2000410.	5.6	60
24	Cell–cell signalling in sexual chemotaxis: a basis for gametic differentiation, mating types and sexes. Journal of the Royal Society Interface, 2015, 12, 20150342.	3.4	22
25	Evolution of dosage compensation under sexual selection differs between X and Z chromosomes. Nature Communications, 2015, 6, 7720.	12.8	47
26	Male mate preference for female eyespan and fecundity in the stalk-eyed fly, Teleopsis dalmanni. Behavioral Ecology, 2015, 26, 376-385.	2.2	33
27	A Bioenergetic Basis for Membrane Divergence in Archaea and Bacteria. PLoS Biology, 2014, 12, e1001926.	5.6	84
28	THE HANDICAP PROCESS FAVORS EXAGGERATED, RATHER THAN REDUCED, SEXUAL ORNAMENTS. Evolution; International Journal of Organic Evolution, 2014, 68, 2534-2549.	2.3	14
29	Size and competitive mating success in the yeast Saccharomyces cerevisiae. Behavioral Ecology, 2014, 25, 320-327.	2.2	8
30	SIGNALING EFFICACY DRIVES THE EVOLUTION OF LARGER SEXUAL ORNAMENTS BY SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2014, 68, 216-229.	2.3	27
31	Evolution: Sex or Survival. Current Biology, 2013, 23, R1041-R1043.	3.9	2
32	SEXUAL TRAITS ARE SENSITIVE TO GENETIC STRESS AND PREDICT EXTINCTION RISK IN THE STALKâ€EYED FLY, DIASEMOPSIS MEIGENII. Evolution; International Journal of Organic Evolution, 2013, 67, 2662-2673.	2.3	22
33	Under-Dominance Constrains the Evolution of Negative Autoregulation in Diploids. PLoS Computational Biology, 2013, 9, e1002992.	3.2	13
34	Dynamics of mitochondrial inheritance in the evolution of binary mating types and two sexes. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131920.	2.6	52
35	Ejaculate investment and attractiveness in the stalkâ€eyed fly, <i><scp>D</scp>iasemopsis meigenii</i> . Ecology and Evolution, 2013, 3, 1529-1538.	1.9	16
36	Fixed and dilutable benefits: female choice for good genes or fertility. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 334-340.	2.6	16

3

#	Article	IF	CITATIONS
37	THE EFFECTS OF SELECTION AND GENETIC DRIFT ON THE GENOMIC DISTRIBUTION OF SEXUALLY ANTAGONISTIC ALLELES. Evolution; International Journal of Organic Evolution, 2012, 66, 3743-3753.	2.3	38
38	Selection for mitonuclear co-adaptation could favour the evolution of two sexes. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1865-1872.	2.6	51
39	The population genetics of cooperative gene regulation. BMC Evolutionary Biology, 2012, 12, 173.	3.2	3
40	Molecular evolution of Drosophila Sex-lethal and related sex determining genes. BMC Evolutionary Biology, 2012, 12, 5.	3.2	16
41	Why promiscuity pays. Nature, 2011, 479, 184-185.	27.8	2
42	Eyespan reflects reproductive quality in wild stalk-eyed flies. Evolutionary Ecology, 2010, 24, 83-95.	1.2	46
43	Novel variation associated with species range expansion. BMC Evolutionary Biology, 2010, 10, 382.	3.2	31
44	Differential regulation drives plasticity in sex determination gene networks. BMC Evolutionary Biology, 2010, 10, 388.	3.2	19
45	Degree dependence in rates of transcription factor evolution explains the unusual structure of transcription networks. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2493-2501.	2.6	11
46	Male eyespan and resource ownership affect contest outcome in the stalk-eyed fly, Teleopsis dalmanni. Animal Behaviour, 2009, 78, 1213-1220.	1.9	38
47	The Evolution of Continuous Variation in Ejaculate Expenditure Strategy. American Naturalist, 2009, 174, E71-E82.	2.1	69
48	Male sexual ornament size is positively associated with reproductive morphology and enhanced fertility in the stalk-eyed fly Teleopsis dalmanni. BMC Evolutionary Biology, 2008, 8, 236.	3.2	59
49	Mutation, Selection and the Heritability of Complex Traits. Novartis Foundation Symposium, 2008, 233, 228-242.	1.1	1
50	A morphological and molecular description of a new Teleopsis species (Diptera: Diopsidae) from Thailand. Zootaxa, 2007, 1620, 37-51.	0.5	10
51	Sexual Selection: Does Condition Dependence Fail to Resolve the  Lek Paradox'?. Current Biology, 2007, 17, R335-R337.	3.9	10
52	Assigning sex to pre-adult stalk-eyed flies using genital disc morphology and X chromosome zygosity. BMC Developmental Biology, 2006, 6, 29.	2.1	6
53	ESS gene expression of X-linked imprinted genes subject to sexual selection. Journal of Theoretical Biology, 2006, 241, 81-93.	1.7	29
54	The influence of male and female eyespan on fertility in the stalk-eyed fly, Cyrtodiopsis dalmanni. Animal Behaviour, 2006, 72, 1363-1369.	1.9	18

#	Article	lF	Citations
55	Sexual Selection and Condition-Dependent Mate Preferences. Current Biology, 2006, 16, R755-R765.	3.9	406
56	Highly variable sperm precedence in the stalk-eyed fly, Teleopsis dalmanni. BMC Evolutionary Biology, 2006, 6, 53.	3.2	17
57	Variation in preference for a male ornament is positively associated with female eyespan in the stalk-eyed fly Diasemopsis meigenii. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1287-1292.	2.6	51
58	The Evolution of Cytoplasmic Incompatibility Types: Integrating Segregation, Inbreeding and Outbreeding. Genetics, 2006, 172, 2601-2611.	2.9	13
59	Sexual Selection: The Importance of Long-Term Fitness Measures. Current Biology, 2005, 15, R334-R336.	3.9	0
60	Stalk-eyed flies. Current Biology, 2005, 15, R533-R535.	3.9	23
61	The costs and benefits of high early mating rates in male stalk-eyed flies, Cyrtodiopsis dalmanni. Journal of Insect Physiology, 2005, 51, 1165-1171.	2.0	9
62	Using large-scale perturbations in gene network reconstruction. BMC Bioinformatics, 2005, 6, 11.	2.6	22
63	Mating-induced reduction in accessory reproductive organ size in the stalk-eyed fly Cyrtodiopsis dalmanni. BMC Evolutionary Biology, 2005, 5, 37.	3.2	49
64	Expression of defective proventriculus during head capsule development is conserved in Drosophila and stalk-eyed flies (Diopsidae). Development Genes and Evolution, 2005, 215, 402-409.	0.9	13
65	Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis?. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 771-783.	2.6	530
66	Evolution of the human ABO polymorphism by two complementary selective pressures. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1065-1072.	2.6	37
67	CONDITION DEPENDENCE OF SEXUAL ORNAMENT SIZE AND VARIATION IN THE STALK-EYED FLY CYRTODIOPSIS DALMANNI (DIPTERA: DIOPSIDAE). Evolution; International Journal of Organic Evolution, 2004, 58, 1038.	2.3	5
68	CONDITION DEPENDENCE OF SEXUAL ORNAMENT SIZE AND VARIATION IN THE STALK-EYED FLY CYRTODIOPSIS DALMANNI (DIPTERA: DIOPSIDAE). Evolution; International Journal of Organic Evolution, 2004, 58, 1038-1046.	2.3	192
69	Low cost of reproduction in female stalk-eyed flies, Cyrtodiopsis dalmanni. Journal of Insect Physiology, 2004, 50, 103-108.	2.0	32
70	Evolution: Love thy Neighbour. Current Biology, 2004, 14, R419-R421.	3.9	4
71	The Evolution of the Drosophila Sex-Determination Pathway. Genetics, 2004, 166, 1761-1773.	2.9	115
72	The Evolution of the Drosophila Sex-Determination Pathway. Genetics, 2004, 166, 1761-1773.	2.9	31

#	Article	IF	CITATIONS
73	Male genes: X-pelled or X-cluded?. BioEssays, 2003, 25, 739-741.	2.5	25
74	The evolutionary potential of the Drosophila sex determination gene network. Journal of Theoretical Biology, 2003, 225, 461-468.	1.7	17
75	Accessory gland size influences time to sexual maturity and mating frequency in the stalk-eyed fly, Cyrtodiopsis dalmanni. Behavioral Ecology, 2003, 14, 607-611.	2.2	76
76	Which Way to Manipulate Host Reproduction?WolbachiaThat Cause Cytoplasmic Incompatibility Are Easily Invaded by Sex Ratio–Distorting Mutants. American Naturalist, 2002, 160, 360-373.	2.1	33
77	Fate map of the eye-antennal imaginal disc in the stalk-eyed fly Cyrtodiopsis dalmanni. Development Genes and Evolution, 2002, 212, 38-42.	0.9	14
78	How does mate choice contribute to exaggeration and diversity in sexual characters?., 2001,, 203-220.		4
79	Conservation of the expression of Dll, en, and wg in the eye-antennal imaginal disc of stalk-eyed flies. Evolution & Development, 2001, 3, 408-414.	2.0	13
80	Size-dependent mate preference in the stalk-eyed fly Cyrtodiopsis dalmanni. Animal Behaviour, 2001, 61, 589-595.	1.9	91
81	The effect of transient food stress on female mate preference in the stalk–eyed flyCyrtodiopsis dalmanni. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1239-1244.	2.6	67
82	Temperature shock during development fails to increase the fluctuating asymmetry of a sexual trait in stalk–eyed flies. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1503-1510.	2.6	35
83	The Evolution of X-Linked Genomic Imprinting. Genetics, 2001, 158, 1801-1809.	2.9	44
84	Condition-dependent signalling of genetic variation in stalk-eyed flies. Nature, 2000, 406, 186-188.	27.8	295
85	Peg3 and the Conflict Hypothesis. Science, 2000, 287, 1167a-1167.	12.6	8
86	Reply from T. Bjorksten, K. Fowler and A. Pomiankowski. Trends in Ecology and Evolution, 2000, 15, 331.	8.7	7
87	What does sexual trait FA tell us about stress?. Trends in Ecology and Evolution, 2000, 15, 163-166.	8.7	160
88	Retaliatory cuckoos and the evolution of host resistance to brood parasites. Animal Behaviour, 1999, 58, 817-824.	1.9	14
89	Good Parent and Good Genes Models of Handicap Evolution. Journal of Theoretical Biology, 1999, 200, 97-109.	1.7	173
90	Driving sexual preference. Trends in Ecology and Evolution, 1999, 14, 425-426.	8.7	20

#	Article	IF	CITATIONS
91	Measurement bias and fluctuating asymmetry estimates. Animal Behaviour, 1999, 57, 251-253.	1.9	34
92	Runaway ornament diversity caused by Fisherian sexual selection. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 5106-5111.	7.1	134
93	Speciation in two neotropical butterflies: extending Haldane's rule. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 845-851.	2.6	51
94	Fluctuating asymmetry, spot asymmetry and inbreeding depression in the sexual coloration of male guppy fish. Heredity, 1997, 79, 515-523.	2.6	78
95	Sexual selection: Rebels with a cause. Current Biology, 1997, 7, R92-R93.	3.9	1
96	Female choice for spot asymmetry in the Trinidadian guppy. Animal Behaviour, 1997, 54, 1523-1530.	1.9	16
97	The genetic basis of female mate preferences. Journal of Evolutionary Biology, 1995, 8, 129-171.	1.7	230
98	Continual change in mate preferences. Nature, 1995, 377, 420-422.	27.8	205
99	Haldane's rule: old theories are the best. Trends in Ecology and Evolution, 1995, 10, 350-351.	8.7	9
100	Swordplay and sensory bias. Nature, 1994, 368, 494-495.	27.8	12
101	Reply from M. Brookes and A. Pomiankowski. Trends in Ecology and Evolution, 1994, 9, 440.	8.7	5
102	Reply from A. Pomiankowski and L. Sheridan. Trends in Ecology and Evolution, 1994, 9, 343.	8.7	6
103	Symmetry is in the eye of the beholder. Trends in Ecology and Evolution, 1994, 9, 201-202.	8.7	20
104	Linked sexiness and choosiness. Trends in Ecology and Evolution, 1994, 9, 242-244.	8.7	44
105	The Evolution of Mate Preferences for Multiple Sexual Ornaments. Evolution; International Journal of Organic Evolution, 1994, 48, 853.	2.3	134
106	THE EVOLUTION OF MATE PREFERENCES FOR MULTIPLE SEXUAL ORNAMENTS. Evolution; International Journal of Organic Evolution, 1994, 48, 853-867.	2.3	176
107	Punctuated Equilibria or Gradual Evolution: Fluctuating Asymmetry and Variation in the Rate of Evolution. Journal of Theoretical Biology, 1993, 161, 359-367.	1.7	47
108	Siberian mice upset Mendel. Nature, 1993, 363, 396-397.	27.8	12

#	Article	IF	CITATIONS
109	Sexual selection and MHC genes. Nature, 1992, 356, 293-294.	27.8	7
110	Speciation events. Nature, 1992, 359, 781-781.	27.8	4
111	The Evolution of Costly Mate Preferences I. Fisher and Biased Mutation. Evolution; International Journal of Organic Evolution, 1991, 45, 1422.	2.3	113
112	The Evolution of Costly Mate Preferences II. The 'Handicap' Principle. Evolution; International Journal of Organic Evolution, 1991, 45, 1431.	2.3	293
113	THE EVOLUTION OF COSTLY MATE PREFERENCES II. THE "HANDICAP―PRINCIPLE. Evolution; International Journal of Organic Evolution, 1991, 45, 1431-1442.	2.3	390
114	Maintaining mendelism: Might prevention be better than cure?. BioEssays, 1991, 13, 489-490.	2.5	25
115	Causes of sex ratio bias may account for unisexual sterility in hybrids: a new explanation of Haldane's rule and related phenomena Genetics, 1991, 128, 841-858.	2.9	348
116	THE EVOLUTION OF COSTLY MATE PREFERENCES I. FISHER AND BIASED MUTATION. Evolution; International Journal of Organic Evolution, 1991, 45, 1422-1430.	2.3	252
117	Mating success in male pheasants. Nature, 1989, 337, 696-696.	27.8	2
118	The costs of choice in sexual selection. Journal of Theoretical Biology, 1987, 128, 195-218.	1.7	327
119	Does meiotic drive alter male mate preference?. Behavioral Ecology, 0, , .	2.2	0